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FUNCTIONAL DIFFERENTIAL EQUATIONS WITH
UNBOUNDED DELAY IN EXTRAPOLATION SPACES

MOSTAFA ADIMY, MOHAMED ALIA, KHALIL EZZINBI

Abstract. We study the existence, regularity and stability of solutions for
nonlinear partial neutral functional differential equations with unbounded de-

lay and a Hille-Yosida operator on a Banach space X. We consider two non-

linear perturbations: the first one is a function taking its values in X and the
second one is a function belonging to a space larger than X, an extrapolated

space. We use the extrapolation techniques to prove the existence and regu-

larity of solutions and we establish a linearization principle for the stability of
the equilibria of our equation.

1. Introduction

In this work, we study the existence, regularity and stability of solutions for the
neutral functional differential equations with infinite delay

d

dt
[x(t)− F (xt)] = A[x(t)− F (xt)] +G(xt) for t ≥ 0,

x(t) = ϕ(t), for t ≤ 0, ϕ ∈ B,
(1.1)

where A : D(A)→ X is a linear operator on a Banach spaceX. We assume that A is
not necessarily densely defined and satisfies the Hille-Yosida condition. This means
that A satisfies the usual assumptions of the Hille-Yosida theorem characterizing
the generator of a C0-semigroup except the density of the domain D(A) in X: there
exist N0 ≥ 1 and ω0 ∈ R such that (ω0,+∞) ⊂ ρ(A) and

sup{(λ− ω0)n|(λI −A)−n| : n ∈ N, λ > ω0} ≤ N0,

where ρ(A) is the resolvent set of the operator A. The phase space B is a linear
space of functions from (−∞, 0] into X satisfying some assumptions which they will
be described in the sequel. For every t ≥ 0, the function xt ∈ B is defined by

xt(θ) = x(t+ θ) for θ ∈ (−∞, 0].

F is a Lipschitz continuous function from B to X, and G is a continuous function
from B with values in the space F1, where F1, larger than X, is the extrapolation
space associated to the C0−semigroup generated by the part of the operator A in
X0 = D(A) (see Section 2).
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Wu and Xia [26, 27] studied a system of partial neutral functional differential
equations defined on the unit circle S, which is a model for a continuous circular
array of identical resistively coupled transmission lines with mixed initial boundary
conditions. This system is

∂

∂t
[x(., t)− qx(., t− r)] = k

∂2

∂ξ2
[x(., t)− qx(., t− r)] + f(xt) for t ≥ 0,

x0 = ϕ ∈ C([−r, 0];H1(S)),
(1.2)

where xt(ξ, θ) = x(ξ, t+ θ), −r ≤ θ ≤ 0, t ≥ 0, ξ ∈ S, k is a positive constant, and
0 ≤ q < 1. The space of initial data was chosen to be C([−r, 0];H1(S)).

Motivated by this work, Hale [13, 14] presented the basic theory of existence,
uniqueness and properties of the solution operator of equation (1.2), as well as Hopf
bifurcation and conditions for the stability and instability of periodic orbits.

Adimy, Ezzinbi and their collaborators [2, 3, 4, 5, 6] considered (1.1) with finite
delay and the function G taking its values in the Banach space X. They established
the basic theory of existence, uniqueness, stability and some properties of the solu-
tion operator. In the literature devoted to partial functional differential equations
with finite delay r > 0, the state space is always the space of continuous functions
on [−r, 0], and the variation of constants formula is the main tool for studying the
properties of the solution operator. For more details, we refer to Travis and Webb
[24], and Wu [25].

When the delay is unbounded the situation is more complicated since the prop-
erties of the solutions depend on the phase space B. The choice of this space plays
an important role in both quantitative and qualitative studies. A usual choice of B
is a Banach space satisfying some assumptions which make the system well-posed.
For the basic theory of functional differential equations with infinite delay in finite
dimensional spaces, we refer to Hale and Kato [15], and Hino, Murakami and Naito
[18]. This theory was extended to partial functional differential equations with in-
finite delay by Henriquez [16] in 1994. Since then, many other authors investigated
partial functional differential equations with infinite delay by considering different
phase spaces B.

In [1, 7, 12, 17], the authors studied some classes of partial neutral functional
differential equations with unbounded delay. In [1] Adimy, Bouzahir and Ezzinbi
used the theory of integrated semigroups to study the existence and uniqueness of
mild solutions for a class of partial neutral functional differential equations with
unbounded delay. Chang [7] considered a generator of an analytic compact C0-
semigroup and assumed that the nonlinear part is continuous with respect to frac-
tional powers of this generator. He studied the existence and uniqueness of solutions
of partial neutral functional differential equations with unbounded delay. Ezzinbi,
Ghnimi and Taoudi [12] introduced a new concept of the resolvent operator adapted
to a class of non-autonomous partial neutral functional differential equations with
unbounded delay. They gave some basic results on the existence and uniqueness
of solutions. Hernandez and Henriquez [17] established some results of existence of
periodic solutions for a class of partial neutral functional differential equations with
unbounded delay and appropriate nonlinear functions defined on a phase space.

Ezzinbi [11] investigated (1.1) in the particular case where F = 0, the function
G is continuous from B with values in the extrapolation space F1 and the delay is



EJDE-2014/180 FUNCTIONAL DIFFERENTIAL EQUATIONS 3

unbounded. He used an approach based on the theory of the extrapolation spaces
to study the existence, uniqueness, regularity and asymptotic behavior of solutions.

The theory of extrapolation spaces was introduced by Da Prato and Grisvard [8]
in 1982 (see also Engel and Nagel [10]). It was used by Nagel and Sinestrari [20] for
a class of Volterra Integrodifferential equations with Hille-Yosida operators, and by
Maniar and Rhandi [19] for retarded differential equations in infinite dimensional
spaces. The use of this theory allows to consider nonlinear perturbations belonging
to a class of spaces, larger than the space in which the unperturbed system is
defined.

The main tools used to investigate (1.1) are based on the variation of constants
formula. The nonlinear functions F and G are not defined in the same space. Then,
we cannot consider the classical variation of constants formula introduced in our
previous works. We use the extrapolation methods introduced in [8] to construct a
new variation of constants formula adapted to (1.1). Then, we study the existence
and regularity of mild solutions of (1.1). We establish a linearization principle for
the stability of the equilibria. For the regularity of mild solutions, we adapt the
method developed in [24] for partial functional differential equations with finite
delay and to establish the linearization principle, we use an approach developed
in [22] and [23]. This work is an extension of [11] to partial neutral functional
differential equations with infinite delay.

2. Extrapolation spaces and Favard class

Throughout this article, we assume that the operator A : D(A) ⊂ X → X
satisfies the Hille-Yosida condition on a Banach space X:

(H1) there exist N0 ≥ 1 and ω0 ∈ R such that (ω0,+∞) ⊂ ρ(A) and

sup{(λ− ω0)n|(λI −A)−n| : n ∈ N, λ > ω0} ≤ N0.

Let A0 be the part of A in X0 := D(A) which is defined by

D(A0) = {x ∈ D(A) : Ax ∈ D(A)},
A0x = Ax for x ∈ D(A0).

Then, we have the following classical result.

Lemma 2.1 ([10]). A0 generates a C0-semigroup (T0(t))t≥0 on X0 with |T0(t)| ≤
N0e

ω0t, for t ≥ 0. Moreover, ρ(A) ⊂ ρ(A0) and R(λ,A0) = R(λ,A)
∣∣
X0

for λ ∈
ρ(A), where R(λ,A)

∣∣
X0

is the restriction of R(λ,A) to X0.

For a fixed λ0 ∈ ρ(A), we introduce on X0 the norm

|x|−1 = |R(λ0, A0)x| for x ∈ X0.

The completion X−1 of (X0, | · |−1) is called the extrapolation space of X associated
with the operator A. The norm |·|−1, associated with λ0 ∈ ρ(A) and any other norm
on X0 given for λ ∈ ρ(A) by |R(λ,A0)x| are equivalent. The operator T0(t) has a
unique bounded linear extension T−1(t) to the Banach space X−1 and (T−1(t))t≥0

is a C0-semigroup on X−1. (T−1(t))t≥0 is called the extrapolated semigroup of
(T0(t))t≥0. We denote by (A−1, D(A−1)) the generator of (T−1(t))t≥0 on the space
X−1.

For a Banach space Y , we denote by L(Y ) the space of bounded linear operators
on Y . We have the following fundamental results.
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Lemma 2.2 ([10]). The following properties hold:
(i) |T−1(t)|L(X−1) = |T0(t)|L(X0);

(ii) D(A−1) = X0;
(iii) A−1 : X0 → X−1 is the unique continuous extension of the operator A0 :

D(A0) ⊆ (X0, |.|) → (X−1, |.|−1) and (λ0I − A−1) is an isometry from
(X0, | · |) to (X−1, | · |−1);

(iv) If λ ∈ ρ(A), then (λI −A−1) is invertible and (λI −A−1)−1 ∈ L(X−1). In
particular, λ ∈ ρ(A−1) and R(λ,A−1)

∣∣
X0

= R(λ,A0);

(v) The space X0 = D(A) is dense in (X−1, | · |−1). Hence, the extrapolation
space X−1 is also the completion of (X, | · |−1) and we have X ↪→ X−1;

(vi) The operator A−1 is an extension of the operator A. In particular, if λ ∈
ρ(A) then R(λ,A−1)

∣∣
X0

= R(λ,A) and R(λ,A−1)(X) = D(A).

Next we introduce the Favard class of the C0-semigroup (T0(t))t≥0.

Definition 2.3 ([10]). Let (S(t))t≥0 be a C0-semigroup on a Banach space Y such
that |S(t)| ≤ Neνt for some N ≥ 1 and ν ∈ R. The Favard class of (S(t))t≥0 is the
space

F = {x ∈ Y : sup
t>0

(1
t
|e−νtS(t)x− x|

)
< +∞}.

This space equipped with the norm

|x|F = |x|+ sup
t>0

(1
t
|e−νtS(t)x− x|

)
,

is a Banach space.

For the rest of this article, we denote by F0 ⊂ X0 the Favard class of the C0-
semigroup (T0(t))t≥0 and by F1 the Favard class of the C0-semigroup (T−1(t))t≥0.

Lemma 2.4 ([10]). For the Banach spaces F0 and F1 the following properties hold:
(i) (λ0I −A−1)(F0) = F1;

(ii) T−1(t)(F1) ⊂ F1 for t ≥ 0;
(iii) D(A0) ↪→ D(A) ↪→ F0 ↪→ X0 ↪→ X ↪→ F1 ↪→ X−1, where D(A) is equipped

with the graph norm.

Proposition 2.5 ([20]). For f ∈ L1
loc(R+,F1), we define

(T−1 ∗ f)(t) =
∫ t

0

T−1(t− s)f(s)ds for t ≥ 0.

Then
(i) (T−1 ∗ f)(t) ∈ X0 for all t ≥ 0;

(ii) |(T−1∗f)(t)| ≤Meωt
∫ t
0
e−ωs|f(s)|F1ds, where M is a constant independent

of f ;
(iii) lim

t→0
|(T−1 ∗ f)(t)| = 0.

Remark 2.6. Assertion (iii) in Proposition 2.5 implies that the function

T−1 ∗ f : t→
∫ t

0

T−1(t− s)f(s)ds

is continuous from R+ to X0.
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3. Existence, uniqueness and regularity of solutions

Let B be the phase space of (1.1). That is a linear space of functions from
(−∞, 0] into X satisfying the following two assumptions (see [15]).

(A1) There exist a constant H > 0 and functions K,M : R+ → R+ with K
continuous and M ∈ L∞loc(R+) such that for all σ ∈ R and any a > 0
if x : (−∞, σ + a] → X is such that xσ ∈ B and x : [σ, σ + a] → X is
continuous, then for all t ∈ [σ, σ + a] we have

(i) xt ∈ B,
(ii) |x(t)| ≤ H|xt|B,

(iii) |xt|B ≤ K(t− σ) supσ≤s≤t |x(s)|+M(t− σ)|xσ|B.
(A2) the function t→ xt is continuous from [σ, σ + a] to B.
(B1) B is complete.

For the nonlinear functions F and G, we assume that they are Lipschitz continuous.
(H2) F is a Lipschitz continuous function from B to X:

|F (ϕ1)− F (ϕ2)| ≤ L0|ϕ1 − ϕ2|B for ϕ1, ϕ2 ∈ B.

(H3) G is a Lipschitz continuous function from B to F1:

|G(ϕ1)−G(ϕ2)|F1 ≤ L1|ϕ1 − ϕ2|B for ϕ1, ϕ2 ∈ B.

All the results in this work are obtained by assuming that the function K satisfies
(A1), and the Lischitz constant L0 in (H2) satisfies

(H4) L0K(0) < 1.
This assumption implies that there exists a > 0 such that L0Ka < 1 where Ka =
sup0≤t≤a(K(t)).

We need the following fundamental prior estimation.

Lemma 3.1. Assume that (H2) and (H4) hold and let a > 0 be such that L0Ka < 1.
Let ψ ∈ B and h ∈ C([0, a];X) be such that ψ(0)−F (ψ) = h(0). Then, there exists
a unique continuous function x on [0, a] such that

x(t)− F (xt) = h(t) for t ∈ [0, a],

x(t) = ψ(t) for t ∈ (−∞, 0].
(3.1)

Moreover, there exist αa > 0 and βa > 0 such that

|xt|B ≤ αa|ψ|B + βa sup
0≤s≤t

|h(s)| for t ∈ [0, a]. (3.2)

Proof. We introduce the space

Y = {x ∈ C([0, a];X) : x(0) = ψ(0)}

endowed with the uniform norm topology. For x ∈ Y , we define its extension x̃
over (−∞, 0] by

x̃(t) =

{
x(t) for t ∈ [0, a],
ψ(t) for t ∈ (−∞, 0].

Then, by (A2), the function t→ x̃t is continuous from [0, a] to B. Let us now define
the operator K by

(K(x))(t) = F (x̃t) + h(t) for t ≥ 0.
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We have to show that K has a unique fixed point on Y . Since h ∈ C([0, a];X) and
ψ(0)− F (ψ) = h(0), then K(Y ) ⊂ Y . Moreover,

|(K(x)−K(y))(t)| ≤ L0|x̃t − ỹt|B
By the property L0Ka < 1, we obtain that K is a strict contraction. By a Ba-
nach fixed point theorem, we deduce the existence and uniqueness of x, solution of
Problem (3.1) on the interval (−∞, a]. By (A1)-(iii), for t ∈ [0, a] we have

|xt|B ≤ Ka sup
0≤s≤t

|x(s)|+Ma|x0|B, where Ma = sup
0≤s≤a

M(s).

It follows that

|xt|B ≤ Ka sup
0≤s≤t

(|F (xs)|+ |h(s)|) +Ma|ψ|B,

≤ Ka(L0 sup
0≤s≤t

(|xs − ψ|B) + |F (ψ)|+ sup
0≤s≤t

|h(s)|) +Ma|ψ|B.

Since ψ(0)− F (ψ) = h(0), we deduce that

(1−KaL0)|xt|B ≤ (KaL0 +Ma)|ψ|B +Ka sup
0≤s≤t

|h(s)|+Ka(|ψ(0)|+ |h(0)|).

By (A1)-(ii), we obtain

(1−KaL0)|xt|B ≤ (KaL0 +Ma +KaH)|ψ|B + 2Ka sup
0≤s≤t

|h(s)|.

Finally, we arrive to

|xt|B ≤ αa|ψ|B + βa sup
0≤s≤t

|h(s)| for t ∈ [0, a],

where

αa =
Ka(L0 +H) +Ma

1−KaL0
and βa =

2Ka

1−KaL0
.

�

Definition 3.2. Let a > 0. A function x : (−∞, a] → X is called a mild solution
of (1.1) on (−∞, a] if x is continuous and satisfies

x(t)− F (xt) = T0(t)[ϕ(0)− F (ϕ)] +
∫ t

0

T−1(t− s)G(xs)ds for t ∈ [0, a],

x(t) = ϕ(t) for t ∈ (−∞, 0].
(3.3)

Theorem 3.3. Assume that (H1), (H2), (H3), (H4) hold. Let a > 0 be fixed such
that L0Ka < 1. Then, for ϕ ∈ B such that

ϕ(0)− F (ϕ) ∈ X0,

Equation (1.1) has a unique mild solution x(., ϕ) defined on (−∞, a]. Moreover, if
L0K∞ < 1, where K∞ = sup

t≥0
(K(t)), then the unique mild solution x(., ϕ) is defined

on (−∞,∞).

Proof. As in the proof of Lemma 3.1, consider the set

Y = {x ∈ C([0, a];X) : x(0) = ϕ(0)},
and the extension x̃ of x ∈ Y over (−∞, 0] defined by

x̃(t) =

{
x(t) for t ∈ [0, a],
ϕ(t) for t ∈ (−∞, 0].
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Then by (A2), the function t → x̃t is continuous. Let us now define the operator
H by

(H(x))(t) = F (x̃t) + T0(t)[ϕ(0)− F (ϕ)] +
∫ t

0

T−1(t− s)G(x̃s)ds for t ∈ [0, a].

We have to show that H has a unique fixed point on Y . In fact, by Proposition 2.5,
H(Y ) ⊂ Y . Moreover, for t ∈ [0, a], we have

|(H(x)−H(y))(t)| ≤ L0|x̃t − ỹt|B +N0

∫ t

0

eω0(t−s)|G(x̃s)−G(ỹs)|F1ds.

Hence

|(H(x)−H(y))(t)| ≤ L0|x̃t − ỹt|B +N0L1

∫ t

0

eω0(t−s)|x̃s − ỹs|Bds.

Without loss of generality, we suppose that ω0 > 0. Let b ∈ (0, a]. Then, for
t ∈ [0, b]

|(H(x)−H(y))(t)| ≤ L0Ka sup
0≤s≤a

|x(s)− y(s)|+N0L1bKae
ω0a sup

0≤s≤a
|x(s)− y(s)|.

Consequently,

|(H(x)−H(y))(t)| ≤ (L0Ka +N0L1bKae
ω0a) sup

0≤s≤a
|x(s)− y(s)|.

We choose b ∈ (0, a] such that

KaL0 +N0L1bKae
ω0a < 1.

Then, H is a strict contraction for t ∈ [0, b]. By the Banach fixed point theorem,
we have the existence and uniqueness of a mild solution of (1.1) on the interval
(−∞, b]. We proceed by steps on each interval [kb, (k+ 1)b], k = 0, 1, . . . to extend
the solution continuously on (−∞, a]. Furthermore, if we suppose L0K∞ < 1 then,
we can use the same method to extend the solution continuously on (−∞,+∞). �

We study now the regularity of the solution. We give a sufficient condition for
the mild solution of (1.1) to be continuously differentiable and to satisfy an abstract
differential equation. We need some preliminary results on the space B. To this
end, we suppose the additionally assumption.

(C1) If (ϕn)n≥0 is a Cauchy sequence in B and if (ϕn)n≥0 converges compactly
to ϕ on (−∞, 0], then ϕ is in B and |ϕn − ϕ|B → 0 as n→ +∞.

We recall the following result.

Lemma 3.4 ([21]). Let B be satisfy (C1) and f : [0, a] → B be a continuous
function such that the function (t, θ) → f(t)(θ) is continuous on [0, a] × (−∞, 0].
Then (∫ a

0

f(t)dt
)

(θ) =
∫ a

0

f(t)(θ)dt for θ ∈ (−∞, 0].

For the regularity of the mild solutions, we add the following hypotheses on F ,
G and the initial condition.

(H5) F : B → X is continuously differentiable and F ′ is locally Lipschitz contin-
uous.

(H6) G : B → F1 is continuously differentiable and G′ is locally Lipschitz con-
tinuous.
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(H7) ϕ ∈ C1((−∞, 0];X)∩B, ϕ′ ∈ B, ϕ(0)−F (ϕ) ∈ F0, ϕ′(0)−F ′(ϕ)ϕ′ ∈ D(A)
and ϕ′(0)− F ′(ϕ)ϕ′ = A−1[ϕ(0)− F (ϕ)] +G(ϕ).

We have the following theorem.

Theorem 3.5. Assume that (H1)–(H7) hold and let a > 0 be such that L0Ka <
1. Then, the mild solution x of (1.1) on (−∞, a] with x0 = ϕ ∈ B, belongs to
C1([0, a], X) ∩ C([0, a],F0) and satisfies

d

dt
[x(t)− F (xt)] = A−1[x(t)− F (xt)] +G(xt) for t ∈ [0, a]. (3.4)

The proof of this theorem is based on the following fundamental lemma.

Lemma 3.6 ([20, Corollary 3.5]). Let u : R+ → X be defined by

u(t) = T0(t)u0 +
∫ t

0

T−1(t− s)f(s)ds for t ≥ 0. (3.5)

If u0 ∈ F0 and f ∈ W 1,1(R+,F1) such that A−1u0 + f(0) ∈ D(A), then u ∈
C1(R+, X) ∩ C(R+,F0) and satisfies

d

dt
u(t) = A−1u(t) + f(t) for t ≥ 0.

Proof of Theorem 3.5. Let x be the mild solution of (1.1) on [0, a]. Consider the
function

y(t) =


F ′(xt)yt + T0(t)[ϕ′(0)− F ′(ϕ)ϕ′]
+
∫ t
0
T−1(t− s)G′(xs)ysds for t ∈ [0, a],

ϕ′(t), for t ∈ (−∞, 0].

(3.6)

Using the strict contraction principle, we show that (3.6) has a unique solution y
on (−∞, a]. Let z : (−∞, a]→ X be defined by

z(t) =

{
ϕ(0) +

∫ t
0
y(s) ds for t ∈ [0, a],

ϕ(t) for t ∈ (−∞, 0].

As a consequence of Lemma 3.4, we see that

zt = ϕ+
∫ t

0

ysds for t ∈ [0, a].

To complete the proof, we have to show that x = z on [0, a]. Since s → G(zs) is
continuously differentiable with the X−1−norm,

d

dt

∫ t

0

T−1(t− s)G(zs)ds = T−1(t)G(ϕ) +
∫ t

0

T−1(t− s)G′(zs)ys ds.

This implies that∫ t

0

T−1(s)G(ϕ)ds =
∫ t

0

T−1(t−s)G(zs)ds−
∫ t

0

∫ s

0

T−1(s−τ)G′(zτ )yτ dτ ds. (3.7)

Let t ∈ [0, a] and define

z1(t) = x(t)− F (xt), z2(t) = z(t)− F (zt).

We have

z2(t)− z2(0) =
∫ t

0

z′2(s)ds =
∫ t

0

(z′(s)− F ′(zs)ys)ds,
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=
∫ t

0

y(s)ds−
∫ t

0

F ′(zs)ysds.

It follows that

z2(t) = ϕ(0)− F (ϕ) +
∫ t

0

F ′(xs)ysds+
∫ t

0

T−1(s)(A−1[ϕ(0)− F (ϕ)] +G(ϕ))ds

+
∫ t

0

∫ s

0

T−1(s− τ)G′(xτ )yτ dτ ds−
∫ t

0

F ′(zs)ysds.

Since∫ t

0

T−1(s)(A−1[ϕ(0)− F (ϕ)])ds = T−1(t)(ϕ(0)− F (ϕ))− (ϕ(0)− F (ϕ)),

we obtain

z2(t) = ϕ(0)− F (ϕ) +
∫ t

0

(F ′(xs)− F ′(zs))ysds+ T−1(t)(ϕ(0)

− F (ϕ))− (ϕ(0)− F (ϕ)) +
∫ t

0

T−1(s)G(ϕ)ds

+
∫ t

0

∫ s

0

T−1(s− τ)G′(xτ )yτ dτ ds.

Using (3.7), we obtain

z2(t) = T0(t)(ϕ(0)− F (ϕ)) +
∫ t

0

(F ′(xs)− F ′(zs))ysds

+
∫ t

0

T−1(s)G(ϕ)ds+
∫ t

0

∫ s

0

T−1(s− τ)G′(xτ )yτ dτ ds,

and

z2(t) = T0(t)(ϕ(0)− F (ϕ)) +
∫ t

0

(F ′(xs)− F ′(zs))ysds

+
∫ t

0

T−1(t− s)G(zs)ds+
∫ t

0

∫ s

0

T−1(s− τ)(G′(xτ )−G′(zτ ))yτ dτ ds.

Since

z1(t) = x(t)− F (xt) = T0(t)[ϕ(0)− F (ϕ)] +
∫ t

0

T−1(t− s)G(xs)ds,

we deduce that

z2(t)− z1(t) =
∫ t

0

T−1(t− s)(G(zs)−G(xs))ds+
∫ t

0

(F ′(xs)− F ′(zs))ysds

+
∫ t

0

∫ s

0

T−1(s− τ)(G′(xτ )−G′(zτ ))yτ dτ ds.

The local Lipschitz conditions on F ′ and G′ imply that there is a positive constant
k0 such that

|z2(t)− z1(t)| ≤ k0

∫ t

0

|xs − zs|Bds.

Consequently,

|x(t)− z(t)| ≤ L0|xt − zt|B + k0

∫ t

0

|xs − zs|Bds,
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≤ L0Ka sup
0≤s≤t

|x(s)− z(s)|+ k0

∫ t

0

|xs − zs|Bds.

It follows that

sup
0≤s≤t

|x(s)− z(s)| ≤ k0

1− L0Ka

∫ t

0

|xs − zs|Bds.

Then, we obtain

|xt − zt|B ≤ Ka sup
0≤s≤t

|x(s)− z(s)| ≤ k0Ka

1− L0Ka

∫ t

0

|xs − zs|Bds.

By Gronwall’s lemma, we deduce that xt = zt on [0, a]. Consequently, x(t) = z(t)
for all t ∈ (−∞, a]. Hence, t → xt is continuously differentiable on [0, a]. We
deduce that t → G(xt) ∈ C1([0, a],F1). By Lemma 3.6, we conclude that the
function t→ x(t)− F (xt) belongs to C1([0, a], X) ∩ C([0, a],F0) and satisfies (3.4)
for all t ∈ [0, a]. �

4. The solution semigroup and the principle of linearized stability

In this section, we assume that
(H2’) the function F is a bounded linear operator from B to X with L0 its norm,

and
(H4’) L0K∞ < 1.

Let H be the phase space of (1.1) given by

H = {ϕ ∈ B : ϕ(0)− F (ϕ) ∈ X0}.
Define the operator U(t) on H, for t ≥ 0, by U(t)(ϕ) = xt(., ϕ), where x(., ϕ) is the
mild solution of (1.1) on R. Then, we have the following proposition.

Proposition 4.1. The family (U(t))t≥0 is a nonlinear strongly continuous semi-
group on H; that is,

(i) U(0) = I;
(ii) U(t+ s) = U(t)U(s), for t, s ≥ 0;
(iii) for all ϕ ∈ H, U(t)(ϕ) is a continuous function of t ≥ 0 with values in H;
(iv) U(t) satisfies, for t ≥ 0, θ ∈ (−∞, 0] and ϕ ∈ H, the translation property

U(t)(ϕ)(θ) =

{
(U(t+ θ)(ϕ))(0) if t+ θ ≥ 0,
ϕ(t+ θ) if t+ θ ≤ 0,

(v) for each a > 0, there exists a function m ∈ L∞((0, a),R+) such that

|U(t)ϕ− U(t)ψ|B ≤ m(t)|ϕ− ψ|B for t ∈ [0, a] and ϕ,ψ ∈ H.

Proof. (i) and (ii) are a consequence of the uniqueness of the solution. (iii) comes
from the fact that the solution is continuous for every t ≥ 0. (iv) is a consequence of
the definition of U . To prove (v), consider ϕ,ψ ∈ H and their associated solutions
x and y. Then, for t ≥ 0, we have

x(t) = F (xt) + T0(t)[ϕ(0)− F (ϕ)] +
∫ t

0

T−1(t− s)G(xs)ds,

y(t) = F (yt) + T0(t)[ψ(0)− F (ψ)] +
∫ t

0

T−1(t− s)G(ys)ds.
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It follows that

|x(t)− y(t)| ≤ L0|xt − yt|B +N0e
ω0t(H +L0)|ϕ− ψ|B +N0L1e

ω0t

∫ t

0

|xs − ys|Bds.

Then

(1−K∞L0)|xt−yt|B ≤ K∞N0e
ω0t(H+L0)|ϕ−ψ|B+N0K∞L1e

ω0t

∫ t

0

|xs−ys|Bds.

By Gronwall’s lemma, we conclude that, for every t ≥ 0, U(t) is a Lipschitz con-
tinuous function. �

By an equilibrium, we mean a constant solution x∗ of (1.1). Without loss of
generality, we suppose that x∗ = 0. Then, we assume that

(H8) G(0) = 0 and G is continuously differentiable at zero.
Then the linearized equation at zero of (1.1) is given by

d

dt
[y(t)− F (yt)] = A[y(t)− F (yt)] +G′(0)yt for t ≥ 0,

y0 = ϕ ∈ H.
(4.1)

Let (V (t))t≥0 be the C0-semigroup solution on H of (4.1).

Theorem 4.2. Assume that (H1), (H2’), (H3), (H4’), (H8) hold. Then, for t ≥ 0,
the derivative at zero of U(t) is V (t).

Proof. Let ϕ ∈ H. Consider the unique solution x (resp. y) on R of (1.1) (resp.
(4.1)). Then, for t ≥ 0, we have

x(t) = F (xt) + T0(t)[ϕ(0)− F (ϕ)] +
∫ t

0

T−1(t− s)G(xs)ds,

y(t) = F (yt) + T0(t)[ϕ(0)− F (ϕ)] +
∫ t

0

T−1(t− s)G′(0)ysds,

and, for t ≤ 0, x(t) = y(t) = ϕ(t). Let t ≥ 0. Then

x(t)− y(t) = F (xt)− F (yt) +
∫ t

0

T−1(t− s)(G(xs)−G′(0)ys)ds.

Hence

x(t)− y(t) = F (xt)− F (yt) +
∫ t

0

T−1(t− s)(G(ys)−G′(0)ys)ds

+
∫ t

0

T−1(t− s)(G(xs)−G(ys))ds.

Using (v) of Proposition 4.1 and thanks to the differentiability property of the
function G at 0, we see that for ε > 0, there exists η > 0 such that

|G(yt)−G′(0)yt|F1 ≤ ε|ϕ|B for |ϕ|B ≤ η and t ≥ 0.

This implies that, by (A1)-(iii), there exist constants k0 and k̃ such that for t ≥ 0

|xt− yt|B ≤ K∞|x(t)− y(t)| ≤ L0K∞|xt− yt|B + k0K∞ε|ϕ|B + k̃K∞

∫ t

0

|xs− ys|B.

Then

|xt − yt|B ≤
k0K∞

1−K∞L0
ε|ϕ|B + k̃K∞

∫ t

0

|xs − ys|B.
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By Gronwall’s lemma, we obtain

|xt − yt|B ≤ ε̃|ϕ|B for |ϕ|B ≤ η.

We conclude that U(t) is differentiable at 0 and DϕU(t)(0) = V (t) for t ≥ 0. �

Finally, we obtain the important result.

Theorem 4.3. Assume that (H1), (H2’), (H3), (H4’), (H8) hold. If the semigroup
(V (t))t≥0 on H is exponentially stable, then the zero equilibrium of (U(t))t≥0 is
locally exponentially stable in the sense that there exist δ > 0, µ > 0 and k ≥ 1
such that

|U(t)(ϕ)| ≤ ke−µt|ϕ| for ϕ ∈ H with |ϕ| ≤ δ and t ≥ 0.

Moreover, if H can be decomposed as H = H1 ⊕ H2, where Hi are V -invariant
subspaces of H, H1 is finite-dimensional and

inf{|λ| : λ ∈ σ(V (t)/H1)} > eωt, where ω = lim
h→∞

1
h

log |V (h)/H2|,

then, the zero equilibrium of (U(t))t≥0 is not stable in the sense that there exist
ε > 0, a sequence (ϕn)n converging to 0, and a sequence (tn)n of positive real
numbers such that |U(tn)ϕn| > ε.

The proof of this theorem is based on Theorem 4.2 and on the following result.

Theorem 4.4 ([9]). Let (W (t))t≥0 be a nonlinear C0-semigroup on a subset Ω of
a Banach space Y . Assume that w ∈ Ω is an equilibrium of (W (t))t≥0 and W (t)
is differentiable at w for each t ≥ 0. Let Z(t) be the derivative at w of W (t),
t ≥ 0. Then (Z(t))t≥0 is a C0-semigroup of bounded linear operators on Y . If the
semigroup (Z(t))t≥0 is exponentially stable, then the equilibrium w of (W (t))t≥0 is
locally exponentially stable. Moreover, if Y can be decomposed as Y = Y1 ⊕ Y2,
where Yi are Z-invariant subspaces of Y , Y1 is finite-dimensional and

inf{|λ| : λ ∈ σ(Z(t)/Y1)} > eωt with ω = lim
h→∞

1
h

log |Z(h)/Y2|,

then, the equilibrium w is not stable in the sense that there exist ε > 0 and sequences
(xn)n converging to w and (tn)n of positive real numbers such that |W (tn)xn−w| >
ε.

5. An example

Consider the equation

∂

∂t
[u(t, x)−

∫ 0

−∞
α(θ)u(t+ θ, x)dθ]

= − ∂

∂x
[u(t, x)−

∫ 0

−∞
α(θ)u(t+ θ, x)dθ] +

∫ 0

−∞
H(x, θ, u(t+ θ, x))dθ

for t > 0 and x ∈ [0, 1],

u(t, 0)−
∫ 0

−∞
α(θ)u(t+ θ, 0)dθ = 0 for t > 0,

u(θ, x) = u0(θ, x) for (θ, x) ∈ (−∞, 0]× [0, 1],

(5.1)
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where u0 ∈ C((−∞, 0] × [0, 1]; R), α : (−∞, 0] → R is a continuous function and
H : [0, 1]× (−∞, 0]×R→ R is a function satisfying (E1) and (E2) below. We put
X = C([0, 1]; R).

We use the extrapolation method to prove the well-posedness of (5.1). Let A be
the operator defined on X by

D(A) = {h ∈ C1([0, 1]; R) : h(0) = 0}, Ah = −h′.
Then,

D(A) = C0([0, 1]; R) = {h ∈ C([0, 1]; R) : h(0) = 0}.

Lemma 5.1 ([20]). The operator A satisfies the Hille-Yosida condition (H1) on
X. The C0-semigroup (T0(t))t≥0 on the space D(A) = C0([0, 1]; R) generated by
the part A0 of A is given for u ∈ C0([0, 1]; R), by

(T0(t)u)(x) =

{
u(x− t) for t ≤ x,
0 for t > x.

Let Lip0[0, 1] be the space of Lipschitz continuous functions on [0, 1] vanishing
at zero, with the norm

|g|Lip = sup
0≤x1<x2≤1

|g(x2)− g(x1)|
x2 − x1

.

Lemma 5.2. [20] The Favard class of the semigroup (T0(t))t≥0 is given by F0 =
Lip0[0, 1] and the Favard class of the extrapolated semigroup (T−1(t))t≥0 is given by
F1 = L∞(0, 1). The extrapolated operator A−1 coincides on F0 almost everywhere
with the derivative operation.

Let γ > 0. Consider the phase space

B = Cγ = {ϕ ∈ C((−∞, 0];X) : sup
θ≤0

(eγθ|ϕ(θ)|) < +∞},

endowed with the norm

|ϕ|Cγ
= sup

θ≤0
(eγθ|ϕ(θ)|), where |ϕ(θ)| = sup

x∈[0,1]

|ϕ(θ)(x)| for θ ≤ 0.

Lemma 5.3 ([15]). The space Cγ satisfies the (A1), (A2), (B1) (C1).

Assume that:
(E1) ess supx∈[0,1](

∫ 0

−∞ |H(x, θ, 0)|dθ) < +∞;
(E2) |H(x, θ, z1) −H(x, θ, z2)| ≤ β(θ, x)|z1 − z2| for x ∈ [0, 1], θ ∈ (−∞, 0] and

z1, z2 ∈ R, with ess supx∈[0,1](
∫ 0

−∞ e−γθβ(θ, x)dθ) < +∞;

(E3)
∫ 0

−∞ e−γθ|α(θ)|dθ < 1;
Let F be the linear operator from Cγ to X defined by

F (ϕ)(x) =
∫ 0

−∞
α(θ)ϕ(θ)(x)dθ for ϕ ∈ Cγ and x ∈ [0, 1].

Then

sup
x∈[0,1]

|F (ϕ)(x)| ≤ sup
x∈[0,1]

(∫ 0

−∞
|α(θ)| |ϕ(θ)(x)|dθ

)
≤
(∫ 0

−∞
e−γθ|α(θ)|dθ

)
|ϕ|Cγ ≤ L1|ϕ|Cγ ,
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where

L1 =
∫ 0

−∞
e−γθ|α(θ)|dθ < +∞.

Hence |F (ϕ)| ≤ L1|ϕ|Cγ
. Then, F is a bounded linear operator from Cγ to X.

We introduce the function G defined on Cγ , by

(G(ϕ))(x) =
∫ 0

−∞
H(x, θ, ϕ(θ)(x))dθ a.e. x ∈ [0, 1], ϕ ∈ Cγ .

Lemma 5.4. Assume that the conditions (E1) and (E2) are satisfied. Then, for
all ϕ ∈ Cγ , G(ϕ) ∈ L∞(0, 1) and G : Cγ → L∞(0, 1) is Lipschitz continuous.

Proof. By (E1), we have

ess supx∈[0,1](|G(0)(x)|) ≤ ess supx∈[0,1]

(∫ 0

−∞
|H(x, θ, 0)|dθ

)
< +∞.

Consequently, G(0) ∈ F1 = L∞(0, 1). Let ϕ,ψ ∈ Cγ . Then

|G(ϕ)−G(ψ)|F1 = ess supx∈[0,1](|G(ϕ)(x)−G(ψ)(x)|),

≤ ess supx∈[0,1]

(∫ 0

−∞
|H(x, θ, ϕ(θ)(x))−H(x, θ, ψ(θ)(x))|dθ

)
,

≤ ess supx∈[0,1]

(∫ 0

−∞
β(θ)|ϕ(θ)(x)− ψ(θ)(x)|dθ

)
,

≤ ess supx∈[0,1]

(∫ 0

−∞
e−γθβ(θ, x)dθ

)
sup
θ≤0

×
[
eγθ
(

ess supx∈[0,1](|ϕ(θ)(x)− ψ(θ)(x)|)
)]
,

≤ ess supx∈[0,1]

(∫ 0

−∞
e−γθβ(θ, x)dθ

)
|ϕ− ψ|Cγ .

Since G(0) ∈ L∞(0, 1), we have G(ϕ) ∈ L∞(0, 1). On the other hand, we conclude
that G : Cγ → L∞(0, 1) is Lipschitz continuous. �

For t ≥ 0, x ∈ [0, 1] and θ ≤ 0, we make the following change of variables

v(t)(x) = u(t, x), ϕ(θ)(x) = u0(θ, x).

Then, (5.1) takes the abstract form
∂

∂t
[v(t)− F (vt)] = A[v(t)− F (vt)] +G(vt),

v0 = ϕ ∈ Cγ .
(5.2)

Proposition 5.5. Assume that (E1), (E2), (E3) hold. Let ϕ ∈ Cγ be such that
ϕ(0) − F (ϕ) ∈ D(A). Then (5.2) has a unique mild solution v on an interval
(−∞, a], with a > 0.

Proof. Lemma 5.1 and Lemma 5.4 imply that the hypotheses (H1), (H2’) and (H3)
hold. For the space Cγ , one can see that K(0) = 1 and L1 < 1. It follows that the
hypothesis (H4) is true. �

To obtain the regularity of mild solutions of (5.2), we assume that the function
z → H(x, θ, z) is differentiable and satisfies the following hypothesis.
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(E4) | ∂∂zH(x, θ, z)| ≤ µ(x, θ) for x ∈ [0, 1], θ ∈ (−∞, 0] and z ∈ R, with
ess supx∈[0,1]

( ∫ 0

−∞ e−γθµ(x, θ)dθ
)
< +∞.

(E5) | ∂∂zH(x, θ, z1)− ∂
∂zH(x, θ, z2)| ≤ ϑ(θ, x)|z1 − z2| for x ∈ [0, 1], θ ∈ (−∞, 0]

and z1, z2 ∈ R, with ess supx∈[0,1](
∫ 0

−∞ e−γθϑ(θ, x)dθ) < +∞.
It is not difficult to see that assumptions (E4) and (E5) imply that the function G
satisfies (H6).

We add the following hypothesis on the regularity of the initial condition.
(E6) u0 ∈ C1((−∞; 0]× [0, 1]; R) such that

(i) supθ≤0

(
e−γθ[ess supx∈[0,1] |∂u0

∂θ (θ, x)|]
)
<∞,

(ii) u0(0, .)−
∫ 0

−∞ α(θ)u0(θ, .)dθ ∈ Lip0[0, 1],

(iii) ∂u0
∂θ (0, .)−

∫ 0

−∞ α(θ)∂u0
∂θ (θ, .)dθ ∈ C0([0, 1]; R),

(iv) for a.e. x ∈ [0, 1] we have

∂u0

∂θ
(0, x)−

∫ 0

−∞
α(θ)

∂u0

∂θ
(θ, x)dθ

= − ∂

∂x
(u0(0, x)−

∫ 0

−∞
α(θ)u0(θ, x)dθ) +

∫ 0

−∞
H(x, θ, u0(θ, x))dθ .

Then we obtain

ϕ ∈ C1((−∞, 0];X) ∩ B, ϕ′ ∈ B, ϕ(0)− F (ϕ) ∈ F0,

ϕ′(0)− F (ϕ′) ∈ D(A) ϕ′(0)− F (ϕ′) = A−1[ϕ(0)− F (ϕ)] +G(ϕ).

Consequently, the hypothesis (H7) is satisfied.
We conclude with the following proposition.

Proposition 5.6. Let (E1), (E2), (E3), (E4), (E5), (E6) be satisfied. Then the
mild solution v of (5.2) belongs to C1([0, a];C([0, 1],R)) ∩ C([0, a]; Lip0[0, 1]) and
the function u : [0, a]× [0, 1]→ R defined by

u(t, x) = v(t)(x),

satisfies (5.1), for t ∈ [0, a] and a.e x ∈ [0, 1].
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