Boumediene Abdellaoui, Tarik Mohamed Touaoula
Abstract:
In this article we analyze the dynamics of the problem
where
are positive constants, and
are positives continuous functions.
The main results obtained in this paper are the following:
(1) Using the Laplace transform, we prove the global asymptotic
stability of the trivial steady state.
(2) Under some additional hypotheses on the data and by constructing
a Lyapunov functional, we show the asymptotic stability of the
positive steady state.
We conclude by applying our results to mathematical models of
hematopoieses and Nicholson's blowflies.
Submitted June 26, 2014. Published August 15, 2014.
Math Subject Classifications: 34K20, 92C37.
Key Words: Global stability; Lyapunov function; asymptotic analysis;
Laplace transform, Nicholson's blowflies model.
Show me the PDF file (262 KB), TEX file, and other files for this article.
Boumediene Abdellaoui Laboratoire d'Analyse Nonlinéaire et Mathématiques Appliquées Département de Mathématiques Université Abou Bakr Belkaid Tlemcen, Tlemcen 13000, Algeria email: boumediene.abdellaoui@uam.es | |
Tarik Mohamed Touaoula Laboratoire d'Analyse Nonlinéaire et Mathématiques Appliquées Département de Mathématiques Université Abou Bakr Belkaid Tlemcen, Tlemcen 13000, Algeria email: touaoula_tarik@yahoo.fr, tarik.touaoula@univ-tlemcen.dz |
Return to the EJDE web page