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WEAK INVERSE PROBLEMS FOR PARABOLIC
INTEGRO-DIFFERENTIAL EQUATIONS CONTAINING
TWO KERNELS

KAIRI KASEMETS, JAAN JANNO

ABSTRACT. An inverse problem to determine a coefficient and two kernels in
a parabolic integro-differential equation is considered. A corresponding direct
problem is supposed to be in the weak form. Existence of the quasi-solution is
proved and issues related to Fréchet differentiation of the cost functional are
treated.

1. INTRODUCTION

Inverse problems to determine coefficients and kernels in integro-differential heat
equations are well-studied in the smooth case when the medium is continuous and
corresponding direct problems hold in the classical sense (selection of references:
[2, [ (51, 9], 10, 12) 13| [15] 16, 17, [M9]). For instance, in [I0] problems to determine
space-dependent coefficients by means of final over-determination of the solution
of the direct problem are dealt with. This paper exploits and generalizes methods
developed earlier in the usual parabolic case [3] [7].

Results are known for particular non-smooth cases, as well. For instance, identi-
fication problems for parabolic transmission problems are considered in [I1] under
additional smoothness assumptions in neighbourhoods of observation areas. Several
papers deal with degenerate cases (see [8] and references therein). In [I4] problems
to reconstruct free terms and coefficients in a weak parabolic problem containing
a single kernel (heat flux relaxation kernel) are considered. In particular, a new
method that enables to deduce formulas for Fréchet derivatives for cost functionals
of inverse problems is proposed.

In the present article we consider the inverse problem of determining two kernels
and a coefficient in a parabolic integro-differential equation. The corresponding
direct problem is posed in the weak form. We prove the Fréchet differentiability of
the cost functional related to the inverse problem and deduce a suitable form for
the Fréchet derivative in terms of an adjoint problem. In this connection we use an
integrated convolutional form of the weak direct problem that enables to use test
functions without classical time derivatives. Finally, we prove the existence of the
quasi-solution of the inverse problem under certain restrictions.
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Inverse problems for smooth models with two kernels were formerly considered
in Bl 12} 19].

2. FORMAL STATEMENT OF PROBLEMS

Let © be a n-dimensional domain, where n > 1 and I' = 9. Further, let
I' =T UT'y with measT'y N’y = 0, measT'y > 0 and either I’y = () or measT'; > 0.
In case n > 2 we assume I to be sufficiently smooth. Define

Qt =0 x (O,t), Fl,t = F] X (O,t), Fg’t = FQ X (O,t)

for t > 0.
Let T > 0. We pose the formal direct problem: find u(x,t) : Q7 — R such that
ug+ (uxu)y=Au—mx*xAu+ f+V-o+¢; in Qp, (2.1)
u=ug in 2 x {0}, (2.2)
u=g inIyr, (2.3)
—va-Vu+m*vy-Vu=du+h+v-¢ inlyrp, (2.4)
where . N
Av = Z (aijv%‘)xi +av, vgq= (Zaijyj‘i=17.__,n),
ij=1 j=1
v = (v1,...,vy) is the outer normal of I's, a;j,a,up : @ — R, f,o: Qp — R,

Q>R g:Qr -R, 9:Ty =R, h:Tor =R, g,m:(0,T) — R are given
functions and

zxw(t) = /o z(t — T)w(r)dr

is the convolution with respect to the variable ¢. In the case I'y = (), the boundary
condition (2.3)) is omitted. The second and third addend of the free term of the
equation (2.1)); i.e., V - ¢ and ¢; may be singular distributions.

The problem 7 governs the heat conduction in the body 2 filled with
material with memory, where p and m are the relaxation kernels of the internal
energy and the heat flux, respectively and u is the temperature [T, 4}, 5], [I8]. Then
the condition corresponds to the third kind boundary condition, namely it
contains the heat flux to the co-normal direction —v4 - Vu +m * v4 - V.

Let us formulate the inverse problem:

IP. Find a, m and p such that the solution of (2.1)—(2.4]) satisfies the following
final and integral additional conditions:

u=wur inQx{T}, (2.5)
/F kj(z,)u(z,)dl =v; in (0,7), j=1,2, (2.6)

where ur : Q@ = R, k; : Tor — R and v; : (0,7) — R are prescribed functions.

Remark 2.1. In the case n = 1 and ©Q = (¢, d), the integral fF2 z(x)dT is merely

the sum EZL:1 z(x;), where 2; € Ty C {¢;d} and L is the number of points in I'y
(i.e L € {1;2}). Then the conditions (2.6) read

L
> ki Ju(z,) =v; in (0,7), j=1,2. (2.7)
=1
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3. RESULTS CONCERNING DIRECT PROBLEM

Let us start by a rigorous mathematical formulation of the direct problem. Define
the following functional spaces:

U() = C([0,8]; L*(2)) N L2((0,); W5 (2)),
Up() = {n eU() :nlr,, =0 in case T'y # V)},
T () = {n e L*((0,1); W5 () : ne € L*((0,1); L*(2)) }.
To () = {n € T() :nlr,, =0 in case Ty # 0}

and introduce the following basic assumptions on the data of the direct problem:

ai; € LOO(Q), Q5 = Qji, DS O(fg), ¥ >0, (31)

Z aij(T)\idi > €[A®,  x€Q, A € R" with some € > 0, (3.2)
i,j=1

a€ LT (Q), whereqgu=1ifn=1, ¢ >g ifn > 2, (3.3)

pe L*0,T), meLY0,T), (3.4)

up € L*(Q), geT(Qr), heLl*(Tar),
f€L*(0,T); L%=(R)), where go = 1if n =1,

3.6
@€ (1,q)ifn=2, (J2:n2_7:2 ifn >3, (36)
¢ =(f1,..-,¢n) € (L*(Qr))", (3.7)

© €U(Qr), incase 'y # 0
139, € T(Qr) 1 p =g, in Ty 7.

If we assume additional conditions a;; € W3 (), a%iqﬁi e L?*Qr),i=1,...,n,
pr € LQ(QT) and suppose that 7 has a classical solution u € LQ(QT)
such that uy, ug,, ug,o, € L*(Qr), 4,5 = 1,...,n, then multiplying with a test
function n € 7p(2r) and integrating by parts we come to the relation

Oz/ﬂ[(u—&—u*u)(ay,T)n(az,T)—uo(x)n(x,O)] da:—//QT(u—i—u*u)mdxdt

+// {zn:aij(“wj_m*uzj)nm—a(u—m*u)n} dx dt
Q

T ij=1

+//F2YT(19“+h)77dth—//QT(fn—cb-Vn)da;dt
_/Q[<P(:E,T)7]($,T) —<p(a:,0)77(%0)}dx+// oy da dt.

Qr
(3.10)
This relation makes sense also in a more general case when a;;, ¢, ¢ satisfy ,
37, and u € U(Qr).
We call a weak solution of the problem (2.1))—(2.4) a function belonging to U ()
that satisfies the relation (3.10)) for any n € 75(2r) and, in case I'; # 0, that fulfills
the boundary condition (2.3)).
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Theorem 3.1. Problem (2.1))—(2.4) has a unique weak solution. This solution
satisfies the estimate

lulleror) < CO[||U0||L2(Q) + 1 fllz2(0,1);L92 () + 1@l (L2(@r))m 1)

+ llellu@r) + Hllgllirr + lgellr@nt + 1hlL2@s 2|
where 0 = 0 in case I'y = O and Cy is a constant independent of ug, f, , @, g, h.
Proof. Since p € L?(0,T), the Volterra equation of the second kind
p+pxp=—p in (0,7). (3.12)

has a unique solution i € L?(0,7T') [6]. We call fi the resolvent kernel of u. Further,
let us consider the following problem:

U =Au—m*Ai+f+V ¢ inQr, (3.13)

@=1, inQx {0}, (3.14)

=3 inTyr, (3.15)

—vA - Vi+msvy-Vi=0U+9i*xti+h+v-¢ inTar, (3.16)

where

m=m—p+mxp, [=[f+ap—mxap,
i :¢i+zaig‘<ﬁz]~ *m*zaij%w
=1 =1

h=h+dp+0fixp, G=g+psg—gs, bo=1uo—¢(-0).
By the properties of m and i we have m € L'(0,T). Further, [I4, Lemma 1] yields
UQr) — L*((0,T); L%(2)), where g3 = oo if n =1,

2 3.17
q1q92 . _ n ifn >3 ( )
q1 — G2 n—2

and
av € L*((0,T); L=(Q)) if a € L™ (Q), v € L*((0,T); L= (1)),
llav|z2(0,7);092 (2)) < Cllallpar ) vl 220,793 ()5
where C'is a constant. Using the relations (3.17)), (3.18)), the properties of m, i, the

assumptions (3.1)—(3.8)), trace theorems and the Young theorem for convolutions
we obtain

(3.18)

5 Oaga ﬁ) ekX
); L%2(Q)) x (L*(Q7))" x L2(Q) x T(Qr) x L*(To.7),
ldl| < Clld]l (3.19)
where d = (f, ¢, u0,9,h, ¢, 9,) and
X = L*((0,7); L% (2)) x (L*(Qr))" x L*(Q) x T (Q7) x L*(T2.7) xU(Q7) x T(Qr)

and C is a constant. It was proved in [14] Theorem 1] that problem f in
case u = 0 and ¢ = 0 has for any (f, ¢, uo, g, h) € X a unique weak solution and the
corresponding solution operator B belongs to L(X;U(2r)). (Here £(X,Y) stands
for the space of linear bounded operators from a Banach space X to a Banach space
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Y.) This implies that problem (3.13])—(3.16) is equivalent in U (€21) to the following
operator equation:

U= Qu with Qu=B5(0,0,0,0,97 %) + Bd. (3.20)

To study this equation, we will use the inequality

t
slizn < [ A= ylseodr. tebT] 321
0

that holds for any y € L?(Qr). This was proved in [I4 inequality (3.12)].
Let u',u% € U(Qr), denote v = ' —u? and estimate Qu' —Qu? = B(0,0,0, 0, I7i*
v). To this end, fix t € [0,T] and define

in I
Pw={" M2 (3.22)
0 m FQ,T\F2¢

for w : Tor — R. Due to the causality, we have B(0,0,0, P,Yi * v)(z,7) =
B(0,0,0,9% * v)(z,7) for any (z,7) € Q. Since B € L(X;U(r)), the continu-
ity of 9, the trace theorem and the inequality with y = v,v,,, 1 =1,...,n,
it follows that

|Qa" — Qu?|luq,) = 1B(0,0,0,0, 9% * v)|u,)
= |1B(0,0,0,0, P97t % ) |luaa,)
< |1B(0,0,0,0, P  v) |u(cr)
< 1B Pedp* vll L2 (rs ) = IBINIE * vl L2(rs 1) (3:23)

< Chlp * UHLZ((O,t);W;(Q))
t
<0 / I 1 I P——

with some constants C; and Cy. Let us define the weighted norm in U(Qr):
[vlle = supgeicr e v]lu(a,) Where o > 0. In view of (3.23) and U(Q;) —
L2((0,1); W3 (Q)) we get

t
197" - @il < €y sup e [ 7t =)l ol i
0<t<T 0

t
— 0y sup / =T At — 1) e~ [ e,
o<t<T Jo

T
<0 / e Ia(s)lds sup e [ollucan
0 o<r<T

T
_ ¢, / e~ |ii(s)|ds ||o]]

with some constant C3. By the dominated convergence theorem, fOT e 7%|u(s)|ds —
0 as 0 — oo. Thus, there exists g such that

DN | =

T
Cy / e=70% ()| ds <
0

Therefore, ||Qu' — Qu?|,, < — 4?||s,- The operator Q is a contraction

zllat
in U#(Qr). This implies that (3.13)—(3.16) has a unique weak solution in U(2r).
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Moreover, observing (3.20) and the relation Q0 = Bd, for the solution of (13.13)—
(3.16) we obtain the estimate

[y = 197 — Q0+ QUll, < Qi — QOlly + 1B, < gl + 115,
which implies
[@lly < 201Bdllo < 20Bdlluar) < 201Bd]x.
Observing the relation e~ ||ty < ||t]s, and we arrive at the estimate
[l < Calldl 2 (3.24)

with a constant Cy.
Further, let us define
u=u+p+pu*u+ ). (3.25)
Then @ is expressed in terms of u as
U=u+puxu— . (3.26)

One can immediately check that the implications v € U(Q2r) & u € U(Qr) are

valid. Moreover, it is easy to see that @ is a weak solution of (3.13)—(3.16|) if and

only if u is weak solution of (2.1))—(2.4). In view of the above-presented arguments

we can conclude that (2.1)—(2.4) has a unique weak solution. From (3.25)) we obtain
[ulluar) < Calllulluar) + l#llu@r))

with a constant C5. This with (3.24]) implies (3.11). The proof is complete. O

It is possible to give an equivalent form to the relation (3.10) that does not
contain the derivative of the test function with respect to t. Namely, the following
theorem holds.

Theorem 3.2. The function uw € U(Qr) satisfies the relation (3.10) for any n €
To(Qr) if and only if it satisfies the relation

Oz/ﬂ(u—i-,u*u—ap)*ndx—/ﬂ/ot(uo(x)—cp(x,O))n(x,T)dex

+/ 1% [Z @ij (U, — M * Uy, ) * g, — a(u —m % u) *n}dm (3.27)
Q

4,j=1

v - - ) T; ’
+/F21>«<(u+h)*ndf /Ql*(f*n ;gb *nl)dx

for any t € [0,T] and n € Up(Qr).

Proof. It is analogous to the proof of [I4, Theorem 2] that considers the case ¢ = 0,
= 0. We have only to replace u by & = u+ u*u — ¢ in the term K (t) appearing
in formulas [14} (3.19), (3.20)] to get the desired result. O

Remark 3.3. Theorems [3.1] and [3.2] remain valid also in the case 'y = (). In this

case the terms ||h||r, , and fl“z 1% (Yu+ h) *ndl are missing in (3.11)) and (3.27]),
respectively.
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4. QUASI-SOLUTION OF IP. FRECHET DERIVATIVE OF COST FUNCTIONAL

Assume that n € {1;2;3}. Moreover, let us set g1 = 2 if n = 2. Then any
coefficient a that belongs to L?(f) satisfies (3.3). For the weight functions ; we
assume that

Kkj € L((0,T); L*(I1)), j=1,2. (4.1)
In the case n = 1 this assumption is simply x(x;, ) € L*>(0,T), ; € T's C {¢;d}.
According to Theorem u € U(Q7), thus u(-, T) € L*(Q), and the condition
is well-defined for ur € L*(Q2). Moreover, by a trace theorem we have u € L*(Ta.r).
This implies that fm kj(x, Ju(x,-)dl' € L*(0,T), j = 1,2, hence the condition
is well-defined for v; € L*(0,T), j = 1,2.

Let M C Z := L?(Q) x (L?(0,T))?. We call the quasi-solution of IP in the set
M an element z* € arg min,e s J(z), where J is the cost functional

2
J(2) = llu(-, T52) — urla@) + D H/F ki (@, -Jule, 5 2)d0 = o5l 3207
j=1 /T2

and u(x,t; z) is the weak solution of the direct problem (2.1)—(2.4) corresponding
to given z = (a,m,p). In case n = 1 the integral fF2 kj(x,t)u(z,t;2)dl in the

definition of J is replaced by Zlel kj(zr, t)u(a, t; 2).
Theorem 4.1. The functional J is Fréchet differentiable in Z and
J'(2)Az

= 2/ [u(z, T;2) — up(z)] Au(z, T)dx
Q (4.2)

2

+ Qi/f {/FQ K (y, huly, t; z)dl — 'Uj(t)} /F ki (, ) Au(z, t)dUdt,

where Az = (Aa, Am,Ap) € Z and Au € U(Qr) is the z- and Az-dependent weak
solution of the following problem:

Aug + (px Au)y = AAu — m *x AAu + Aafu — m *u] — Am * au

j=1
Au=0 1inQ x {0}, (4.4)
Au=0 inlyr, (4.5)
—va-VAu+mxvy - VAu
(4.6)

=0Au—v- {Am * zn:aijuxj} in Lo .

j=1

Proof. Denote Au = u(x,t;z + Az) — u(x, t; 2) and define Au = Au — Au. Then
we can represent the difference of J as follows:

J(z+ Az)—J(2) =RHS + O, (4.7)
where RHS is the right-hand side of the equality (4.2)) and

0= 2/9[u(m, T) — up(z)|Au(z, T)dx
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—I—QZ/ / ;i (y, t)u(y, t)dl — v;(t )}/ fﬁj(x,t)ﬁu(x,t)dfdt
Ty

+/§2{(Au+Au)(x,T)} dzx
+Z/ / (1) (D4 B, T}

Let us study problem (|4.3] . To this end we estimate the terms in the right—
hand side of (| . Observmg the relations u € U(Qr), , , L?(Q

L (Q2) and using the Young and Cauchy inequalities we deduce
lAalu — m * u] — Am * aUHLQ((O,T);LQ2(Q))

< allullugor) [+ [mllr20,m) 1Al 20) + llall L2 | Aml| 120, (4.8)
< CQ(Zvu)HAZHv
where ¢; is a constant, ¢y is a coefficient depending on z = (a, m, ), u and || - ||

denotes the norm in Z. Taking the boundendness of a;; into account we similarly
get

1Am > agits, | (2@ < esllullur) | Am] L2 0m) (4.9)
j=1
with a constant cz. Next let us estimate the term Ay * u at the right-hand side of
([4.3). Since u € C([0,T]; L*(Q)) and Ap € L?(0,T), it is easy to check that Apu x
u e C([0,T]); L2()) and || Ap* ullcqo 20y < TY2{|ulloqo.r 2 1Ak L20,7)-
Similarly, [[Ap % |20y wi) < T2 MullL2orywi @ lAull 20,y Taking
these estimates together, we have

AR * ulleacry < T2 ullu@e A1 220,1) - (4.10)
Since v = g in I'y 7, we find that
Apxu=Apxg inIly 7. (4.11)

Using the assumption g € 7 (Qr) and the Young and Cauchy inequalities again, we
obtain

[Ap* gll7@r) = A1 * gllL20,0y:w () + (A * 9)ell20,7):202))
= [[Ap* gllL20,ry:wi ) T 121 * gellL20,1):L2 ()
+ [[Arg(-, 0)[[L2((0,1):22(02))
< C4HAN||L2(0,T)

with a constant cs. Relations (4.8)-(4.12) show that Theorem 3.1]holds for problem
—(4.6]), hence it has a unique weak solution Au € U(Q2r). Using the estimate
3.11)) for the solution of this problem we obtain

(4.12)

| Aully(r)
< Cp [IIAa[u —mxul + Am x aul| 2 ((0,7);L92 ()
. (4.13)
+llAm Y aiju, [l 2@y + 180 * ullucar) + 0l Aw* gllziar)
j=1
< es(z,u)||Az||
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with a coefficient ¢; depending on 2, u.
The function Awu satisfies the problem

ﬁut+(u*3u)t:Aﬁufm*Aﬁquer]?wLV’¢+V‘$+g@t+@

O (4.14)

Au=0 inQx {0}, (4.15)

Au=0 inTyr, (4.16)
—va-VAu+mxvy-VAu=90Au+v-¢+v-¢ inTlyr, (4.17)

where
f=AaAu — (m+ Am) x* AaAu — Am x Aau — Am * aAu,
f = AaAu — (m + Am) x AaAu — Am x aAu,
¢ =—Am x iaijAumj, qASZ —Am * iaijﬁuzj,
j=1 j=1
o =—Apx Au, @z—Au*ﬁu.
Similarly to f we deduce the following estimates:
[ fllz2(0,7);L92 ()
< 66{(1 + Imllz20,7) + |AM| L2(0,7)) [ Al L2(0) | Aty
+ ulleeor) [AM| 20,7 [ Aal| p2(0) + HGHL?(Q)HAmHH(o,T)||AU||M(QT)}
< erlz ) { 182 + 12212 | Aulucar) + 1821},
172z < es(2) [1A2] + [182]°] [ Bullnr).
10llz2 @ < collAzll|Aulluiar),
1822 < coll Al Aullun),
lellacry < T2 A | Aullyor),
1@luery < T2l A2 |1 Aullucer)

with some coefficients cg,...,c9. Moreover, since Au = Au =0 in I’y 7, we have
¢ =@ =01in I'y 7. Applying the estimate (3.11]) to the solution of the problem

(T8 ([ET7) we get
1Beullugar) < erolzu){ (1821 + 18217 {1Auluar) + 1Buluar f+182]2 |

with a coefficient c19. Provided ||Az|| is sufficiently small; i.e., ||Az| + ||Az]]? <

1
ey Ve have

1Bulluery < 2en0(zw){ [1A2] + 182112 | Auluer) + 18212

Due to (4.13)), this yields
[Aullyor) < ez u) [[|Az]* + [|Az]%] (4.18)

with a coefficient cjq.
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In view of (4.13), (4.18)) and the assumption r; € L>°((0,7); L*(T'2)) the right-
()

hand side of RHS and the quantity © satisfy the estimates
6
stlRHS| < ci2(z,w)||Az]l, O] < c13(z,u) Z Az, (4.19)

=2

st where c12 and cy3 are some coefficients. Moreover, RHS is linear with respect to
Az. This with (4.7) shows that J is Fréchet differentiable in Z and J'(z)Az equals
RHS. O

Theorem 4.2. Assume g = 0. Then the Fréchet derivative of J admits the form

T T
J'(z)Az:/Q’yl(:c)Aa(x)dx—l—/o ’yz(t)Am(t)dt—i-/o vs(t)Ap(t)dt,  (4.20)

where
m(z) = [(u—mxu) x¢)(z,T), (4.21)
Y(t) = — /Q {au * 1) + Z ;i s, * u%} (x, T — t)dz, (4.22)
73(?) |

:f/g[au*qurau*q/)*[ﬁ—mfm*ﬁ]

n n
Y it # e, + Y ittty % [i—m —m il (2, T — t)da

i,j=1 1,j=1

- / [0(u+ i+ w) (2, T — t)dT (4.23)

-2 /Q{u(x,T) —up(z)Hu+ g *ul(z, T — t)dz
_ Qi/tT [/F ki(y, T)u(y, 7)dl — vj(T)]/F Kj(x,T) [u
+ fxu](z, 7 — t)dl'dr,

where [ is the solution of (3.12), w(z,t) = u(x,t;2) and ¢ € U(Qr) is the z-
dependent weak solution of the following “adjoint” problem.:

Ay + (u*x Ah)y = AAY —mx AAY  in Qr, (4.24)
AY = 2[u(-,T) —ur] in Q x {0}, (4.25)
Ay =0 inTyir, (4.26)
—va-VAY+m*vy-VAY =9AY+h° inTyrp, (4.27)
where
he(z,t)

=2 ZQ: ki(z, T —t) [/ ki (y, T — t)u(y, T — t)dl — v (T — t)} . (4.28)

j=1 T2
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Proof. Define Aw = Au + Ap *u + 1 * Ap x u. Since u, Au € U(Qr), we have
Aw € U(Q2r). Moreover, using it is easy to see that Au+ pu*x Au+ Apxu =
Aw + px Aw. Using this relation for the time derivatives in and the equality
Au = Aw — Ap xu — @ *x Ap * u for other terms containing Awu in f we
see that Aw is the weak solution of the problem

Aw; + (p* Aw)y = AAw —m s AAw + fT+V-¢T  in Qp, (
Aw =0 in Q x {0}, (
Aw=0 inT;p, (4.31
—va-VAu+msvy-VAu=09Au+hl +v- ¢ in Ty 7, (
where
fT=Aau—mxu] —aAm*u—alAp*u—alpsux[i—m—mxp], (4.33)
o' = (¢l,....0h),

qbz = —Am* Zaijuwj — Ap * Zaijuxj — Ap * Zaijug;j * [0 —m —m* 1],
j=1 j=1 j=1
(4.34)
ht = —9Ap * [u + [ * u). (4.35)
Let us write the weak form (3.27)) for the problem for Aw and use the test function
1 = 1. Then we obtain

n

0:/(Aw+,u*Afw)>kvjjd:v+/1*[Z aij(Awg; —m* Awg,) * g,
Q Q

i,j=1

—a(Aw—m*Aw)*¢]dw+/ 1% (0Aw + k') x 1) dT (4.36)

s
—/Ql* (ff*w_équ*%)dx.

Next we write the weak form ([3.27) for the problem for 1 and use the test function
n = Aw to get

0:/Q(zb—l—u*q/))*Awdx—2/Q/Otu(x,T)—uT(x)]Aw(x,T)dex

+/1>«< {Z aij(wzj—m*wz].)*szi—a(w—m*w)*Aw]dx (4.37)
Q

i,j=1
—|—/ 1% (9 + h°) * Awdr.
T2

Subtracting (4.36)) from (4.37)), differentiating with respect to ¢t and setting t = T
we have

2 /Q[u(:mT) — ur(z)]Aw(z, T)drdx — /Fz(h" * Aw)(z,T)dT

2

:/Q(fT*w—;qﬁj*dzzi)(x,T)dx—/F (ht % 1) (x, T) dT.
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Observing the relations Aw = Au+ Apxu+ * Ap*u, (4.28) and ([4.2]) we obtain
the formula

J’(z)Az/Q(fquzn:gbj*%)(z,T)dz/F (bt %) (2, T) dT

- 2/ [w(z,T) — ur(@){(Ap+ f* Ap) xu}(z, T)dx
Q

2

- QZ/OT {/FQ ki (y, thuly, t; 2)dl — vj(t)}

j=1
></ wj(a, O { (Ap + o Ap) x u}(x, t)dTdt.
s

Rearranging the terms yields (4.20) with (4.21))-(4.23]). O

The formula (4.20) shows that the vector (71,72, y3) is a representation of J'(z) in
the space Z. It can be used in gradient-type minimization algorithms (cf. [13] [14]).

5. EXISTENCE OF QUASI-SOLUTIONS
Theorem 5.1. Let M be compact. Then IP has a quasi-solution in M.

Proof. Tt coincides with the proof of [I4, Theorem 7 (ii)]. We use the continuity of
J that is a consequence of the Fréchet differentiability of J proved in the previous
section. 0

Theorem 5.2. Letn=1, Q = (c,d), ¢ = g, =0, g(x,0) =0 and M be bounded,
closed and convex. Then IP has a quasi-solution in M.

Proof. This theorem follows from Weierstrass existence theorem [20] provided we
are able to show that J is weakly sequentially lower semi-continuous in M. We will
prove that J is in fact weakly sequentially continuous in M.

Let us choose some sequence zp = (ax,mp,ux) € M such that z, — z =
(a,m,pu) € M. Then it is easy to see that ax — a in L?(c,d) and ms — m,
pr — pin L2(0,7). As in the proof of Theorem let 7 € L?(0,T) be the
solution of (3.12). Similarly, let 7, € L?(0,T) be the solution of the equation
A + g * i = —pg in (0, T). Let us show that fi, — i in L2(0,T). To this end we
firstly verify the boundedness of the sequence fir. Multiplying the equation of fix
by e=%, o > 0, and estimating by means of the Young and Cauchy inequalities we
obtain

le™ Bkl 20y < lle™ e * e~ ikl L2 0.y + lle™ tll L2 (0.7)
< le™ prllLro,mylle™ " ikl 20,1y + lle™ 7 el L2 (0,1)
< le™*lz20,m) il 20y e ikl 20,7y + lle™ bkl L2 (0,7)-
Observing that |le=7||z2(0,r) < 1/V20 and choosing o = oy = 2[sup ||k || £2(0,7))>
we get

o o

le™" Tkl 20,y < 20le” urllz2 0,0y = Nikllzz o,y < 2€77 sup ||pll 22 0,7)-
This shows that the sequence iy, is bounded. The difference jiy — ji can be expressed

as
Hr — = —(p — ) — vg * (g — 1),
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where vi, = [i + [ix + [ * [ix, is a bounded sequence in L?(0,7T). Denote by (-,-) the
inner product in L2(0,T). With an arbitrary ¢ € L?(0,T) we have

T T—1
(Ik—1,C) = —(ur—pt, C)— Ny, Ni :/0 Uk(T)/O (e —p)(s)C(T+s)dsdr. (5.1)

Since ((7+ ) € L*(0,T —7) for 7 € (0,T), it holds fo (i — ) (8)C(T+s)ds — 0
for 7 € (0,T). Moreover since py, is bounded in L?(0,T), the sequence of 7-

dependent functions | fo (g — 1) (8)¢(7+ s)ds| is bounded by a constant. By the
Cauchy inequality and the dominated convergence theorem, we find

T—.
N < lonll om0 | / (it — )(S)C(- + 8)ds]| 2oy — 0.
0

Thus, from (5.1)), in view of pup — p, we obtain i — [i.
Let us define

U=u+p*u, Up=ug+ [k * U,

where v = wu(z,t;z) and ur = u(x,t;2;) are the weak solutions of (2.1)—(2.4)
corresponding to the vectors z and z, respectively. The relations u, ux € U(2r) and
py ik € L2(0,T) imply @,y € U(Qr). Observing the definitions of the resolvent
kernels i and i, we deduce
U=UALHRU,  up = U + g * Uy,
uk—u:ﬂk—ﬂ+ﬁk*(ﬂk—ﬂ)+(ﬁk—ﬁ)*ﬂ.
In view of the latter relation we express the difference of values of the functional J

as follows:

J(zk) = J(2)

d d
= / (up —u)?(x, T)dx + 2/ [u(z,T) — ur(z)](ug, — u)(x, T)dz

. Z/T [iﬂj(m’t) (up, — ) ($l,t)rdt (5.2)

0

2

—|—2Z/ ZKJJ xy, t)u(xy, t HZR] xy,t uk—u)(ajl,t)}dt

=L + I} + I} + I,

where

d 2
= [ (@04 s @0+ (- ) ) (0T
c

d
= 2/ fu(a T) — ()] (A — @+ i * (@ — ) + (B~ ) # ) (2, T,

2 T L 2
= Z/o [ s, 0) (@~ @+ e (@ — )+ (i — ) # ) a1,)]
j=1 =1
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2 T L
It = 22/0 {;nj(xz,t)u(mz,t) —v;(t)

L
x{E:mﬂxhﬂ(ﬂk—ﬁ+j@*(ﬂk—ﬂ)+(ﬁk—ﬁ)*ﬁ)@hﬂ]ﬁ.
=1

Using the Cauchy inequality, i € L2(0,T), Uy, u € U(Qr) and the boundedness of
the sequence iy, in L?(0,7T) we obtain

] < (@ — @+ g * (@ — ) (T 7200
+ 20 (@ — ) # @) (T 2 ey | (@ = @+ ik * (@ = @) (5 Tl 220y + Ri
< Cr(l[an =l apy + @ = @llur)) +Ri

with a constant C~'1 and

fﬁzlﬁéﬂm—m@m@T—ﬂmrm.

Since u € U(Qr) C L*(Qr), by Tonelli’s theorem it holds (x,-) € L?(0,T) a.e.

€ (¢,d) = u(z, T —-) € L*(0,T) a.e. = € (¢,d). Thus, in view of pup — [
in L?(0,T) we have fOT hr — ﬁ)( Yu(x, T — T)dT — 0 a.e. = € (¢,d). Moreover,
[fOT(ﬁk — ) (m)u(z, T - )dT} < Chn fo (z,7)]?dT € L'(c,d) with a constant C1;,

because the sequence Jij is bounded in L?(0,7). Therefore, by the dominated
convergence theorem we obtain R} — 0. Similarly for I? we get

12| < 20|u(-, T) = urll L2 (el (Ge — @+ fig * (U — @) (-, T) || 12(c,a) + R
< Colltix — Alluor) + R,

where Cs is a constant and

d T
stR} = / [u(z,T) — uT(m)]/ (ix — p)(T)u(x, T — 7)drdz. (5.3)
c 0
st By the same reasons as above, it holds R? — 0. Next, let us estimate I}:
2
12 < 223 e (115 (@ l[Fe o | ke = 0+ i (3 = ) (o, 0.
j=1

2
+207) m (155G, Do 0 (k= ) ) 1, ) 20

. H(ak A s (@ 0) ) eom | + R
< Cs(||ag — aHZ%[(QT) + [k = Ullucr ) +RES

where C3 is a constant and

3 2 - T 2
= 173 e {1~ o || =iyt = ryar] ar}.
<

Here we also used the embedding U () — L2((0,T); Clc, d]) that holds in the case
n = 1. Since u(z;,t —-) € L?(0,t) for all t € (0,T) we get fot(ﬁk — ) (m)u(x,t —
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7)dT — 0 for all ¢t € (0,T). Moreover, the sequence |f0t(ﬁk — ) (n)u(z, t — 7)dr|
is bounded by a constant. Consequently, Ri — 0. Analogously we deduce the
estimate

|1} < Cyllay, — Uy + Rpy,  Where Cy is a constant,

2 L
Ri = 2LZHZ Kj (xl, t)u(xh ) - UjHLZ(O,T)lIglELXL{”Hj (xlv ')||L°°(O,T)
j=1 1=1 ==

X [/OT [/Ot(ﬁk — B (r)ala, t — T)dfrdt] 1/2},

where Rﬁ — 0.

Note that if we manage to show that ||up — U,y — O then the proof is
complete. Indeed, in this case by virtue of RZ —0,i=1,2,3,4, from the estimates
of I! we get I} — 0,i=1,2,3,4 and due to we obtain J(zp) — J(2), which
implies the statement of the theorem.

As in the proof of Theorem [3.1] we can show that @ and 1y, are the weak solutions
of the following problems:

uy=Au—mx*xAu+ f+ ¢, in Qp, (5.4)

u=wo in 2 x {0}, (5.5)

u=g inTir, (5.6)

—va-Vu+msva -Vu=290+90xu+h+v-¢ inTor, (5.7)

Upt = Al — My * A + f + ¢ in Qr, (5.8)

up =wup in Q x {0}, (5.9)

Up,=gr inTyrp, (5.10)

—va - VU, +myxvg - Vi =90, + 9 *xup +h+v-¢ inTap, (5.11)

where Agv = (a110;) . + arv,
m=m—[+m*, Mp=mg— g+ mg* ][,
g=g+p*g, Gp=g+pk*g.
We now show that 7, — m. With any ¢ € L?(0,7T) we compute
(Mg =, ¢) = (my, —m, {) — (fix, — 11, C) + Ny,

N} :/0 ﬁk(T)/O (i — m)(8)C(r + 8)dsdr

T T—1
+ /0 m(r) /O (i — ) (s)C(r + s)dsdr.

We use the relations my — m, iy — [ and treat the term N} similarly to the term
Ny, in (5.1) to get N} — 0. As a result we get (my, —m, ) — 0, hence 7y — .
Subtracting the problem of @ from the problem of @ we see that wy := ux — U
is a weak solution of the problem
wy,p = Awy, — i x Awg + fr + ¢ in Qp, (5.12)
u=0 inQ x {0}, (5.13)
ﬂ = gk: in F]_’T, (514)
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—va - Vw, +mkva - Vg = 0w, + hi +v - ¢ in Top, (5.15)
where
fro = (ar, — a) (W, — Mg * Ur) — aliy, — M) * Uy,
Op = —a11 (g — M) * ke, Gr = (e — 1) * g,
e = Ol + wp + (i — 1) * .
To use the weak convergence ar — a in forthcoming estimations we have to in-

troduce the functions p, € W3 (c,d) being the solutions of the following Neumann
problems:

Ph—pr=ar—a in (c,d), pi(c) = pi(d) = 0.
Then pi(x) = [ G(z,y)(ax — a)(y)dy, = € (c,d), where
1 eCY 4 e¥ ) (e 4 =) fory <
G(.’E,y) = c—d d—c ( c—x mfc)( d— 7d) Y
2(ec=d —ed=¢) | (e 4+ e* ) (edY +e¥"9) fory>uw

is a Green function that satisfies the properties G, G, € L*°(Qr). The weak con-
vergence ay — a in L?(c,d) implies

||Pk||w21(c,d) — 0. (5.16)
Using pi, we rewrite the term (ax — a)(Uy — My * Uy) in fr as follows:
(ar — a)(Ur, — My * ug)
= [0}, (Up — Mg * Up)] e — P (U — Mg * Uk )z — pr (U — Mg * Ug,)-

According to this relation we change the form of the problem for wy as follows:

Wyt = Awg — M« Awy, + [ + ¢, in Qr, (5.17)

u=0 inQ x {0}, (5.18)

G=g, inTir, (5.19)

—vg - Vw, +msvy - Vwy =Owg + by +v-¢), inTyrp, (5.20)

where
T = =0 (@, + g, %)y — pr (g + Mg Ug) — aliy, — M) * Uy,
O = ph (U + My * Ux) — agg (Mg — M) * U 4.
Let ¢ be an arbitrary number in [0, T]. To estimate wy, we will use the projection
w in O
0 inQp\Q
Let w! stand for the weak solution of problem 7 with f, ¢, and Ry

replaced by Py f,, Pi¢, and P, hy,, respectively. Then, due to the causality wh = wy,
in . Applying (3.11) for w} we obtain

lwelluen = lwkllu@y < lwkllu@r) < 50[HﬁtﬁHLZ((o,T);Ll(c,d))

operators P;, defined in (3.22)), and Pyw = for w: Qp — R.

+ IPBellwaory + Olakllrar + I Pl acrs )|

=Co |:||?k”L2((0,t);L1(c,d)) + 0%l 220y + Ollgrllrr) + Hhk”LQ(th)
(5.21)
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with a constant Cy. Using the relation a € L2(c,d), Cauchy inequality, the in-
equality (3.21)), g(z,0) = 0, the embedding W3 (¢,d) — Clec,d] and 4y, = wy, + U we
estimate:

I Fkll2(0,6);0 (e, < Cl{”(mk — M) * Ukl £2((0,4);:22(e,d))

o okl ey (1 + el 20,0k o |

o (5.22)
<[ [ 1 = (e = )l oo, dr
0
~ —=1
 lowllw ey (1 + Ik 20,0 ok ey | + B
18lz200) < Ca [l e = ) * e 20
o okl e.ay (1 + el 20,0 N 2079 1)

(5.23)

t
< CQ [/ |(T?Lk — T?L)(t — T)| Hwk7m||L2(QT)d7—
0
~ —=2
+ ||Pk||w21(c,d)(1 + ”mk||L2(O,T))”wk“L?((O,t);C[c,d])]JFRka
~ —=3
l9ell7@r) < Ry, (5.24)
Ikl L2 (., < Ca [”ﬁk * Wkl £2((0,6);w2 (e,ay) T+ | (Fr — 1) * {ZHLQ((O,t);W;(c,d))}
t
al ~ —4
<Ca [ n(e = 7 Bolzomymy e +
(5.25)

where C,C5, C4 are constants and
R, =T, [||(mk —m) x L2 ap) + lokllwi e,a) (1 + 1Mkl L2 (0, T))HUHU(QT)}
Rk =C, [H(mk — ) * Uy || 22 () + okl e,a) (1
+ HmkHLz(O,T))Ha”L2((0,T);C[c,d])}7
Ry = (ke — 1) * gl z2gr) + 1k — 1) * gall 2y + G — 1) * g2l 20,

Rk_c‘l”(/u’k'i )*u||L2 OT) Wl(cd))
By the weak convergence @iy — M, jux — 1, fix. — U in L*(0,T) and the relation
||pk||W21(c7d) — 0 it holds
R, —0, j=1,234. (5.26)
Indeed, to prove that ||z * 17||L2(QT) — 0, where 2z, is one of the functions m; — m,

pr — poor fig, — i and © € L?(Qr) is one of the functions @, Uy, g, g, or gy, it is
possible to use the dominated convergence theorem, again. More precisely,

1/2
2k * 0l 2 (p) = / / / 2k (T)0(2,t — T)dr] dxdt} ,
0 0

(z,t — T)dT] is bounded by an integrable in x €

where the component [ fo 2k ()0
0(z, )||L2(0 7y and tends to zero for all ¢ € (0,7’) and

(¢, d) function sup ||zk||L2(0 )l
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a.e. = € (c,d), because 2z, — 0 and 9(z,t —-) € L*(0,T) for all t € (0,7) and a.e.
z € (c,d). (The latter relation follows from @ € L?(Qr) and Tonelli’s theorem.)
Thus, ||z * 0| £2(Q) — 0.

As in proof of Theorem we use the norms ||wl|ly = supg;7 e |wllua,)
with the weights o > 0 in the space U(€2r). Then in view of (5.22)—(5.25) from
(5.21)) we deduce

t
Junle <Cs| suwp [ et =) unlua, dr
0<t<T JO

4

~ -7
el e (1 + Il 20, ) lwillo + > R
j=1

< Cs [{le= Izom Irull =y + okl ey (1 + Il 20,m)) il

where C is a constant and r, = |7y, — M| + |fix|. Since |le™ 7|20, — 0 as
o — 00, ||pk||W21(c,d) — 0 and the sequences ||7¢|[z2(0,7), ||| £2(0,7) are bounded,
there exist o9 > 0 and K5 € N such that
_ N 1
le™ = 2o,y 7kl L2 0,7y + Nokllw (e,ay (1 + ]l 20,7y < 250
5

for k > K. This, along with the previous inequality, implies

|lwills, <2C5 Zﬁi and hence ||wg ||y, < 2¢72TCy Z Ri

Jj=1 Jj=1
for k > Ko. Taking (5.26) into account we obtain the desired convergence: ||y —
tllur) = lwillu@sy — 0. The theorem is proved. O
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