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WEAK INVERSE PROBLEMS FOR PARABOLIC
INTEGRO-DIFFERENTIAL EQUATIONS CONTAINING

TWO KERNELS

KAIRI KASEMETS, JAAN JANNO

Abstract. An inverse problem to determine a coefficient and two kernels in

a parabolic integro-differential equation is considered. A corresponding direct

problem is supposed to be in the weak form. Existence of the quasi-solution is
proved and issues related to Fréchet differentiation of the cost functional are

treated.

1. Introduction

Inverse problems to determine coefficients and kernels in integro-differential heat
equations are well-studied in the smooth case when the medium is continuous and
corresponding direct problems hold in the classical sense (selection of references:
[2, 4, 5, 9, 10, 12, 13, 15, 16, 17, 19]). For instance, in [10] problems to determine
space-dependent coefficients by means of final over-determination of the solution
of the direct problem are dealt with. This paper exploits and generalizes methods
developed earlier in the usual parabolic case [3, 7].

Results are known for particular non-smooth cases, as well. For instance, identi-
fication problems for parabolic transmission problems are considered in [11] under
additional smoothness assumptions in neighbourhoods of observation areas. Several
papers deal with degenerate cases (see [8] and references therein). In [14] problems
to reconstruct free terms and coefficients in a weak parabolic problem containing
a single kernel (heat flux relaxation kernel) are considered. In particular, a new
method that enables to deduce formulas for Fréchet derivatives for cost functionals
of inverse problems is proposed.

In the present article we consider the inverse problem of determining two kernels
and a coefficient in a parabolic integro-differential equation. The corresponding
direct problem is posed in the weak form. We prove the Fréchet differentiability of
the cost functional related to the inverse problem and deduce a suitable form for
the Fréchet derivative in terms of an adjoint problem. In this connection we use an
integrated convolutional form of the weak direct problem that enables to use test
functions without classical time derivatives. Finally, we prove the existence of the
quasi-solution of the inverse problem under certain restrictions.
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Inverse problems for smooth models with two kernels were formerly considered
in [5, 12, 19].

2. Formal statement of problems

Let Ω be a n-dimensional domain, where n ≥ 1 and Γ = ∂Ω. Further, let
Γ = Γ1 ∪ Γ2 with meas Γ1 ∩ Γ2 = 0, meas Γ2 > 0 and either Γ1 = ∅ or meas Γ1 > 0.
In case n ≥ 2 we assume Γ to be sufficiently smooth. Define

Ωt = Ω× (0, t), Γ1,t = Γ1 × (0, t), Γ2,t = Γ2 × (0, t)

for t ≥ 0.
Let T > 0. We pose the formal direct problem: find u(x, t) : ΩT → R such that

ut + (µ ∗ u)t = Au−m ∗Au+ f +∇ · φ+ ϕt in ΩT , (2.1)

u = u0 in Ω× {0}, (2.2)

u = g in Γ1,T , (2.3)

−νA · ∇u+m ∗ νA · ∇u = ϑu+ h+ ν · φ in Γ2,T , (2.4)

where

Av =
n∑

i,j=1

(
aijvxj

)
xi

+ av, νA =
( n∑
j=1

aijνj
∣∣
i=1,...,n

)
,

ν = (ν1, . . . , νn) is the outer normal of Γ2, aij , a, u0 : Ω → R, f, ϕ : ΩT → R,
φ : ΩT → Rn, g : ΩT → R, ϑ : Γ2 → R, h : Γ2,T → R, µ,m : (0, T ) → R are given
functions and

z ∗ w(t) =
∫ t

0

z(t− τ)w(τ)dτ

is the convolution with respect to the variable t. In the case Γ1 = ∅, the boundary
condition (2.3) is omitted. The second and third addend of the free term of the
equation (2.1); i.e., ∇ · φ and ϕt may be singular distributions.

The problem (2.1)–(2.4) governs the heat conduction in the body Ω filled with
material with memory, where µ and m are the relaxation kernels of the internal
energy and the heat flux, respectively and u is the temperature [1, 4, 5, 18]. Then
the condition (2.4) corresponds to the third kind boundary condition, namely it
contains the heat flux to the co-normal direction −νA · ∇u+m ∗ νA · ∇u.

Let us formulate the inverse problem:

IP. Find a, m and µ such that the solution of (2.1)–(2.4) satisfies the following
final and integral additional conditions:

u = uT in Ω× {T}, (2.5)∫
Γ2

κj(x, ·)u(x, ·)dΓ = vj in (0, T ), j = 1, 2, (2.6)

where uT : Ω→ R, κj : Γ2,T → R and vj : (0, T )→ R are prescribed functions.

Remark 2.1. In the case n = 1 and Ω = (c, d), the integral
∫

Γ2
z(x)dΓ is merely

the sum
∑L
l=1 z(xl), where xl ∈ Γ2 ⊆ {c; d} and L is the number of points in Γ2

(i.e L ∈ {1; 2}). Then the conditions (2.6) read
L∑
l=1

κj(xl, ·)u(xl, ·) = vj in (0, T ), j = 1, 2. (2.7)
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3. Results concerning direct problem

Let us start by a rigorous mathematical formulation of the direct problem. Define
the following functional spaces:

U(Ωt) = C([0, t];L2(Ω)) ∩ L2((0, t);W 1
2 (Ω)),

U0(Ωt) =
{
η ∈ U(Ωt) : η|Γ1,t = 0 in case Γ1 6= ∅

}
,

T (Ωt) =
{
η ∈ L2((0, t);W 1

2 (Ω)) : ηt ∈ L2((0, t);L2(Ω))
}
,

T0(Ωt) =
{
η ∈ T (Ωt) : η|Γ1,t = 0 in case Γ1 6= ∅

}
and introduce the following basic assumptions on the data of the direct problem:

aij ∈ L∞(Ω), aij = aji, ϑ ∈ C(Γ2), ϑ ≥ 0, (3.1)
n∑

i,j=1

aij(x)λiλi ≥ ε|λ|2, x ∈ Ω, λ ∈ Rn with some ε > 0, (3.2)

a ∈ Lq1(Ω), where q1 = 1 if n = 1, q1 >
n

2
if n ≥ 2, (3.3)

µ ∈ L2(0, T ), m ∈ L1(0, T ) , (3.4)

u0 ∈ L2(Ω), g ∈ T (ΩT ), h ∈ L2(Γ2,T ), (3.5)

f ∈ L2((0, T );Lq2(Ω)), where q2 = 1 if n = 1,

q2 ∈ (1, q1) if n = 2, q2 =
2n
n+ 2

if n ≥ 3,
(3.6)

φ = (φ1, . . . , φn) ∈ (L2(ΩT ))n , (3.7)

ϕ ∈ U(ΩT ), in case Γ1 6= ∅ (3.8)

;∃gϕ ∈ T (ΩT ) : ϕ = gϕ in Γ1,T . (3.9)

If we assume additional conditions aij ∈ W 1
2 (Ω), ∂

∂xi
φi ∈ L2(ΩT ), i = 1, . . . , n,

ϕt ∈ L2(ΩT ) and suppose that (2.1)–(2.4) has a classical solution u ∈ L2(ΩT )
such that ut, uxi , uxixj ∈ L2(ΩT ), i, j = 1, . . . , n, then multiplying (2.1) with a test
function η ∈ T0(ΩT ) and integrating by parts we come to the relation

0 =
∫

Ω

[(u+ µ ∗ u)(x, T )η(x, T )− u0(x)η(x, 0)] dx−
∫∫

ΩT

(u+ µ ∗ u)ηt dx dt

+
∫∫

ΩT

[ n∑
i,j=1

aij(uxj −m ∗ uxj )ηxi − a(u−m ∗ u)η
]
dx dt

+
∫∫

Γ2,T

(ϑu+ h)η dΓdt−
∫∫

ΩT

(fη − φ · ∇η) dx dt

−
∫

Ω

[ϕ(x, T )η(x, T )− ϕ(x, 0)η(x, 0)]dx+
∫∫

ΩT

ϕηt dx dt.

(3.10)
This relation makes sense also in a more general case when aij , φ, ϕ satisfy (3.1),
(3.7), (3.8) and u ∈ U(ΩT ).

We call a weak solution of the problem (2.1)–(2.4) a function belonging to U(ΩT )
that satisfies the relation (3.10) for any η ∈ T0(ΩT ) and, in case Γ1 6= ∅, that fulfills
the boundary condition (2.3).
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Theorem 3.1. Problem (2.1)–(2.4) has a unique weak solution. This solution
satisfies the estimate

‖u‖U(ΩT ) ≤ C0

[
‖u0‖L2(Ω) + ‖f‖L2((0,T );Lq2 (Ω)) + ‖φ‖(L2(ΩT ))n

+ ‖ϕ‖U(ΩT ) + θ{‖g‖T (ΩT ) + ‖gϕ‖T (ΩT )}+ ‖h‖L2(Γ2,T )

]
,

(3.11)

where θ = 0 in case Γ1 = ∅ and C0 is a constant independent of u0, f, φ, ϕ, g, h.

Proof. Since µ ∈ L2(0, T ), the Volterra equation of the second kind

µ̂+ µ ∗ µ̂ = −µ in (0, T ). (3.12)

has a unique solution µ̂ ∈ L2(0, T ) [6]. We call µ̂ the resolvent kernel of µ. Further,
let us consider the following problem:

ût = Aû− m̂ ∗Aû+ f̂ +∇ · φ̂ in ΩT , (3.13)

û = û0 in Ω× {0}, (3.14)

û = ĝ in Γ1,T , (3.15)

−νA · ∇û+ m̂ ∗ νA · ∇û = ϑû+ ϑµ̂ ∗ û+ ĥ+ ν · φ̂ in Γ2,T , (3.16)

where

m̂ = m− µ̂+m ∗ µ̂ , f̂ = f + aϕ− m̂ ∗ aϕ,

φ̂i = φi +
n∑
j=1

aijϕxj − m̂ ∗
n∑
j=1

aijϕxj ,

ĥ = h+ ϑϕ+ ϑµ̂ ∗ ϕ , ĝ = g + µ ∗ g − gϕ , û0 = u0 − ϕ(·, 0).

By the properties of m and µ̂ we have m̂ ∈ L1(0, T ). Further, [14, Lemma 1] yields

U(ΩT ) ↪→ L2((0, T );Lq3(Ω)) , where q3 =∞ if n = 1,

q3 >
q1q2

q1 − q2
if n = 2, q3 =

2n
n− 2

if n ≥ 3
(3.17)

and
av ∈ L2((0, T );Lq2(Ω)) if a ∈ Lq1(Ω), v ∈ L2((0, T );Lq3(Ω)),

‖av‖L2((0,T );Lq2 (Ω)) ≤ C‖a‖Lq1 (Ω)‖v‖L2((0,T );Lq3 (Ω)),
(3.18)

where C is a constant. Using the relations (3.17), (3.18), the properties of m̂, µ̂, the
assumptions (3.1)–(3.8), trace theorems and the Young theorem for convolutions
we obtain

d̂ := (f̂ , φ̂, û0, ĝ, ĥ) ∈ X
:= L2((0, T );Lq2(Ω))× (L2(ΩT ))n × L2(Ω)× T (ΩT )× L2(Γ2,T ),

‖d̂‖X ≤ C̄‖d‖X̄ (3.19)
where d = (f, φ, u0, g, h, ϕ, gϕ) and

X̄ = L2((0, T );Lq2(Ω))× (L2(ΩT ))n×L2(Ω)×T (ΩT )×L2(Γ2,T )×U(ΩT )×T (ΩT )

and C̄ is a constant. It was proved in [14, Theorem 1] that problem (2.1)–(2.4) in
case µ = 0 and ϕ = 0 has for any (f, φ, u0, g, h) ∈ X a unique weak solution and the
corresponding solution operator B belongs to L(X ;U(ΩT )). (Here L(X,Y ) stands
for the space of linear bounded operators from a Banach space X to a Banach space
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Y .) This implies that problem (3.13)–(3.16) is equivalent in U(ΩT ) to the following
operator equation:

û = Qû with Qû = B(0, 0, 0, 0, ϑµ̂ ∗ û) + Bd̂. (3.20)

To study this equation, we will use the inequality

‖µ̂ ∗ y‖L2(Ωt) ≤
∫ t

0

|µ̂(t− τ)| ‖y‖L2(Ωτ )dτ , t ∈ [0, T ] (3.21)

that holds for any y ∈ L2(ΩT ). This was proved in [14, inequality (3.12)].
Let û1, û2 ∈ U(ΩT ), denote v = û1−û2 and estimateQû1−Qû2 = B(0, 0, 0, 0, ϑµ̂∗

v). To this end, fix t ∈ [0, T ] and define

Ptw =

{
w in Γ2,t

0 in Γ2,T \ Γ2,t

(3.22)

for w : Γ2,T → R. Due to the causality, we have B(0, 0, 0, Ptϑµ̂ ∗ v)(x, τ) =
B(0, 0, 0, ϑµ̂ ∗ v)(x, τ) for any (x, τ) ∈ Ωt. Since B ∈ L(X ;U(ΩT )), the continu-
ity of ϑ, the trace theorem and the inequality (3.21) with y = v, vxi , i = 1, . . . , n,
it follows that

‖Qû1 −Qû2‖U(Ωt) = ‖B(0, 0, 0, 0, ϑµ̂ ∗ v)‖U(Ωt)

= ‖B(0, 0, 0, 0, Ptϑµ̂ ∗ v)‖U(Ωt)

≤ ‖B(0, 0, 0, 0, Ptϑµ̂ ∗ v)‖U(ΩT )

≤ ‖B‖‖Ptϑµ̂ ∗ v‖L2(Γ2,T ) = ‖B‖‖ϑµ̂ ∗ v‖L2(Γ2,t)

≤ C1‖µ̂ ∗ v‖L2((0,t);W 1
2 (Ω))

≤ C2

∫ t

0

|µ̂(t− τ)| ‖v‖L2((0,τ);W 1
2 (Ω))dτ

(3.23)

with some constants C1 and C2. Let us define the weighted norm in U(ΩT ):
‖v‖σ = sup0<t<T e

−σt‖v‖U(Ωt) where σ ≥ 0. In view of (3.23) and U(Ωt) ↪→
L2((0, t);W 1

2 (Ω)) we get

‖Qû1 −Qû2‖σ ≤ C3 sup
0<t<T

e−σt
∫ t

0

|µ̂(t− τ)| ‖v‖U(Ωτ )dτ

= C3 sup
0<t<T

∫ t

0

e−σ(t−τ)|µ̂(t− τ)| e−στ ‖v‖U(Ωτ )dτ

≤ C3

∫ T

0

e−σs|µ̂(s)|ds sup
0<τ<T

e−στ ‖v‖U(Ωτ )

= C2

∫ T

0

e−σs|µ̂(s)|ds ‖v‖σ

with some constant C3. By the dominated convergence theorem,
∫ T

0
e−σs|µ̂(s)|ds→

0 as σ →∞. Thus, there exists σ0 such that

C3

∫ T

0

e−σ0s|µ̂(s)|ds ≤ 1
2
.

Therefore, ‖Qû1 − Qû2‖σ0 ≤ 1
2‖û

1 − û2‖σ0 . The operator Q is a contraction
in U(ΩT ). This implies that (3.13)–(3.16) has a unique weak solution in U(ΩT ).



6 K. KASEMETS, J. JANNO EJDE-2014/176

Moreover, observing (3.20) and the relation Q0 = Bd̂, for the solution of (3.13)–
(3.16) we obtain the estimate

‖û‖σ0 = ‖Qû−Q0 +Q0‖σ0 ≤ ‖Qû−Q0‖σ0 + ‖Bd̂‖σ0 ≤
1
2
‖û‖σ0 + ‖Bd̂‖σ0

which implies

‖û‖σ0 ≤ 2‖Bd̂‖σ0 ≤ 2‖Bd̂‖U(ΩT ) ≤ 2‖B‖‖d̂‖X .

Observing the relation e−σ0T ‖û‖U(ΩT ) ≤ ‖û‖σ0 and (3.19) we arrive at the estimate

‖û‖U(ΩT ) ≤ C4‖d‖X̄ (3.24)

with a constant C4.
Further, let us define

u = û+ ϕ+ µ̂ ∗ (û+ ϕ). (3.25)

Then û is expressed in terms of u as

û = u+ µ ∗ u− ϕ. (3.26)

One can immediately check that the implications u ∈ U(ΩT ) ⇔ û ∈ U(ΩT ) are
valid. Moreover, it is easy to see that û is a weak solution of (3.13)–(3.16) if and
only if u is weak solution of (2.1)–(2.4). In view of the above-presented arguments
we can conclude that (2.1)–(2.4) has a unique weak solution. From (3.25) we obtain

‖u‖U(ΩT ) ≤ C4(‖û‖U(ΩT ) + ‖ϕ‖U(ΩT ))

with a constant C5. This with (3.24) implies (3.11). The proof is complete. �

It is possible to give an equivalent form to the relation (3.10) that does not
contain the derivative of the test function with respect to t. Namely, the following
theorem holds.

Theorem 3.2. The function u ∈ U(ΩT ) satisfies the relation (3.10) for any η ∈
T0(ΩT ) if and only if it satisfies the relation

0 =
∫

Ω

(u+ µ ∗ u− ϕ) ∗ η dx−
∫

Ω

∫ t

0

(u0(x)− ϕ(x, 0))η(x, τ) dτ dx

+
∫

Ω

1 ∗
[ n∑
i,j=1

aij(uxj −m ∗ uxj ) ∗ ηxi − a(u−m ∗ u) ∗ η
]
dx

+
∫

Γ2

1 ∗ (ϑu+ h) ∗ η dΓ−
∫

Ω

1 ∗
(
f ∗ η −

n∑
i=1

φi ∗ ηxi
)
dx,

(3.27)

for any t ∈ [0, T ] and η ∈ U0(ΩT ).

Proof. It is analogous to the proof of [14, Theorem 2] that considers the case ϕ = 0,
µ = 0. We have only to replace u by û = u+µ ∗u−ϕ in the term K1(t) appearing
in formulas [14, (3.19), (3.20)] to get the desired result. �

Remark 3.3. Theorems 3.1 and 3.2 remain valid also in the case Γ2 = ∅. In this
case the terms ‖h‖Γ2,T and

∫
Γ2

1 ∗ (ϑu+ h) ∗ η dΓ are missing in (3.11) and (3.27),
respectively.
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4. Quasi-solution of IP. Fréchet derivative of cost functional

Assume that n ∈ {1; 2; 3}. Moreover, let us set q1 = 2 if n = 2. Then any
coefficient a that belongs to L2(Ω) satisfies (3.3). For the weight functions κj we
assume that

κj ∈ L∞((0, T );L2(Γ2)) , j = 1, 2. (4.1)
In the case n = 1 this assumption is simply κ(xl, ·) ∈ L∞(0, T ), xl ∈ Γ2 ⊆ {c; d}.
According to Theorem 3.1, u ∈ U(ΩT ), thus u(·, T ) ∈ L2(Ω), and the condition (2.5)
is well-defined for uT ∈ L2(Ω). Moreover, by a trace theorem we have u ∈ L2(Γ2,T ).
This implies that

∫
Γ2
κj(x, ·)u(x, ·)dΓ ∈ L2(0, T ), j = 1, 2, hence the condition (2.6)

is well-defined for vj ∈ L2(0, T ), j = 1, 2.
Let M ⊆ Z := L2(Ω) × (L2(0, T ))2. We call the quasi-solution of IP in the set

M an element z∗ ∈ arg minz∈M J(z), where J is the cost functional

J(z) = ‖u(·, T ; z)− uT ‖2L2(Ω) +
2∑
j=1

‖
∫

Γ2

κj(x, ·)u(x, ·; z)dΓ− vj‖2L2(0,T )

and u(x, t; z) is the weak solution of the direct problem (2.1)–(2.4) corresponding
to given z = (a,m, µ). In case n = 1 the integral

∫
Γ2
κj(x, t)u(x, t; z)dΓ in the

definition of J is replaced by
∑L
l=1 κj(xl, t)u(xl, t; z).

Theorem 4.1. The functional J is Fréchet differentiable in Z and

J ′(z)∆z

= 2
∫

Ω

[u(x, T ; z)− uT (x)] ∆u(x, T )dx

+ 2
2∑
j=1

∫ T

0

[ ∫
Γ2

κj(y, t)u(y, t; z)dΓ− vj(t)
] ∫

Γ2

κj(x, t)∆u(x, t)dΓdt,

(4.2)

where ∆z = (∆a,∆m,∆µ) ∈ Z and ∆u ∈ U(ΩT ) is the z- and ∆z-dependent weak
solution of the following problem:

∆ut + (µ ∗∆u)t = A∆u−m ∗A∆u+ ∆a[u−m ∗ u]−∆m ∗ au

−∇ ·
[
∆m ∗

n∑
j=1

aijuxj
]
−(∆µ ∗ u)t in ΩT ,

(4.3)

∆u = 0 in Ω× {0}, (4.4)

∆u = 0 in Γ1,T , (4.5)
− νA · ∇∆u+m ∗ νA · ∇∆u

= ϑ∆u− ν ·
[
∆m ∗

n∑
j=1

aijuxj

]
in Γ2,T .

(4.6)

Proof. Denote ∆̃u = u(x, t; z + ∆z) − u(x, t; z) and define ∆̂u = ∆̃u −∆u. Then
we can represent the difference of J as follows:

J(z + ∆z)− J(z) = RHS + Θ, (4.7)

where RHS is the right-hand side of the equality (4.2) and

Θ = 2
∫

Ω

[u(x, T )− uT (x)]∆̂u(x, T )dx
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+ 2
2∑
j=1

∫ T

0

[ ∫
Γ2

κj(y, t)u(y, t)dΓ− vj(t)
] ∫

Γ2

κj(x, t)∆̂u(x, t)dΓdt

+
∫

Ω

{
(∆u+ ∆̂u)(x, T )

}2

dx

+
2∑
j=1

∫ T

0

{∫
Γ2

κj(x, t)(∆u+ ∆̂u)(x, t)dΓ
}2

dt.

Let us study problem (4.3)–(4.6). To this end we estimate the terms in the right-
hand side of (4.3). Observing the relations u ∈ U(ΩT ), (3.17), (3.18), L2(Ω) ↪→
Lq1(Ω) and using the Young and Cauchy inequalities we deduce

‖∆a[u−m ∗ u]−∆m ∗ au‖L2((0,T );Lq2 (Ω))

≤ c1‖u‖U(ΩT )

[
(1 + ‖m‖L2(0,T ))‖∆a‖L2(Ω) + ‖a‖L2(Ω)‖∆m‖L2(0,T )

]
≤ c2(z, u)‖∆z‖,

(4.8)

where c1 is a constant, c2 is a coefficient depending on z = (a,m, µ), u and ‖ · ‖
denotes the norm in Z. Taking the boundendness of aij into account we similarly
get

‖∆m ∗
n∑
j=1

aijuxj‖(L2(ΩT ))n ≤ c3‖u‖U(ΩT )‖∆m‖L2(0,T ) (4.9)

with a constant c3. Next let us estimate the term ∆µ ∗ u at the right-hand side of
(4.3). Since u ∈ C([0, T ];L2(Ω)) and ∆µ ∈ L2(0, T ), it is easy to check that ∆µ ∗
u ∈ C([0, T ];L2(Ω)) and ‖∆µ ∗ u‖C([0,T ];L2(Ω)) ≤ T 1/2‖u‖C([0,T ];L2(Ω))‖∆µ‖L2(0,T ).
Similarly, ‖∆µ ∗ u‖L2((0,T );W 1

2 (Ω)) ≤ T 1/2‖u‖L2((0,T );W 1
2 (Ω))‖∆µ‖L2(0,T ). Taking

these estimates together, we have

‖∆µ ∗ u‖U(ΩT ) ≤ T 1/2‖u‖U(ΩT )‖∆µ‖L2(0,T ). (4.10)

Since u = g in Γ1,T , we find that

∆µ ∗ u = ∆µ ∗ g in Γ1,T . (4.11)

Using the assumption g ∈ T (ΩT ) and the Young and Cauchy inequalities again, we
obtain
‖∆µ ∗ g‖T (ΩT ) = ‖∆µ ∗ g‖L2((0,T );W 1

2 (Ω)) + ‖(∆µ ∗ g)t‖L2((0,T );L2(Ω))

= ‖∆µ ∗ g‖L2((0,T );W 1
2 (Ω)) + ‖∆µ ∗ gt‖L2((0,T );L2(Ω))

+ ‖∆µ g(·, 0)‖L2((0,T );L2(Ω))

≤ c4‖∆µ‖L2(0,T )

(4.12)

with a constant c4. Relations (4.8)–(4.12) show that Theorem 3.1 holds for problem
(4.3)–(4.6), hence it has a unique weak solution ∆u ∈ U(ΩT ). Using the estimate
(3.11) for the solution of this problem we obtain

‖∆u‖U(ΩT )

≤ C0

[
‖∆a[u−m ∗ u] + ∆m ∗ au‖L2((0,T );Lq2 (Ω))

+ ‖∆m ∗
n∑
j=1

aijuxj‖(L2(ΩT ))n + ‖∆µ ∗ u‖U(ΩT ) + θ‖∆µ ∗ g‖T (ΩT )

]
≤ c5(z, u)‖∆z‖

(4.13)
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with a coefficient c5 depending on z, u.
The function ∆̃u satisfies the problem

∆̂ut + (µ ∗ ∆̂u)t = A∆̂u−m ∗A∆̂u+ f + f̂ +∇ · φ+∇ · φ̂+ ϕt + ϕ̂t

in ΩT ,
(4.14)

∆̂u = 0 in Ω× {0}, (4.15)

∆̂u = 0 in Γ1,T , (4.16)

−νA · ∇∆̂u+m ∗ νA · ∇∆̂u = ϑ∆̂u+ ν · φ+ ν · φ̂ in Γ2,T , (4.17)

where

f = ∆a∆u− (m+ ∆m) ∗∆a∆u−∆m ∗∆au−∆m ∗ a∆u,

f̂ = ∆a∆̂u− (m+ ∆m) ∗∆a∆̂u−∆m ∗ a∆̂u,

φ = −∆m ∗
n∑
j=1

aij∆uxj , φ̂ = −∆m ∗
n∑
j=1

aij∆̂uxj ,

ϕ = −∆µ ∗∆u, ϕ̂ = −∆µ ∗ ∆̂u.

Similarly to (4.8)–(4.10) we deduce the following estimates:

‖f‖L2((0,T );Lq2 (Ω))

≤ c6
{

(1 + ‖m‖L2(0,T ) + ‖∆m‖L2(0,T ))‖∆a‖L2(Ω)‖∆u‖U(ΩT )

+ ‖u‖U(ΩT )‖∆m‖L2(0,T )‖∆a‖L2(Ω) + ‖a‖L2(Ω)‖∆m‖L2(0,T )‖∆u‖U(ΩT )

}
≤ c7(z, u)

{[
‖∆z‖+ ‖∆z‖2

]
‖∆u‖U(ΩT ) + ‖∆z‖2

}
,

‖f̂‖L2(0,T ;Lq2 (Ω)) ≤ c8(z)
[
‖∆z‖+ ‖∆z‖2

]
‖∆̂u‖U(ΩT ),

‖φ‖(L2(ΩT ))n ≤ c9‖∆z‖‖∆u‖U(ΩT ),

‖φ̂‖(L2(ΩT ))n ≤ c9‖∆z‖‖∆̂u‖U(ΩT ),

‖ϕ‖U(ΩT ) ≤ T 1/2‖∆z‖‖∆u‖U(ΩT ),

‖ϕ̂‖U(ΩT ) ≤ T 1/2‖∆z‖‖∆̂u‖U(ΩT )

with some coefficients c6, . . . , c9. Moreover, since ∆u = ∆̃u = 0 in Γ1,T , we have
ϕ = ϕ̂ = 0 in Γ1,T . Applying the estimate (3.11) to the solution of the problem
(4.14)–(4.17) we get

‖∆̂u‖U(ΩT ) ≤ c10(z, u)
{ [
‖∆z‖+ ‖∆z‖2

] {
‖∆u‖U(ΩT ) + ‖∆̂u‖U(ΩT )

}
+‖∆z‖2

}
with a coefficient c10. Provided ‖∆z‖ is sufficiently small; i.e., ‖∆z‖ + ‖∆z‖2 ≤

1
2c10(z,u) , we have

‖∆̂u‖U(ΩT ) ≤ 2c10(z, u)
{ [
‖∆z‖+ ‖∆z‖2

]
‖∆u‖U(ΩT ) + ‖∆z‖2

}
.

Due to (4.13), this yields

‖∆̂u‖U(ΩT ) ≤ c11(z, u)
[
‖∆z‖2 + ‖∆z‖3

]
(4.18)

with a coefficient c11.
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In view of (4.13), (4.18) and the assumption κj ∈ L∞((0, T );L2(Γ2)) the right-
hand side of (4.2) RHS and the quantity Θ satisfy the estimates

st|RHS| ≤ c12(z, u)‖∆z‖, |Θ| ≤ c13(z, u)
6∑
l=2

‖∆z‖l, (4.19)

st where c12 and c13 are some coefficients. Moreover, RHS is linear with respect to
∆z. This with (4.7) shows that J is Fréchet differentiable in Z and J ′(z)∆z equals
RHS. �

Theorem 4.2. Assume g = 0. Then the Fréchet derivative of J admits the form

J ′(z)∆z =
∫

Ω

γ1(x)∆a(x)dx+
∫ T

0

γ2(t)∆m(t)dt+
∫ T

0

γ3(t)∆µ(t)dt, (4.20)

where

γ1(x) = [(u−m ∗ u) ∗ ψ](x, T ), (4.21)

γ2(t) = −
∫

Ω

[
au ∗ ψ +

n∑
i,j=1

aijψxi ∗ uxj
]
(x, T − t)dx, (4.22)

γ3(t)

= −
∫

Ω

[
au ∗ ψ + au ∗ ψ ∗ [µ̂−m−m ∗ µ̂]

+
n∑

i,j=1

aijψxi ∗ uxj +
n∑

i,j=1

aijψxi ∗ uxj ∗ [µ̂−m−m ∗ µ̂]
]
(x, T − t)dx

−
∫

Γ2

[ϑ(u+ µ̂ ∗ u) ∗ ψ](x, T − t)dΓ

− 2
∫

Ω

{u(x, T )− uT (x)}[u+ µ̂ ∗ u](x, T − t)dx

− 2
2∑
j=1

∫ T

t

[∫
Γ2

κj(y, τ)u(y, τ)dΓ− vj(τ)
]∫

Γ2

κj(x, τ)
[
u

+ µ̂ ∗ u
]
(x, τ − t)dΓdτ,

(4.23)

where µ̂ is the solution of (3.12), u(x, t) = u(x, t; z) and ψ ∈ U(ΩT ) is the z-
dependent weak solution of the following “adjoint” problem:

∆ψt + (µ ∗∆ψ)t = A∆ψ −m ∗A∆ψ in ΩT , (4.24)

∆ψ = 2[u(·, T )− uT ] in Ω× {0}, (4.25)

∆ψ = 0 in Γ1,T , (4.26)

−νA · ∇∆ψ +m ∗ νA · ∇∆ψ = ϑ∆ψ + h◦ in Γ2,T , (4.27)

where

h◦(x, t)

= −2
2∑
j=1

κj(x, T − t)
[ ∫

Γ2

κj(y, T − t)u(y, T − t)dΓ− vj(T − t)
]
.

(4.28)
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Proof. Define ∆w = ∆u + ∆µ ∗ u + µ̂ ∗ ∆µ ∗ u. Since u,∆u ∈ U(ΩT ), we have
∆w ∈ U(ΩT ). Moreover, using (3.12) it is easy to see that ∆u+µ ∗∆u+ ∆µ ∗ u =
∆w+ µ ∗∆w. Using this relation for the time derivatives in (4.3) and the equality
∆u = ∆w −∆µ ∗ u − µ̂ ∗∆µ ∗ u for other terms containing ∆u in (4.3)–(4.6) we
see that ∆w is the weak solution of the problem

∆wt + (µ ∗∆w)t = A∆w −m ∗A∆w + f† +∇ · φ† in ΩT , (4.29)

∆w = 0 in Ω× {0}, (4.30)

∆w = 0 in Γ1,T , (4.31)

−νA · ∇∆u+m ∗ νA · ∇∆u = ϑ∆u+ h† + ν · φ† in Γ2,T , (4.32)

where

f† = ∆a[u−m ∗ u]− a∆m ∗ u− a∆µ ∗ u− a∆µ ∗ u ∗ [µ̂−m−m ∗ µ̂], (4.33)

φ† = (φ†1, . . . , φ
†
n),

φ†i = −∆m ∗
n∑
j=1

aijuxj −∆µ ∗
n∑
j=1

aijuxj −∆µ ∗
n∑
j=1

aijuxj ∗ [µ̂−m−m ∗ µ̂],

(4.34)

h† = −ϑ∆µ ∗ [u+ µ̂ ∗ u]. (4.35)

Let us write the weak form (3.27) for the problem for ∆w and use the test function
η = ψ. Then we obtain

0 =
∫

Ω

(∆w + µ ∗∆w) ∗ ψ dx+
∫

Ω

1 ∗
[ n∑
i,j=1

aij(∆wxj −m ∗∆wxj ) ∗ ψxi

− a(∆w −m ∗∆w) ∗ ψ
]
dx+

∫
Γ2

1 ∗ (ϑ∆w + h†) ∗ ψ dΓ

−
∫

Ω

1 ∗
(
f† ∗ ψ −

n∑
i=1

φ†i ∗ ψxi
)
dx.

(4.36)

Next we write the weak form (3.27) for the problem for ψ and use the test function
η = ∆w to get

0 =
∫

Ω

(ψ + µ ∗ ψ) ∗∆w dx− 2
∫

Ω

∫ t

0

u(x, T )− uT (x)]∆w(x, τ)dτdx

+
∫

Ω

1 ∗
[ n∑
i,j=1

aij(ψxj −m ∗ ψxj ) ∗∆wxi − a(ψ −m ∗ ψ) ∗∆w
]
dx

+
∫

Γ2

1 ∗ (ϑψ + h◦) ∗∆w dΓ.

(4.37)

Subtracting (4.36) from (4.37), differentiating with respect to t and setting t = T
we have

2
∫

Ω

[u(x, T )− uT (x)]∆w(x, T )dτdx−
∫

Γ2

(h◦ ∗∆w)(x, T ) dΓ

=
∫

Ω

(
f† ∗ ψ −

n∑
i=1

φ†i ∗ ψxi
)

(x, T ) dx−
∫

Γ2

(h† ∗ ψ)(x, T ) dΓ.
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Observing the relations ∆w = ∆u+ ∆µ ∗u+ µ̂ ∗∆µ ∗u, (4.28) and (4.2) we obtain
the formula

J ′(z)∆z =
∫

Ω

(
f† ∗ ψ −

n∑
i=1

φ†i ∗ ψxi
)

(x, T )dx−
∫

Γ2

(h† ∗ ψ)(x, T ) dΓ

− 2
∫

Ω

[u(x, T )− uT (x)]
{

(∆µ+ µ̂ ∗∆µ) ∗ u
}

(x, T )dx

− 2
2∑
j=1

∫ T

0

[ ∫
Γ2

κj(y, t)u(y, t; z)dΓ− vj(t)
]

×
∫

Γ2

κj(x, t)
{

(∆µ+ µ̂ ∗∆µ) ∗ u
}

(x, t)dΓdt.

Rearranging the terms yields (4.20) with (4.21)-(4.23). �

The formula (4.20) shows that the vector (γ1, γ2, γ3) is a representation of J ′(z) in
the space Z. It can be used in gradient-type minimization algorithms (cf. [13, 14]).

5. Existence of quasi-solutions

Theorem 5.1. Let M be compact. Then IP has a quasi-solution in M .

Proof. It coincides with the proof of [14, Theorem 7 (ii)]. We use the continuity of
J that is a consequence of the Fréchet differentiability of J proved in the previous
section. �

Theorem 5.2. Let n = 1, Ω = (c, d), ϕ = gϕ = 0, g(x, 0) = 0 and M be bounded,
closed and convex. Then IP has a quasi-solution in M .

Proof. This theorem follows from Weierstrass existence theorem [20] provided we
are able to show that J is weakly sequentially lower semi-continuous in M . We will
prove that J is in fact weakly sequentially continuous in M .

Let us choose some sequence zk = (ak,mk, µk) ∈ M such that zk ⇀ z =
(a,m, µ) ∈ M . Then it is easy to see that ak ⇀ a in L2(c, d) and mk ⇀ m,
µk ⇀ µ in L2(0, T ). As in the proof of Theorem 3.1, let µ̂ ∈ L2(0, T ) be the
solution of (3.12). Similarly, let µ̂k ∈ L2(0, T ) be the solution of the equation
µ̂k +µk ∗ µ̂k = −µk in (0, T ). Let us show that µ̂k ⇀ µ̂ in L2(0, T ). To this end we
firstly verify the boundedness of the sequence µ̂k. Multiplying the equation of µ̂k
by e−σt, σ > 0, and estimating by means of the Young and Cauchy inequalities we
obtain

‖e−σtµ̂k‖L2(0,T ) ≤ ‖e−σtµk ∗ e−σtµ̂k‖L2(0,T ) + ‖e−σtµk‖L2(0,T )

≤ ‖e−σtµk‖L1(0,T )‖e−σtµ̂k‖L2(0,T ) + ‖e−σtµk‖L2(0,T )

≤ ‖e−σt‖L2(0,T )‖µk‖L2(0,T )‖e−σtµ̂k‖L2(0,T ) + ‖e−σtµk‖L2(0,T ).

Observing that ‖e−σt‖L2(0,T ) ≤ 1/
√

2σ and choosing σ = σ1 = 2[sup ‖µk‖L2(0,T )]2

we get

‖e−σ1tµ̂k‖L2(0,T ) ≤ 2‖e−σ1tµk‖L2(0,T ) ⇒ ‖µ̂k‖L2(0,T ) ≤ 2eσ1T sup ‖µk‖L2(0,T ).

This shows that the sequence µ̂k is bounded. The difference µ̂k−µ̂ can be expressed
as

µ̂k − µ̂ = −(µk − µ)− vk ∗ (µk − µ),
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where vk = µ̂+ µ̂k + µ̂ ∗ µ̂k is a bounded sequence in L2(0, T ). Denote by 〈·, ·〉 the
inner product in L2(0, T ). With an arbitrary ζ ∈ L2(0, T ) we have

〈µ̂k−µ̂, ζ〉 = −〈µk−µ, ζ〉−Nk, Nk =
∫ T

0

vk(τ)
∫ T−τ

0

(µk−µ)(s)ζ(τ+s)dsdτ. (5.1)

Since ζ(τ + ·) ∈ L2(0, T − τ) for τ ∈ (0, T ), it holds
∫ T−τ

0
(µk−µ)(s)ζ(τ + s)ds→ 0

for τ ∈ (0, T ). Moreover, since µk is bounded in L2(0, T ), the sequence of τ -
dependent functions |

∫ T−τ
0

(µk−µ)(s)ζ(τ +s)ds| is bounded by a constant. By the
Cauchy inequality and the dominated convergence theorem, we find

|Nk| ≤ ‖vk‖L2(0,T )‖
∫ T− ·

0

(µk − µ)(s)ζ(·+ s)ds‖L2(0,T ) → 0.

Thus, from (5.1), in view of µk ⇀ µ, we obtain µ̂k ⇀ µ̂.
Let us define

û = u+ µ ∗ u , ûk = uk + µk ∗ uk,

where u = u(x, t; z) and uk = u(x, t; zk) are the weak solutions of (2.1)–(2.4)
corresponding to the vectors z and zk, respectively. The relations u, uk ∈ U(ΩT ) and
µ, µk ∈ L2(0, T ) imply û, ûk ∈ U(ΩT ). Observing the definitions of the resolvent
kernels µ̂ and µ̂k we deduce

u = û+ µ̂ ∗ û , uk = ûk + µ̂k ∗ ûk,
uk − u = ûk − û+ µ̂k ∗ (ûk − û) + (µ̂k − µ̂) ∗ û.

In view of the latter relation we express the difference of values of the functional J
as follows:

J(zk)− J(z)

=
∫ d

c

(uk − u)2(x, T )dx+ 2
∫ d

c

[u(x, T )− uT (x)](uk − u)(x, T )dx

+
2∑
j=1

∫ T

0

[ L∑
l=1

κj(xl, t)(uk − u)(xl, t)
]2
dt

+ 2
2∑
j=1

∫ T

0

[ L∑
l=1

κj(xl, t)u(xl, t)− vj(t)
][ L∑

l=1

κj(xl, t)(uk − u)(xl, t)
]
dt

= I1
k + I2

k + I3
k + I4

k ,

(5.2)

where

I1
k =

∫ d

c

(
ûk − û+ µ̂k ∗ (ûk − û) + (µ̂k − µ̂) ∗ û

)2

(x, T )dx,

I2
k = 2

∫ d

c

[u(x, T )− uT (x)]
(
ûk − û+ µ̂k ∗ (ûk − û) + (µ̂k − µ̂) ∗ û

)
(x, T )dx,

I3
k =

2∑
j=1

∫ T

0

[ L∑
l=1

κj(xl, t)
(
ûk − û+ µ̂k ∗ (ûk − û) + (µ̂k − µ̂) ∗ û

)
(xl, t)

]2
dt,
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I4
k = 2

2∑
j=1

∫ T

0

[ L∑
l=1

κj(xl, t)u(xl, t)− vj(t)
]

×
[ L∑
l=1

κj(xl, t)
(
ûk − û+ µ̂k ∗ (ûk − û) + (µ̂k − µ̂) ∗ û

)
(xl, t)

]
dt.

Using the Cauchy inequality, µ̂ ∈ L2(0, T ), ûk, û ∈ U(ΩT ) and the boundedness of
the sequence µ̂k in L2(0, T ) we obtain

|I1
k | ≤ ‖

(
ûk − û+ µ̂k ∗ (ûk − û)

)
(·, T )‖2L2(c,d)

+ 2‖
(
(µ̂k − µ̂) ∗ û

)
(·, T )‖L2(c,d)‖

(
ûk − û+ µ̂k ∗ (ûk − û)

)
(·, T )‖L2(c,d) +R1

k

≤ C̃1

(
‖ûk − û‖2U(ΩT ) + ‖ûk − û‖U(ΩT )

)
+R1

k

with a constant C̃1 and

R1
k =

∫ d

c

[∫ T

0

(µ̂k − µ̂)(τ)û(x, T − τ)dτ
]2
dx.

Since û ∈ U(ΩT ) ⊂ L2(ΩT ), by Tonelli’s theorem it holds û(x, ·) ∈ L2(0, T ) a.e.
x ∈ (c, d) ⇒ û(x, T − ·) ∈ L2(0, T ) a.e. x ∈ (c, d). Thus, in view of µk ⇀ µ̂

in L2(0, T ) we have
∫ T

0
(µ̂k − µ̂)(τ)û(x, T − τ)dτ → 0 a.e. x ∈ (c, d). Moreover,[∫ T

0
(µ̂k− µ̂)(τ)û(x, T −τ)dτ

]2
≤ C̃11

∫ T
0

[û(x, τ)]2dτ ∈ L1(c, d) with a constant C̃11,

because the sequence µ̂k is bounded in L2(0, T ). Therefore, by the dominated
convergence theorem we obtain R1

k → 0. Similarly for I2
k we get

|I2
k | ≤ 2‖u(·, T )− uT ‖L2(c,d)‖

(
ûk − û+ µ̂k ∗ (ûk − û)

)
(·, T )‖L2(c,d) +R2

k

≤ C̃2‖ûk − û‖U(ΩT ) +R2
k,

where C̃2 is a constant and

stR2
k =

∫ d

c

[u(x, T )− uT (x)]
∫ T

0

(µ̂k − µ̂)(τ)û(x, T − τ)dτdx. (5.3)

st By the same reasons as above, it holds R2
k → 0. Next, let us estimate I3

k :

|I3
k | ≤ L2

2∑
j=1

max
1≤l≤L

[
‖κj(xl, ·)‖2L∞(0,T )‖

(
ûk − û+ µ̂k ∗ (ûk − û)

)
(xl, ·)‖2L2(0,T )

]

+ 2L2
2∑
j=1

max
1≤l≤L

[
‖κj(xl, ·)‖2L∞(0,T )‖

(
(µ̂k − µ̂) ∗ û

)
(xl, ·)‖L2(0,T )

× ‖
(
ûk − û+ µ̂k ∗ (ûk − û)

)
(xl, ·)‖L2(0,T )

]
+R3

k

≤ C̃3

(
‖ûk − û‖2U(ΩT ) + ‖ûk − û‖U(ΩT )

)
+R3

k,

where C̃3 is a constant and

R3
k = L2

2∑
j=1

max
1≤l≤L

{
‖κj(xl, ·)‖2L∞(0,T )

∫ T

0

[∫ t

0

(µ̂k − µ̂)(τ)û(xl, t− τ)dτ
]2
dt
}
.

Here we also used the embedding U(ΩT ) ↪→ L2((0, T );C[c, d]) that holds in the case
n = 1. Since û(xl, t − ·) ∈ L2(0, t) for all t ∈ (0, T ) we get

∫ t
0
(µ̂k − µ̂)(τ)û(xl, t −
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τ)dτ → 0 for all t ∈ (0, T ). Moreover, the sequence |
∫ t

0
(µ̂k − µ̂)(τ)û(xl, t − τ)dτ |

is bounded by a constant. Consequently, R3
k → 0. Analogously we deduce the

estimate

|I4
k | ≤ C̃4‖ûk − û‖U(ΩT ) +R4

k, where C̃4 is a constant,

R4
k = 2L

2∑
j=1

∥∥ L∑
l=1

κj(xl, t)u(xl, ·)− vj
∥∥
L2(0,T )

max
1≤l≤L

{
‖κj(xl, ·)‖L∞(0,T )

×
[∫ T

0

[∫ t

0

(µ̂k − µ̂)(τ)û(xl, t− τ)dτ
]2
dt
]1/2}

,

where R4
k → 0.

Note that if we manage to show that ‖ûk − û‖U(ΩT ) → 0 then the proof is
complete. Indeed, in this case by virtue of Rik → 0, i = 1, 2, 3, 4, from the estimates
of Iik we get Iik → 0, i = 1, 2, 3, 4 and due to (5.2) we obtain J(zk) → J(z), which
implies the statement of the theorem.

As in the proof of Theorem 3.1 we can show that û and ûk are the weak solutions
of the following problems:

ût = Aû− m̂ ∗Aû+ f + φx in ΩT , (5.4)

û = u0 in Ω× {0}, (5.5)

û = ĝ in Γ1,T , (5.6)

−νA · ∇û+ m̂ ∗ νA · ∇û = ϑû+ ϑµ̂ ∗ û+ h+ ν · φ in Γ2,T , (5.7)

ûk,t = Akûk − m̂k ∗Akûk + f + φx in ΩT , (5.8)

ûk = u0 in Ω× {0}, (5.9)

ûk = ĝk in Γ1,T , (5.10)

−νA · ∇ûk + m̂k ∗ νA · ∇ûk = ϑûk + ϑµ̂k ∗ ûk + h+ ν · φ in Γ2,T , (5.11)

where Akv = (a11vx)x + akv,

m̂ = m− µ̂+m ∗ µ̂ , m̂k = mk − µ̂k +mk ∗ µ̂k,
ĝ = g + µ ∗ g , ĝk = g + µk ∗ g.

We now show that m̂k ⇀ m̂. With any ζ ∈ L2(0, T ) we compute

〈m̂k − m̂, ζ〉 = 〈mk −m, ζ〉 − 〈µ̂k − µ̂, ζ〉+N1
k ,

N1
k =

∫ T

0

µ̂k(τ)
∫ T−τ

0

(mk −m)(s)ζ(τ + s)dsdτ

+
∫ T

0

m(τ)
∫ T−τ

0

(µ̂k − µ̂)(s)ζ(τ + s)dsdτ.

We use the relations mk ⇀m, µ̂k ⇀ µ̂ and treat the term N1
k similarly to the term

Nk in (5.1) to get N1
k → 0. As a result we get 〈m̂k − m̂, ζ〉 → 0, hence m̂k ⇀ m̂.

Subtracting the problem of û from the problem of ûk we see that wk := ûk − û
is a weak solution of the problem

wk,t = Awk − m̂ ∗Awk + f̃k + φ̃k,x in ΩT , (5.12)

û = 0 in Ω× {0}, (5.13)

û = g̃k in Γ1,T , (5.14)
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−νA · ∇wk + m̂ ∗ νA · ∇wk = ϑwk + h̃k + ν · φ̃k in Γ2,T , (5.15)

where

f̃k = (ak − a)(ûk − m̂k ∗ ûk)− a(m̂k − m̂) ∗ ûk,

φ̃k = −a11(m̂k − m̂) ∗ ûk,x, g̃k = (µk − µ) ∗ g,

h̃k = ϑ[µ̂k ∗ wk + (µ̂k − µ̂) ∗ û].

To use the weak convergence ak ⇀ a in forthcoming estimations we have to in-
troduce the functions ρk ∈ W 2

2 (c, d) being the solutions of the following Neumann
problems:

ρ′′k − ρk = ak − a in (c, d) , ρ′k(c) = ρ′k(d) = 0.

Then ρk(x) =
∫ d
c
G(x, y)(ak − a)(y)dy, x ∈ (c, d), where

G(x, y) =
1

2(ec−d − ed−c)

{
(ec−y + ey−c)(ed−x + ex−d) for y < x

(ec−x + ex−c)(ed−y + ey−d) for y > x

is a Green function that satisfies the properties G,Gx ∈ L∞(ΩT ). The weak con-
vergence ak ⇀ a in L2(c, d) implies

‖ρk‖W 1
2 (c,d) → 0. (5.16)

Using ρk we rewrite the term (ak − a)(ûk − m̂k ∗ ûk) in f̃k as follows:

(ak − a)(ûk − m̂k ∗ ûk)

= [ρ′k(ûk − m̂k ∗ ûk)]x − ρ′k(ûk − m̂k ∗ ûk)x − ρk(ûk − m̂k ∗ ûk).

According to this relation we change the form of the problem for wk as follows:

wk,t = Awk − m̂ ∗Awk + fk + φk,x in ΩT , (5.17)

û = 0 in Ω× {0}, (5.18)

û = g̃k in Γ1,T , (5.19)

−νA · ∇wk + m̂ ∗ νA · ∇wk = ϑwk + h̃k + ν · φk in Γ2,T , (5.20)

where

fk = −ρ′k(ûk + m̂k ∗ ûk)x − ρk(ûk + m̂k ∗ ûk)− a(m̂k − m̂) ∗ ûk,
φk = ρ′k(ûk + m̂k ∗ ûk)− a11(m̂k − m̂) ∗ ûk,x.

Let t be an arbitrary number in [0, T ]. To estimate wk we will use the projection

operators Pt, defined in (3.22), and P tw =

{
w in Ωt
0 in ΩT \ Ωt

. for w : ΩT → R.

Let wtk stand for the weak solution of problem (5.17)–(5.20) with fk, φk and h̃k
replaced by P tfk, P tφk and Pth̃k, respectively. Then, due to the causality wtk = wk
in Ωt. Applying (3.11) for wtk we obtain

‖wk‖U(Ωt) = ‖wtk‖U(Ωt) ≤ ‖w
t
k‖U(ΩT ) ≤ C0

[
‖P tfk‖L2((0,T );L1(c,d))

+ ‖P tφk‖(L2(ΩT ))n + θ‖g̃k‖T (ΩT ) + ‖Pth̃k‖L2(Γ2,T )

]
= C0

[
‖fk‖L2((0,t);L1(c,d)) + ‖φk‖L2(Ωt) + θ‖g̃k‖T (ΩT ) + ‖h̃k‖L2(Γ2,t)

]
(5.21)
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with a constant C0. Using the relation a ∈ L2(c, d), Cauchy inequality, the in-
equality (3.21), g(x, 0) = 0, the embedding W 1

2 (c, d) ↪→ C[c, d] and ûk = wk + û we
estimate:

‖fk‖L2((0,t);L1(c,d)) ≤ C1

[
‖(m̂k − m̂) ∗ ûk‖L2((0,t);L2(c,d))

+ ‖ρk‖W 1
2 (c,d)(1 + ‖m̂k‖L2(0,T ))‖ûk‖U(Ωt)

]
≤ C1

[∫ t

0

|(m̂k − m̂)(t− τ)| ‖wk‖L2(Ωτ )dτ

+ ‖ρk‖W 1
2 (c,d)(1 + ‖m̂k‖L2(0,T ))‖wk‖U(Ωt)

]
+R

1

k,

(5.22)

‖φ‖L2(Ωt) ≤ C2

[
‖(m̂k − m̂) ∗ ûk,x‖L2(Ωt)

+ ‖ρk‖W 1
2 (c,d)(1 + ‖m̂k‖L2(0,T ))‖ûk‖L2((0,T );C[c,d])

]
≤ C2

[∫ t

0

|(m̂k − m̂)(t− τ)| ‖wk,x‖L2(Ωτ )dτ

+ ‖ρk‖W 1
2 (c,d)(1 + ‖m̂k‖L2(0,T ))‖wk‖L2((0,t);C[c,d])

]
+R

2

k,

(5.23)

‖g̃k‖T (ΩT ) ≤ R
3

k, (5.24)

‖h̃k‖L2(Γ2,t) ≤ C4

[
‖µ̂k ∗ wk‖L2((0,t);W 1

2 (c,d)) + ‖(µ̂k − µ̂) ∗ û‖L2((0,t);W 1
2 (c,d))

]
≤ C4

∫ t

0

|µ̂k(t− τ)| ‖wk‖L2((0,τ);W 1
2 (c,d))dτ +R

4

k,

(5.25)

where C1, C2, C4 are constants and

R
1

k = C1

[
‖(m̂k − m̂) ∗ û‖L2(ΩT ) + ‖ρk‖W 1

2 (c,d)(1 + ‖m̂k‖L2(0,T ))‖û‖U(ΩT )

]
,

R
2

k = C2

[
‖(m̂k − m̂) ∗ ûx‖L2(ΩT ) + ‖ρk‖W 1

2 (c,d)

(
1

+ ‖m̂k‖L2(0,T )

)
‖û‖L2((0,T );C[c,d])

]
,

R
3

k = ‖(µk − µ) ∗ g‖L2(ΩT ) + ‖(µk − µ) ∗ gx‖L2(ΩT ) + ‖(µk − µ) ∗ gt‖L2(ΩT ),

R
4

k = C4‖(µ̂k − µ̂) ∗ û‖L2((0,T );W 1
2 (c,d)).

By the weak convergence m̂k ⇀ m̂, µk ⇀ µ, µ̂k ⇀ û in L2(0, T ) and the relation
‖ρk‖W 1

2 (c,d) → 0 it holds

R
j

k → 0, j = 1, 2, 3, 4. (5.26)
Indeed, to prove that ‖zk ∗ v̂‖L2(ΩT ) → 0, where zk is one of the functions m̂k − m̂,
µk − µ or µ̂k − µ̂ and v̂ ∈ L2(ΩT ) is one of the functions û, ûx, g, gx or gt, it is
possible to use the dominated convergence theorem, again. More precisely,

‖zk ∗ v̂‖L2(ΩT ) =
{∫ T

0

∫ d

c

[∫ t

0

zk(τ)v̂(x, t− τ)dτ
]2
dx dt

}1/2

,

where the component
[∫ t

0
zk(τ)v̂(x, t − τ)dτ

]2
is bounded by an integrable in x ∈

(c, d) function sup ‖zk‖2L2(0,T )‖v̂(x, ·)‖2L2(0,T ) and tends to zero for all t ∈ (0, T ) and
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a.e. x ∈ (c, d), because zk ⇀ 0 and v̂(x, t− ·) ∈ L2(0, T ) for all t ∈ (0, T ) and a.e.
x ∈ (c, d). (The latter relation follows from v̂ ∈ L2(ΩT ) and Tonelli’s theorem.)
Thus, ‖zk ∗ v̂‖L2(ΩT ) → 0.

As in proof of Theorem 3.1, we use the norms ‖w‖σ = sup0<t<T e
−σt‖w‖U(Ωt)

with the weights σ ≥ 0 in the space U(ΩT ). Then in view of (5.22)–(5.25) from
(5.21) we deduce

‖wk‖σ ≤ C5

[
sup

0<t<T

∫ t

0

e−σ(t−τ)rk(t− τ) e−στ‖wk‖U(Ωτ )dτ

+ ‖ρk‖W 1
2 (c,d)(1 + ‖m̂k‖L2(0,T ))‖wk‖σ +

4∑
j=1

R
j

k

]
≤ C5

[{
‖e−σt‖L2(0,T )‖rk‖L2(0,T ) + ‖ρk‖W 1

2 (c,d)(1 + ‖m̂k‖L2(0,T ))
}
‖wk‖σ

+
4∑
j=1

R
j

k

]
,

where C5 is a constant and rk = |m̂k − m̂| + |µ̂k|. Since ‖e−σt‖L2(0,T ) → 0 as
σ →∞, ‖ρk‖W 1

2 (c,d) → 0 and the sequences ‖rk‖L2(0,T ), ‖m̂k‖L2(0,T ) are bounded,
there exist σ2 > 0 and K2 ∈ N such that

‖e−σ2t‖L2(0,T )‖rk‖L2(0,T ) + ‖ρk‖W 1
2 (c,d)(1 + ‖m̂k‖L2(0,T )) ≤

1
2C5

for k ≥ K2. This, along with the previous inequality, implies

‖wk‖σ2 ≤ 2C5

4∑
j=1

R
j

k and hence ‖wk‖U(ΩT ) ≤ 2eσ2TC5

4∑
j=1

R
j

k

for k ≥ K2. Taking (5.26) into account we obtain the desired convergence: ‖ûk −
û‖U(ΩT ) = ‖wk‖U(ΩT ) → 0. The theorem is proved. �
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