Electron. J. Diff. Equ., Vol. 2014 (2014), No. 173, pp. 1-13.

Oscillation criteria for odd-order nonlinear differential equations with advanced and delayed arguments

Ethiraju Thandapani, Sankarappan Padmavathy, Sandra Pinelas

Abstract:
This article presents oscillation criteria for n-th order nonlinear neutral mixed type differential equations of the form
$$\displaylines{
 \big((x(t)+ax(t-\tau_1)-bx(t+\tau_2))^{\alpha}\big)^{(n)}
 =q(t)x^{\beta}(t-\sigma_1)+p(t)x^{\gamma}(t+\sigma_2), \cr
 \big((x(t)-ax(t-\tau_1)+bx(t+\tau_2))^{\alpha}\big)^{(n)}
 =q(t)x^{\beta}(t-\sigma_1)+p(t)x^{\gamma}(t+\sigma_2), \cr
 \big((x(t)+ax(t-\tau_1)+bx(t+\tau_2))^{\alpha}\big)^{(n)}
 =q(t)x^{\beta}(t-\sigma_1)+p(t)x^{\gamma}(t+\sigma_2)
 }$$
where n is an odd positive integer, a and b are nonnegative constants, $\tau_1,\tau_2,\sigma_1$ and $\sigma_2$ are positive real constants, $q(t),p(t)\in C([t_0,\infty),(0,\infty))$ and $\alpha,\beta$ and $\gamma$ are ratios of odd positive integers with $\beta,\gamma\geq 1$. Some examples are provided to illustrate the main results.

Submitted March 14, 2014. Published August 14, 2014.
Math Subject Classifications: 34C15.
Key Words: Oscillation; odd order; neutral differential equation; mixed type.

Show me the PDF file (241 KB), TEX file, and other files for this article.

Ethiraju Thandapani
Ramanujan Institute for Advanced Study in Mathematics
University of Madras, Chennai 600 005, India
email: ethandapani@yahoo.co.in
Sankarappan Padmavathy
Ramanujan Institute for Advanced Study in Mathematics
University of Madras, Chennai 600 005, India
Sandra Pinelas
Academia Militar
Departamento de Ciências Exactas e Naturais
Av. Conde Castro Guimarães, 2720-113 Amadora, Portugal
email: sandra.pinelas@gmail.com

Return to the EJDE web page