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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR
p(x)-LAPLACIAN EQUATIONS IN RN

BIN GE, QINGMEI ZHOU

Abstract. This article concerns the existence and multiplicity of solutions

to a class of p(x)-Laplacian equations. We introduce a revised Ambrosetti-
Rabinowitz condition, and show that the problem has a nontrivial solution

and infinitely many solutions.

1. Introduction

The study of various mathematical problems with variable exponent growth
condition has received considerable attention in recent years; see e.g. [1, 16, 6, 13,
14, 15]. For background information, we refer the reader to [19, 21]. The aim of
this paper is to discuss the existence and multiplicity of solutions of the following
p(x)-Laplacian equation in RN :

−∆p(x)u+ |u|p(x)−2u = K(x)f(u), in RN ,

u ∈W 1,p(x)(RN ),
(1.1)

where p(x) = p(|x|) ∈ C((RN )) with 2 ≤ N < p− := infRN p(x) ≤ p+ :=
supRN p(x) < +∞, K : RN → R is a measurable function and f ∈ C(R,R).

Problem (1.1) has been widely studied. The following equation also has been
studied very well

−∆p(x)u+ |u|p(x)−2u = f(x, u), in RN ,

u ∈W 1,p(x)(RN ).
(1.2)

When p(x) = p(|x|) ∈ C(RN ) with 2 ≤ N < p− ≤ p+ < +∞, the authors in
[4] proved the existence of infinitely many distinct homoclinic radially symmetric
solutions for (1.2), under adequate hypotheses about the nonlinearity at zero (and
at infinity).

The case of p Lipschitz continuous with 1 < p− ≤ p+ < N was discussed
by [7, 12]. Fu-Zhang [12] uses a nonlinearity on the right-hand side of the form
h(x)|u|β(x)−1 where h ∈ L∞+ (RN ) ∩ Lq(x)(RN ), 1 < β(x) < p(x), q(x) = p∗(x)

p∗x−β(x) ,

p∗(x) = Np(x)
N−p(x) , and they prove the existence of at least two nontrivial solutions to
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problem (1.2). In [7], through the critical point theory, three main results on the
existence of solutions of problem (1.2) obtained, treating separately the three cases;
i.e., when the nonlinear term f(x, u) is sublinear, superlinear and concave-convex
nonlinearity.

Fan and Han [7] established the existence of nontrivial solutions for problem
(1.1) under the case of superlinear, by assuming the following key condition:

(F1’) there exist θ > p+ and M > 0 such that

0 < θF (t) := θ

∫ t

0

f(s)ds ≤ f(t)t, ∀|t| ≥M.

This condition is originally due to Ambrosetti and Rabinowitz [2] in the case p(x) ≡
2, and then was used in [3, 5, 8, 9] for p(x)-Laplacian equations. Actually, condition
(F1’) is quite natural and important not only to ensure that the Euler-Lagrange
functional associated to problem (1.2) has a mountain pass geometry, but also to
guarantee that Palais-Smale sequence of the Euler-Lagrange functional is bounded.
But this condition is very restrictive eliminating many nonlinearities. In this paper,
we introduce a new condition (F1), below, which is different from the Ambrosetti-
Rabinowitz-type condition (F1’).

(F1) there exist a constant M ≥ 0 and a decreasing function τ in the space
C(R \ (−M,M),R), such that

0 < (p+ + τ(t))F (t) := (p+ + τ(t))
∫ t

0

f(s)ds ≤ f(t)t, |t| ≥M,

where τ(t) > 0, lim|t|→+∞ |t|τ(t) = +∞ and lim|t|→+∞
∫ |t|
M

τ(s)
s ds = +∞.

Remark 1.1. Obviously, when inf |t|≥M τ(t) > 0, condition (F1) and (F1’) are
equivalent. However, condition (F1) is weaker than (F1’) when inf |t|≥M τ(t) = 0.
For example, let |t| ≥ M = 2, and assume that F (t) = |t|p+ ln|t|. Then f(t) =
(p+ + τ(t))sgn(t)|t|p+−1ln|t| satisfies condition (F1) not (F1’), where τ(t) = 1

lnt ∈
C(R \ (−M,M),R).

The aim of this paper is twofold. First, we want to handle the case when p− >
N and the unbounded area RN . Although important problems can be treated
within this framework, only a few works are available in this direction, see [4].
The main difficulty in studying problem (1.1) lies in the fact that no compact
embedding is available for W 1,p(x)(RN ) ↪→ L∞(RN ). However, the subspace of
radially symmetric functions of W 1,p(x)(RN ), denoted further by W 1,p(x)

r (RN ), can
be embedded compactly into L∞(RN ) whenever N < p− ≤ p+ < +∞ (cf. [4,
Theorem 2.1]). Second, instead of some usual assumption on the nonlinear term f ,
we assume that it satisfies a modified Ambrosetti-Rabinowitz-type condition (F1).

To state our results, we first introduce the following assumptions:
(H1) K ∈ L1(RN ) ∩ L∞(RN ) is radial, nonnegative, K(x) ≥ 0 for any x ∈ RN

and supd>0 ess inf |x|≤dK(x) > 0.
(H2) f(t) = o(tp

+−1) for t near 0.
Now, we are ready to state the main result of this paper.

Theorem 1.2. Suppose that (H1), (H2), (F1) hold. Then problem (1.1) has a
nontrivial radially symmetric solution. Furthermore, if f(t) = f(−t), then problem
(1.1) has infinitely many pairs of radially symmetric solutions.
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In the remainder of this section, we recall some definitions and basic properties
of variable spaces Lp(x)(RN ) and W 1,p(x)(RN ). For a deeper treatment on these
spaces, we refer to [10, 11].

Let p ∈ L∞(RN ), p− > 1. The variable exponent Lebesgue space Lp(x)(RN ) is
defined by

Lp(x)(RN ) = {u : RN → R : u is measurable and
∫

RN
|u|p(x)dx < +∞}

endowed with the norm |u|p(x) = {λ > 0 :
∫

RN |
u
λ |
p(x)dx ≤ 1}. Then we define the

variable exponent Sobolev space

W 1,p(x)(RN ) = {u ∈ Lp(x)(RN ) : |∇u| ∈ Lp(x)(RN )}

with the norm ‖u‖ = |u|p(x) + |∇u|p(x).

Proposition 1.3 ([7]). Set ψ(u) =
∫

RN (|∇u(x)|p(x) + |u(x)|p(x))dx. If u, uk ∈
W 1,p(x)(RN ), then

(1) ‖u‖ < 1(= 1;> 1)⇔ I(u) < 1(= 1;> 1);
(2) If ‖u‖ > 1, then ‖u‖p− ≤ ψ(u) ≤ ‖u‖p+ ;
(3) If ‖u‖ < 1, then ‖u‖p+ ≤ ψ(u) ≤ ‖u‖p− ;
(4) limk→+∞ ‖uk‖ = 0⇔ limk→+∞ ψ(uk) = 0;

2. Proof of Theorem 1.2

In this section we prove Theorem 1.2 when inf |t|≥M τ(t) = 0. If inf |t|≥M τ(t) > 0,
then conditions (F1’) and (F1) are equivalent, and the proof is rather standard. We
may assume that M ≥ 1, and that there is constant N0 > 0 such that |τ(t)| ≤ N0

for all t ∈ R\(−M,M).
We introduce the energy function ϕ associated to problem (1.1) defined by

ϕ(u) =
∫

RN

1
p(x)

(|∇u(x)|p(x)+|u(x)|p(x))dx−
∫

RN
K(x)F (u)dx, u ∈W 1,p(x)

r (RN )

Due to the principle of symmetric criticality of Palais (see [20]), the critical points
of ϕ|

W
1,p(x)
r (RN )

are critical points of ϕ as well, so radially symmetric, weak solutions
of problem (1.1).

Claim 2.1. Let W = {w ∈ W 1,p(x)
r (RN ) : ‖w‖ = 1}. Then, for any w ∈ W , there

exist δw > 0 and λw > 0, such that

ϕ(λv) < 0, ∀v ∈W ∩B(w, δw),∀|λ| ≥ λw,

where B(w, δw) = {v ∈W 1,p(x)
r (RN ) : ‖v − w‖ < δw}.

Proof. Since the embedding W 1,p(x)
r (RN ) ↪→ L∞(RN ) is compact, there is constant

C > 0 such that |u|∞ ≤ C‖u‖. Thus, for all w ∈ W and a.e. x ∈ RN , we
have |w(x)| ≤ C. By the definition of τ(t), we deduce that there exists tλ ∈
{t ∈ R : M ≤ |t| ≤ |λ|C} such that τ(tλ) = minM≤|t|≤|λ|C τ(t). Then |λ| ≥ tλ

C and
lim|λ|→+∞ |tλ| → +∞. From condition (F1), we conclude that F (t) ≥ C1|t|p

+
H(|t|)

for all |t| ≥M , where H(t) = exp(
∫ |t|
M

τ(s)
s ds). Hence, using lim|t|→+∞

∫ |t|
M

τ(s)
s ds =

+∞, it follows that H(|t|) increases when |t| increases, and lim|t|→+∞H(|t|) = +∞.
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Fix w ∈W . By ‖w‖ = 1, we deduce that µ({x ∈ RN : w(x) 6= 0}) > 0, and that
there exists a tw > M such that µ({x ∈ RN : |tww(x)| ≥ M}) > 0, where µ is the
Lebesgue measure.

Set Ω1 := {x ∈ RN : |tww(x)| ≥ M} and Ω2 := RN\Ω1. Then µ(Ω1) > 0.
Therefore, for any x ∈ Ω1, we have that |w(x)| ≥ M

tw
. Now take δw = M

2Ctw
. Then,

for any v ∈ W ∩ B(w, δw), |v − w|∞ ≤ C‖v − w‖ < M
2tw

. Hence, for all x ∈ Ω1,
we deduce that |v(x)| ≥ M

2tw
and |λv(x)| ≥ M for any x ∈ Ω1 and λ ∈ R with

|λ| ≥ 2tw. Thus, for |λ| ≥ 2tw, by the above estimates and H(|t|) increases when
|t| increases, we have∫

Ω1

K(x)F (λv(x))dx ≥ C1|λ|p
+
∫

Ω1

K(x)|v(x)|p
+
H(|λv(x)|)dx

≥ C1|λ|p
+

(
M

2tw
)p

+
H(|λ| M

2tw
)
∫

Ω1

K(x)dx.
(2.1)

On the other hand, by continuity, we deduce that there exists a C2 > 0 such that
F (t) ≥ −C2 when |t| ≤M . Note that F (t) > 0 if |t| ≥M . Hence,∫

Ω2

K(x)F (λv(x))dx =
∫

Ω2∪{x∈RN :|λv(x)|≥M}
K(x)F (λv(x))dx

+
∫

Ω2∪{x∈RN :|λv(x)|≤M}
K(x)F (λv(x))dx

≥
∫

Ω2∪{x∈RN :|λv(x)|≤M}
K(x)F (λv(x))dx

≥ −C2|K|1.

(2.2)

Hence, for v ∈W ∩B(w, δw) and |λ| > 1, from (2.1) and (2.2), we have

ϕ(λv) =
∫

RN

|λ|p(x)

p(x)
(|∇v|p(x) + |v|p(x))dx−

∫
RN

K(x)F (λv(x))dx

≤ |λ|p
+
− C1|λ|p

+
(
M

2tw
)p

+
H(|λ| M

2tw
)
∫

Ω1

K(x)dx+ C2|K|1

= |λ|p
+
[
1− C1(

M

2tw
)p

+
H(|λ| M

2tw
)
∫

Ω1

K(x)dx
]

+ C2|K|1

→ −∞,
as |λ| → +∞, because lim|t|→+∞H(|t|) = +∞. �

Claim 2.2. There exist ν > 0 and ρ > 0 such that inf‖u‖=ν ϕ(u) ≥ ρ > 0.

Proof. Note that |u|∞ → 0 if ‖u‖ → 0. Then, by hypothesis (H2), we have∫
RN

K(x)F (u)dx = |K|1o(|u|p
+

∞ ) = |K|1o(‖u‖p
+

),

which implies

ϕ(u) =
∫

RN

1
p(x)

(|∇u|p(x) + |u|p(x))dx−
∫

RN
K(x)F (u)dx

≥ 1
p+
‖u‖p

+
− |K|1o(‖u‖p

+
).

Therefore, there exist 1 > ν > 0 and ρ > 0 such that inf‖u‖=ν ϕ(u) ≥ ρ > 0. �
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Claim 2.3. The functional ϕ satisfies the (PS) condition.

Proof. Let {un} ⊂ W
1,p(x)
r (RN ) be a (PS) sequence of the functional ϕ; that is,

|ϕ(un)| ≤ c and |〈ϕ′(un), h〉| ≤ εn‖h‖ with εn → 0, for all h ∈ W 1,p(x)
r (RN ). We

will prove that the sequence {un} is bounded in W
1,p(x)
r (RN ). Indeed, if {un}

is unbounded in W
1,p(x)
r (RN ), we may assume that ‖un‖ → ∞ as n → ∞. Let

un = λnwn, where λn ∈ R, wn ∈W . It follows that |λn| → ∞.
Let Ωn1 := {x ∈ RN : |λnwn(x)| ≥M} and Ωn2 := RN\Ωn1 . Then

−εn|λn| = −εn‖un‖
≤ 〈ϕ′(un), un〉

=
∫

RN

(
|∇un|p(x) + |un|p(x)

)
dx−

∫
RN

K(x)f(un)undx

≤
∫

RN
|λn|p(x)

(
|∇wn|p(x) + |wn|p(x)

)
dx−

∫
Ωn1

K(x)f(λnwn)λnwndx

−
∫

Ωn2

K(x)f(λnwn)λnwndx,

which implies that∫
Ωn1

K(x)f(λnwn)λnwn dx ≤
∫

RN
|λn|p(x)

(
|∇wn|p(x) + |wn|p(x)

)
dx

+ εn|λn| −
∫

Ωn2

K(x)f(λnwn)λnwndx.

Note that 0 < (p+ + τ(tλn))F (λnwn) ≤ f(λnwn)λnwn in Ωn1 . So,∫
Ωn1

K(x)F (λnwn)dx ≤ 1
p+ + τ(tλn)

∫
Ωn1

K(x)f(λnwn)λnwndx.

Then it follows that

ϕ(un) = ϕ(λnwn)

=
∫

RN

|λn|p(x)

p(x)
(|∇wn|p(x) + |wn|p(x))dx−

∫
RN

K(x)F (λnwn)dx

=
∫

RN

|λn|p(x)

p(x)

(
|∇wn|p(x) + |wn|p(x)

)
dx−

∫
Ωn1

K(x)F (λnwn)dx

−
∫

Ωn2

K(x)F (λnwn)dx

≥ 1
p+

∫
RN
|λn|p(x)

(
|∇wn|p(x) + |wn|p(x)

)
dx

− 1
p+ + τ(tλn)

∫
Ωn1

K(x)f(λnwn)λnwndx−
∫

Ωn2

K(x)F (λnwn)dx

≥ 1
p+

∫
RN
|λn|p(x)

(
|∇wn|p(x) + |wn|p(x)

)
dx

− 1
p+ + τ(tλn)

[ ∫
RN
|λn|p(x)

(
|∇wn|p(x) + |wn|p(x)

)
dx+ εn|λn|

]
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+
1

p+ + τ(tλn)

∫
Ωn2

K(x)f(λnwn)λnwndx−
∫

Ωn2

K(x)F (λnwn)dx

=
τ(tλn)

p+(p+ + τ(tλn))

∫
RN
|λn|p(x)

(
|∇wn|p(x) + |wn|p(x)

)
dx

− 1
p+ + τ(tλn)

εn|λn|+ T (λnwn)

≥ τ(tλn)
p+(p+ +N0)

|λn|p
−
− 1
p+
εn|λn|+ T (λnwn)

= |λn|
[ |λn|p−−1τ(tλn)
p+(p+ +N0)

− εn
p+

]
+ T (λnwn)

≥ |λn|
[ |λn|p−−1τ(tλn)
p+(p+ +N0)

− εn
p+

]
− C2,

where

T (λnwn) =
1

p+ + τ(tλn)

∫
Ωn2

K(x)f(λnwn)λnwn dx−
∫

Ωn2

K(x)F (λnwn) dx

is bounded from below. We know that |λn| → +∞, and so |tλn | → +∞, as
n→ +∞. It follows from (F1) and p− > N ≥ 2 that

lim
n→+∞

|λn|p
−−1τ(tλn) ≥ lim

n→+∞

|tλn |τ(tλn)
M

= +∞.

This means that limn→+∞ ϕ(un) → +∞. This is a contradiction. So, the se-
quence {un} is bounded in W 1,p(x)

r (RN ). Note that the embedding W 1,p(x)
r (RN ) ↪→

L∞(RN ) is compact, there exists a u ∈ W 1,p(x)
r (RN ) such that passing to subse-

quence, still denoted by {un}, it converges strongly to u in L∞(RN ), and in the
same way as the proof of [17, Proposition 3.1] we can conclude that un converges
strongly also in W

1,p(x)
r (RN ). Thus, ϕ satisfies the (PS) condition. �

Proof of Theorem 1.2. Due to Claims 2.1, 2.2 and 2.3, we know that ϕ satisfies
the conditions of the classical mountain pass theorem due to Ambrosetti and Ra-
binowitz [2]. Hence, we obtain a nontrivial critical point, which gives rise to a
nontrivial radially symmetric solution to problem (1.1).

Furthermore, if f(t) = f(−t), then ϕ is even. We will use the following Z2

version of the mountain pass theorem in [18]. �

Theorem 2.4. Let E be an infinite-dimensional Banach space, and ϕ ∈ C(E,R) be
even, satisfying the (PS) condition, and having ϕ(0) = 0. Assume that E = V ⊕X,
where V is finite dimensional. Suppose that the following hold.

(a) there are constants ν, ρ > 0 such that inf∂Bν∪X ϕ ≥ ρ.
(b) for each finite-dimensional subspace E ⊂ E, there is an σ = σ(E) such that

ϕ ≤ 0 on E\Bσ.
Then ϕ possesses an unbounded sequence of critical values.

From Claims 2.1 and 2.2, ϕ satisfies (a) and the (PS) condition. For any finite-
dimensional subspace E ⊂ E, S ∩ E = {w ∈ E : ‖w‖ = 1} is compact. By Claim
2.1 and the finite covering theorem, it is easy to verify that ϕ satisfies condition
(b). Hence, by the Z2 version of the mountain pass theorem, ϕ has a sequence of
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critical points {un}∞n=1. That is, problem (1.1) has infinitely many pairs of radially
symmetric solutions.
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[21] V. V. Zhikov; Averaging of functionals of the calculus of variations and elasticity theory,

Math. USSR. Izv. 9 (1987) 33–66.



8 B. GE, Q. ZHOU EJDE-2014/133

Bin Ge

Department of Applied Mathematics, Harbin Engineering University, Harbin 150001,

China
E-mail address: gebin04523080261@163.com

Qingmei Zhou
Library, Northeast Forestry University, Harbin 150040, China

E-mail address: zhouqingmei2008@163.com


	1. Introduction
	2. Proof of Theorem ??
	Acknowledgments

	References

