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CAUCHY PROBLEM FOR A GENERALIZED WEAKLY
DISSIPATIVE PERIODIC TWO-COMPONENT

CAMASSA-HOLM SYSTEM

WENXIA CHEN, LIXIN TIAN, XIAOYAN DENG

Abstract. In this article, we study a generalized weakly dissipative periodic

two-component Camassa-Holm system. We show that this system can exhibit

the wave-breaking phenomenon and determine the exact blow-up rate of strong
solution to the system. In addition, we establish a sufficient condition for

having a global solution.

1. Introduction

In recent years, the Camassa-Holm equation [4],

ut − utxx + 3uux = 2uxuxx + uuxxx, t > 0, x ∈ R (1.1)

which models the propagation of shallow water waves has attracted considerable
attention from a large number of researchers, and two remarkable properties of (1.1)
were found. The first one is that the equation possesses the solutions in the form of
peaked solitons or ‘peakons’ [4, 8]. The peakon u(t, x) = ce−|x−ct|, c 6= 0 is smooth
except at its crest and the tallest among all waves of the fixed energy. It is a feature
observed for the traveling waves of largest amplitude which solves the governing
equations for water waves [9, 10, 29, 33]. The other remarkable property is that the
equation has breaking waves [4, 11]; that is, the solution remains bounded while its
slope becomes unbounded in finite time. After wave breaking the solutions can be
continued uniquely as either global conservative [2] or global dissipative solutions
[3].

The Camassa-Holm equation also admits many integrable multicomponent gen-
eralizations. The most popular one is

mt −Aux + umx + 2uxm+ ρρx = 0

ρt + (ρu)x = 0
m = u− uxx

(1.2)

Notice that the C-H equation can be obtained via the obvious reduction ρ ≡ 0
and A = 0. System (1.2) was derived in [27], where ρ(t, x) is related to the free
surface elevation from the equilibrium (or scalar density), and A ≥ 0 characterizes
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a linear underlying shear flow. Recently, Constantin-Ivanov [12] and Ivanov [23]
established a rigorous justification of the derivation of system (1.2). Mathematical
properties of the system have been also studied further in many works, for example
[1, 6, 7, 14, 15, 19, 22, 26, 28]. Chen, Liu and Zhang [6] established a reciprocal
transformation between the two-component Camassa-Holm system and the first
negative flow of the AKNS hierarchy. Escher, Lechtenfeld, and Yin [14] investigated
local well-posedness for the two-component Camassa-Holm system with initial data
(u0, ρ0 − 1) ∈ Hs ×Hs−1 with s ≥ 2 by applying Kato’s theory [24] and provided
some precise blow-up scenarios for strong solutions to the system. The local well-
posedness is improved by Gui and Liu [20] to the Besov Spaces (especially in the
Sobolev space Hs × Hs−1 with s > 3/2), and they showed that the finite time
blow-up is determined by either the slope of the first component u or the slope of
the second component ρ [8, 14]. The blow-up criterion is made more precise in [25]
where Liu and Zhang showed that the wave breaking in finite time only depends
on the slope of u. This blow-up criterion is improved to the lowest Sobolev spaces
Hs ×Hs−1 with s > 3/2 [19].

In general, it is difficult to avoid energy dissipation mechanisms in a real world.
We are interested in the effect of the weakly dissipative term on the two-component
Camassa-Holm equation. Wu, Escher and Yin have investigated the blow-up phe-
nomena, the blow-up rate of the strong solutions of the weakly dissipative CH
equation [31] and DP equation [30]. Inspired by the above results, in this paper, we
investigate the following generalized weakly dissipative two-component Camassa-
Holm system

ut − utxx −Aux + 3uux − σ(2uxuxx + uuxxx) + λ(u− uxx) + ρρx = 0,
t > 0, x ∈ R,

ρt + (ρu)x = 0, t > 0, x ∈ R,
u(0, x) = u0(x), ρ(0, x) = ρ0(x), x ∈ R,

u(t, x) = u(t, x+ 1), ρ(t, x) = ρ(t, x+ 1), t ≥ 0, x ∈ R,

(1.3)

or equivalently,

mt −Aux + σ(umx + 2uxm) + 3(1− σ)uux + λm+ ρρx = 0,

ρt + (ρu)x = 0,
m = u− uxx,

(1.4)

where λm = λ(I−∂xx)u is the weakly dissipative term, λ ≥ 0 and A are constants,
and σ is a new free parameter. When A = 0, λ = 0 and ρ = 1, Guan and Yin
have obtained a new result of the existence of the strong solution and some new
blow-up results [16]. Meanwhile, they have proved the global existence of the weak
solution about the two-component CH equation [17]. Henry investigates the infinite
propagation speed of the solution for a two-component CH equation [21].

Similar to [12, 14], we can use the method of Besov spaces together with the
transport equation theory to show that system (1.4) is locally well-posedness in
Hs×Hs−1 with s > 3/2. The two equations for u and ρ are of a transport structure
∂tf + v∂xf = g. It is well known that most of the available estimates require v to
have some level of regularity. Roughly speaking, the regularity of the initial data
is expected to be preserved as soon as v belongs to L1(0, T ;Lip). More specially,
u and ρ are “transported” along directions of σu and u respectively. Then, the
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solution can be estimated in a Gronwall way involving ‖ux‖L∞ . Hence, one can
use these estimates to derive a criterion which says if

∫ T
0
‖ux(τ)‖L∞dτ < ∞, then

solutions can be extended further in time. Compared with the result in [5], we find
that the equation (1.4) has the same blow-up rate when the blow-up occurs. This
fact shows that the blow-up rate of equation (1.4) is not affected by the weakly
dissipative term. But the occurrence of blow-up of equation (1.4) is affected by the
dissipative parameter λ.

The basic elementary framework is as follows. Section 2 gives the local well-
posedness of system (1.4) and a wave-breaking criterion, which implies that the wave
breaking only depends on the slope of u, not the slope of ρ. Section 3 improves
the blow-up criterion with a more precise conditions. Section 4 determine the
exact blow-up rate of strong solutions of system (1.4). Finally, section 5 provides
a sufficient condition for global solutions.

Notation. Throughout this paper, we identity periodic function spaces over the
unit S in R2, i.e. S = R/Z.

2. Formation of singularities for σ 6= 0

We consider the following generalized weakly dissipative two - component Ca-
massa - Holm system:

ut − utxx −Aux + 3uux − σ(2uxuxx + uuxxx) + λ(u− uxx) + ρρx = 0,
t > 0, x ∈ R,

ρt + (ρu)x = 0, t > 0, x ∈ R,
u(0, x) = u0(x), ρ(0, x) = ρ0(x),

u(t, x) = u(t, x+ 1), ρ(t, x) = ρ(t, x+ 1),

(2.1)

where λ ≥ 0 and A are constants, and σ is a new free parameter.
System (2.1) can be written in the “transport” form

ut + σuux = −∂xG ∗ (−Au+
3− σ

2
u2 +

σ

2
u2
x +

1
2
ρ2)− λu t > 0, x ∈ R

ρt + (ρu)x = 0 t > 0, x ∈ R
u(0, x) = u0(x), ρ(0, x) = ρ0(x), x ∈ R

u(t, x) = u(t, x+ 1), ρ(t, x) = ρ(t, x+ 1), t ≥ 0, x ∈ R

(2.2)

where G(x) := cosh(x−[x]− 1
2 )

2 sinh(1/2) , x ∈ S, and (1− ∂2
x)−1f = G ∗ f for all f ∈ L2(S).

Applying the transport equation theory combined with the method of Besov
spaces, one may follow the similar argument as in [20] to obtain the following local
well-posedness result for the system (2.1). The proof is very similar to that of [20,
Theorem 1.1] and is omitted.

Theorem 2.1. Assume (u0, ρ0 − 1) ∈ Hs(S)×Hs−1(S) with s > 3/2, then there
exist a maximal time T = T (‖(u0, ρ0 − 1)‖Hs×Hs−1) > 0 and a unique solution
(u, ρ− 1) of equation (2.1) in C([0, T );Hs×Hs−1)∩C1([0, T );Hs−1×Hs−2) with
initial data (u0, ρ0). Moreover, the solution depends continuously on the initial
data, and T is independent of s.
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Lemma 2.2 ([26]). Let 0 < s < 1. Suppose that f0 ∈ Hs, g ∈ L1([0, T ];Hs),
v, vx ∈ L1([0, T ];L∞), and that f ∈ L∞([0, T ];Hs) ∩ C([0, T );S′) solves the one-
dimensional linear transport equation

∂tf + v∂xf = g

f(0, x) = f0(x)

then f ∈ C([0, T ];Hs). More precisely, there exists a constant C depending only on
s such that

‖f(t)‖Hs ≤ ‖f0‖Hs + C
(∫ t

0

‖g(τ)‖Hsdτ +
∫ t

0

‖f(τ)‖HsV ′(τ)dτ
)
,

then

‖f(t)‖Hs ≤ eCV (t)(‖f0‖Hs + C

∫ t

0

‖g(τ)‖Hsdτ),

where V (t) =
∫ t

0
(‖v(τ)‖L∞ + ‖vx(τ)‖L∞)dτ .

We may use [19, Lemma 2.1] to handle the regularity propagation of solutions to
(2.1). In addition, Lemma 2.2 was proved using the Littlewood-Paley analysis for
the transport equation and Moser-type estimates. Using this result and performing
the same argument as in [19], we can obtain the following blow-up criterion.

Theorem 2.3. Let σ 6= 0, (u, ρ) be the solution of (2.1) with initial data (u0, ρ0−
1) ∈ Hs(S)×Hs−1(S) with s > 3/2, and T be the maximal time of existence. Then

T <∞⇒
∫ t

0

‖ux(τ)‖L∞dτ =∞. (2.3)

Regarding the finite time blow-up, we consider the trajectory equation of the
system (2.1),

dq(t, x)
dt

= u(t, q(t, x)), t ∈ [0, T )

q(0, x) = x, x ∈ S,
(2.4)

where u ∈ C1([0, T );Hs−1) is the first component of the solution (u, ρ) to (2.1) with
initial data (u0, ρ0) ∈ Hs(S) ×Hs−1(S) with s > 3/2, and T > 0 is the maximal
time of the existence. Applying Theorem 2.1, we know that q(t, ·) : S → S is the
diffeomorphism for every t ∈ [0, T ), and

qx(t, x) = exp
(∫ t

0

ux(τ, q(τ, x))dτ
)
> 0, ∀(t, x) ∈ [0, T )× S. (2.5)

Hence, the L∞-norm of any function v(t, ·) ∈ L∞, t ∈ [0, T ) is preserved under the
diffeomorphism q(t, ·) with t ∈ [0, T ); that is, ‖v(t, ·)‖L∞ = ‖v(t, q(t, ·))‖L∞ .

Lemma 2.4 ([11]). Let T > 0 and v ∈ C1([0, T );H1(R)), then for every t ∈ [0, T ),
there exists at least one point ξ(t) ∈ R with m(t) := infx∈R[vx(t, x)] = vx(t, ξ(t)).
The function m(t) is absolutely continuous on (0, T ) with

dm(t)
dt

= vtx(t, ξ(t)) a.e. on (0, T ).

Lemma 2.5. Assume (u0, ρ0 − 1) ∈ Hs(S)×Hs−1(S) with s > 3/2, and (u, ρ) is
the solution of system (2.1), then ‖(u, ρ− 1)‖2H1×L2 ≤ ‖(u0, ρ0 − 1)‖2H1×L2 .
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Proof. Multiplying the first equation in (2.1) by u and using integration by parts
gives

d

dt

∫
S

(u2 + u2
x)dx+ 2λ

∫
S

(u2 + u2
x)dx+ 2

∫
S

uρρxdx = 0

Rewriting the second equation in (2.1) in the form (ρ − 1)t + ρxu + ρux = 0, and
multiplying by (ρ− 1) and using integration by parts, we have

d

dt

∫
S

(ρ− 1)2dx+ 2
∫
S

uρρxdx− 2
∫
S

uρxdx+ 2
∫
S

uxρ
2dx− 2

∫
S

uxρdx = 0.

Combining the above equalities, we have

d

dt

∫
S

(u2 + u2
x + (ρ− 1)2)dx+ 2λ

∫
S

(u2 + u2
x)dx = 0,

d

dt

∫
S

(u2 + u2
x + (ρ− 1)2 + 2λ

∫ t

0

(u2 + u2
x)dτ)dx = 0.

So we have ∫
S

(u2 + u2
x + (ρ− 1)2 + 2λ

∫ t

0

(u2 + u2
x)dτ)dx

=
∫
S

(u2
0 + u2

0x + (ρ0 − 1)2)dx = ‖(u0, ρ0 − 1)‖2H1×L2 .

Since 2λ
∫ t

0
(u2 + u2

x)dτ ≥ 0, we obtain

‖(u, ρ− 1)‖2H1×L2 =
∫
S

(u2 + u2
x + (ρ− 1)2)dx ≤ ‖(u0, ρ0 − 1)‖2H1×L2 .

The proof is complete. �

Lemma 2.6 ([32]). (1) For all f ∈ H1(S), we have

max
x∈[0,1]

f2(x) ≤ e+ 1
2(e− 1)

‖f‖21,

where e+1
2(e−1) is the best constant.

(2) For all f ∈ H3(S), we have

max
x∈[0,1]

f2(x) ≤ c‖f‖21,

where the possible best constant c ∈ (1, 13
12 ], and the best constant is e+1

2(e−1) .

Lemma 2.7. If f ∈ H3(S), then

max
x∈[0,1]

f2
x(x) ≤ 1

12
‖f‖2H2(S).

Proof. From [32, Theorem 2.1], the Fourier expansion of f(x) can be written as

f(x) =
a0

2
+
∞∑
n=1

an cos(2πnx).

Then

fx(x) = −
∞∑
n=1

(2nπan sin(2πnx)).
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Using that
∑∞
n=1 1/n2 = π2/6, we have

max
x∈S

f2
x(x) ≤

( ∞∑
n=1

|2nπan|
)2

=
( ∞∑
n=1

(2nπ)2|an|
1

2nπ

)2

≤
∞∑
n=1

((2nπ)2|an|)2
∞∑
n=1

(
1

2nπ
)2

≤ 1
24

∞∑
n=1

(16n4π4a2
n)

=
1
12

∞∑
n=1

(8n4π4a2
n)

=
1
12

∫
S

f2
xxdx ≤

1
12
‖f‖2H2(S).

The proof is complete. �

Applying the above lemmas and the method of characteristics, we may carry out
the estimates along the characteristics q(t, x) which captures supx∈S ux(t, x) and
infx∈S ux(t, x).

Lemma 2.8. Let σ 6= 0 and (u, ρ) be the solution of (2.1) with initial data (u0, ρ0−
1) ∈ Hs(S)×Hs−1(S), s > 3/2, and T be the maximal time of existence.

(1) When σ > 0, we have

sup
x∈S

ux(t, x) ≤ ‖u0x‖L∞ +

√
λ2

σ2
+
‖ρ0‖2L∞ + C2

1

σ
; (2.6)

(2) When σ < 0, we have

inf
x∈S

ux(t, x) ≥ −‖u0x‖L∞ −
√
λ2

σ2
− C2

2

σ
; (2.7)

where the constants are defined as follows:

C1 =

√
5(e+ 1)
2(e− 1)

+ (
1 +A2

2
+

(e+ 1)|3− σ|
e− 1

)‖(u0, ρ0 − 1)‖2H1×L2 , (2.8)

C2 ==

√
5(e+ 1)
2(e− 1)

+ (
A2

2
+

(5− σ)e+ 3− σ
2(e− 1)

)‖(u0, ρ0 − 1)‖2H1×L2 . (2.9)

Proof. The local well-posedness theorem and a density argument imply that it
suffices to prove the desired estimates for s ≥ 3. Thus, we take s = 3 in the proof.
Here we may assume that u0 6= 0. Otherwise, the results become trivial.

Differentiating the first equation in (2.2) with respect to x and using the identity
−∂2

xG ∗ f = f −G ∗ f , we have

utx+σuuxx+
σ

2
u2
x =

1
2
ρ2 +

3− σ
2

u2 +A∂2
xG∗u−G∗(

σ

2
u2
x+

3− σ
2

u2 +
1
2
ρ2)−λux.

(2.10)
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(1) When σ > 0, using Lemma 2.4 and the fact that

sup
x∈S

[vx(t, x)] = − inf
x∈S

[−vx(t, x)],

we can consider m̄(t) and η(t) as

m̄(t) := ux(t, η(t)) = sup
x∈S

(ux(t, x)), t ∈ [0, T ). (2.11)

This gives
uxx(t, η(t)) = 0 a.e. on t ∈ [0, T ) (2.12)

Take the trajectory q(t, x) defined in (2.4). We know that q(t, ·) : S → S is a
diffeomorphism for every t ∈ [0, T ),then there exists x1(t) ∈ S such that

q(t, x1(t)) = η(t), t ∈ [0, T ). (2.13)

Let
ζ̄(t) = ρ(t, q(t, x1)), t ∈ [0, T ). (2.14)

Then along the trajectory q(t, x1(t)), equation (2.10) and the second equation of
(2.1) become

m̄′(t) = −σ
2
m̄2(t)− λm̄(t) +

1
2
ζ̄2(t) + f(t, q(t, x1))

ζ̄ ′(t) = −ζ̄(t)m̄(t),
(2.15)

where

f =
3− σ

2
u2 +A∂2

xG ∗ u−G ∗
(σ

2
u2
x +

3− σ
2

u2 +
1
2
ρ2
)
. (2.16)

Since ∂2
xG ∗ u = ∂xG ∗ ∂xu, we have

f =
3− σ

2
u2 +A∂xG ∗ ∂xu−G ∗ (

σ

2
u2
x +

3− σ
2

u2)− 1
2
G ∗ 1−G ∗ (ρ− 1)

− 1
2
G ∗ (ρ− 1)2

≤ 3− σ
2

u2 +A∂xG ∗ ∂xu−G ∗ (
3− σ

2
u2)− 1

2
G ∗ 1−G ∗ (ρ− 1)

≤ |3− σ|
2

u2 +A|∂xG ∗ ∂xu|+ |G ∗ (
3− σ

2
u2)|+ 1

2
|G ∗ 1|+ |G ∗ (ρ− 1)|.

Based on the following formulas:

|3− σ|
2

u2 ≤ |3− σ|
2

· e+ 1
2(e− 1)

‖u‖2H1 ,

A|∂xG ∗ ∂xu| ≤ A‖Gx‖L2‖ux‖L2 ≤ e+ 1
2(e− 1)

+
1
4
A2‖ux‖2L2 ,

|G ∗ (
σ

2
u2
x)| ≤ ‖Gx‖L∞‖

σ

2
u2
x‖L1 ≤ e+ 1

2(e− 1)
· σ

2
‖ux‖2L2 ,

|G ∗ (
3− σ

2
u2)| ≤ ‖Gx‖L∞‖

3− σ
2

u2‖L1 ≤ e+ 1
2(e− 1)

· |3− σ|
2
‖u‖2L2 ,

1
2
|G ∗ 1| ≤ 1

2
‖G‖L∞ ≤

e+ 1
4(e− 1)

,

|G ∗ (ρ− 1)| ≤ ‖G‖L2‖ρ− 1‖L2 ≤ e+ 1
2(e− 1)

+
1
4
‖ρ− 1‖2L2 ,
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1
2
|G ∗ (ρ− 1)2| ≤ 1

2
‖G‖L∞‖(ρ− 1)2‖L1 ≤ e+ 1

4(e− 1)
‖ρ− 1‖2L2 ,

from the above inequalities and Lemma 2.5 we obtain an upper bound of f ,

f ≤ 5(e+ 1)
4(e− 1)

+
1
4
‖ρ− 1‖2L2 + (

A2

4
+

(e+ 1)|3− σ|
2(e− 1)

)‖u‖2H1

≤ 5(e+ 1)
4(e− 1)

+ (
A2 + 1

4
+

(e+ 1)|3− σ|
2(e− 1)

)‖(u0, ρ0 − 1)‖2H1×L2

=
1
2
C2

1 .

(2.17)

Similarly, we obtain a lower bound of f ,

−f ≤ σ − 3
2

u2 +A|∂xG ∗ ∂xu|+ |G ∗ (
σ

2
u2
x +

3− σ
2

u2)|+ 1
2
|G ∗ 1|

+ |G ∗ (ρ− 1)|+ 1
2
G ∗ (ρ− 1)2

≤ 5(e+ 1)
4(e− 1)

+
e

2(e− 1)
‖ρ− 1‖2L2 + (

A2

4
+

(e+ 1)(|σ|+ 2|3− σ|)
4(e− 1)

)‖u‖2H1

≤ 5(e+ 1)
4(e− 1)

+ (
A2

4
+

2e+ (e+ 1)(|σ|+ 2|3− σ|)
4(e− 1)

)‖(u0, ρ0 − 1)‖2H1×L2 .

(2.18)
Combining (2.17) and (2.18), we obtain

|f | ≤ 5(e+ 1)
4(e− 1)

+ (
A2

4
+

2e+ (e+ 1)(|σ|+ 2|3− σ|)
4(e− 1)

)‖(u0, ρ0 − 1)‖2H1×L2 . (2.19)

Since s ≥ 3, it follows that u ∈ C1
0 (S) and

inf
x∈S

ux(t, x) ≤ 0, sup
x∈S

ux(t, x) ≥ 0, t ∈ [0, T ). (2.20)

Hence, we obtain
m̄(t) > 0 for t ∈ [0, T ). (2.21)

From the second equation in (2.15), we have

ζ̄(t) = ζ̄(0)e−
R t
0 m̄(τ)dτ , (2.22)

|ρ(t, q(t, x1))| = |ζ̄(t)| ≤ |ζ̄(0)| ≤ ‖ρ0‖L∞ .
For any given x ∈ S, we define

P1(t) = m̄(t)− ‖u0x‖L∞ −
√
λ2

σ2
+
‖ρ0‖2L∞ + C2

1

σ
.

Notice that P1(t) is a C1-function in [0, T ) and satisfies

P1(0) = m̄(0)− ‖u0x‖L∞ −
√
λ2

σ2
+
‖ρ0‖2L∞ + C2

1

σ
≤ m̄(0)− ‖u0x‖L∞ ≤ 0.

Next, we claim that
P1(t) ≤ 0 for t ∈ [0, T ). (2.23)

If not, then suppose that there is a t0 ∈ [0, T ) such that P1(t0) > 0. Define
t1 = max{t < t0 : P1(t) = 0}, then P1(t1) = 0, P ′1(t1) ≥ 0. That is,

m̄(t1) = ‖u0x‖L∞ +

√
λ2

σ2
+
‖ρ0‖2L∞ + C2

1

σ
, m̄′(t1) = P ′1(t1) ≥ 0.
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On the other hand, we have

m̄′(t1) = −σ
2
m̄2(t1)− λm̄(t1) +

1
2
ζ̄2(t1) + f(t1, q(t1, x1))

≤ −σ
2

(
‖u0x‖L∞ +

√
λ2

σ2
+
‖ρ0‖2L∞ + C2

1

σ
+
λ

σ

)2

+
λ2

2σ
+

1
2
‖ρ0‖2L∞ +

1
2
C2

1
< 0.

This yields a contraction. Thus, P1(t) ≤ 0 for t ∈ [0, T ). Since x is chosen
arbitrarily, we obtain (2.6)).

(2) When σ < 0 , we have a finer estimate

−f ≤ −A(∂xG ∗ ∂xu) +G ∗ 3− σ
2

u2 +
1
2

(G ∗ 1) +G ∗ (ρ− 1) +
1
2
G ∗ (ρ− 1)2

≤ A|∂xG ∗ ∂xu|+ |G ∗
3− σ

2
u2|+ 1

2
|G ∗ 1|+ |G ∗ (ρ− 1)|+ 1

2
|G ∗ (ρ− 1)2|

≤ 5(e+ 1)
4(e− 1)

+ (
A2

4
+

(5− σ)e+ 3− σ
4(e− 1)

)‖(u0, ρ0 − 1)‖2H1×L2 =
1
2
C2

2 .

(2.24)
We consider the functions m(t) and ξ(t) in Lemma 2.4,

m(t) := inf
x∈S

[ux(t, x)], t ∈ [0, T ) (2.25)

Then uxx(t, ξ(t)) = 0 a.e. on t ∈ [0, T ). Choose x2(t) ∈ S, such that q(t, x2(t)) =
ξ(t), t ∈ [0, T ). Let ζ(t) = ρ(t, q(t, x2)), t ∈ [0, T ). Along the trajectory q(t, x2),
equation (2.10) and the second equation of (2.1) become

m′(t) = −σ
2
m2(t)− λm(t) +

1
2
ζ2(t) + f(t, q(t, x2))

ζ ′(t) = −ζ(t)m(t).

Let P2(t) = m(t) + ‖u0x‖L∞ +
√

λ2

σ2 − C2
2
σ , ∀x ∈ R. Then P2(t) is a C1-function

in [0, T ) and satisfies

P2(0) = m(0) + ‖u0x‖L∞ +

√
λ2

σ2
− C2

2

σ
≥ m(0) + ‖u0x‖L∞ ≥ 0.

Now we claim that
P2(t) ≥ 0 for t ∈ [0, T ). (2.26)

Assume that there is a t̄0 ∈ [0, T ) such that P2(t̄0) < 0. Define t2 = max{t < t̄0 :
P2(t) = 0}, then P2(t2) = 0, P ′2(t2) ≤ 0. That is,

m(t2) = −‖u0x‖L∞ −
√
λ2

σ2
− C2

2

σ
, m′(t2) = P ′2(t2) ≤ 0.

In addition, we have

m′(t2) = −σ
2
m2(t2)− λm(t2) +

1
2
ζ2(t2) + f(t2, q(t2, x2))

≥ −σ
2

(−‖u0x‖L∞ −
√
λ2

σ2
− C2

2

σ
+
λ

σ
)2 +

λ2

2σ
− 1

2
C2

2 > 0.

This is a contradiction. Then we have P2(t) ≥ 0 for t ∈ [0, T ), since x is chosen
arbitrarily. �
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Now, we present the following estimates for ‖ρ‖L∞(S), if σux is bounded from
below.

Lemma 2.9 ([5]). Let σ 6= 0 and (u, ρ) be the solution of (2.1) with initial data
(u0, ρ0−1) ∈ Hs(S)×Hs−1(S), s > 3/2, and T be the maximal time of the existence.
If there is a M ≥ 0 such that inf(t,x)∈[0,T )×S σux ≥ −M , Then we have following
two statements.

(1) If σ > 0, then ‖ρ(t, ·)‖L∞(S) ≤ ‖ρ0‖L∞(S)e
Mt/σ.

(2) If σ < 0, then ‖ρ(t, ·)‖L∞(S) ≤ ‖ρ0‖L∞(S)e
Nt,

where N = ‖u0x‖L∞ + (C2/
√
−σ) and C2 is given in (2.24).

Proof. The proof of Lemma 2.9 is similar to that of [5, Proposition 3.8], so we omit
it here. �

From the above results, we can get the necessary and sufficient conditions for
the blow-up of solutions.

Theorem 2.10 (Wave-breaking criterion for σ 6= 0). Let σ 6= 0 and (u, ρ) be the
solution of (2.1) with initial data (u0, ρ0 − 1) ∈ Hs(S)×Hs−1(S), s > 3/2, and T
be the maximal time of existence. Then the solution blows up in finite time if and
only if

lim
t→T−

inf
x∈S

σux(t, x) = −∞. (2.27)

Proof. Assume that T < ∞ and (2.27) is not valid, then there is some positive
number M > 0, such that σux(t, x) ≥ −M , ∀(t, x) ∈ [0, T ) × S. From the above
lemmas, we have |ux(t, x)| ≤ C, where C = C(A,M, σ, λ, ‖(u0, ρ0 − 1)‖Hs×Hs−1).
Thus, Theorem 2.3 implies that the maximal existence time T =∞, which contra-
dicts the assumption T <∞.

On the other hand, the Sobolev embedding theorem Hs ↪→ L∞ with s > 1/2
implies that if (2.27) holds, the corresponding solution blows up in finite time. The
proof is complete. �

3. Blow-up scenarios

Theorem 3.1. Let σ > 0 and (u, ρ) be the solution of (2.1) with initial data
(u0, ρ0 − 1) ∈ Hs(S)×Hs−1(S), s > 3/2, and T be the maximal time of existence.
Assume that there is some x0 ∈ S such that ρ0(x0) = 0,u0x(x0) = infx∈S u0x(x)
and
‖(u0, ρ0 − 1)‖2H1×L2

<
( 8e− 10

18(e− 1)
− λ2

2σ

) 4(e− 1)
(18A2 + 19)e− (18A2 + 17) + (2|3− σ|+ σ)(e+ 1)

,
(3.1)

then the corresponding solution to system (2.1) blows up in finite time in the fol-
lowing sense: there exists a T such that

0 < T ≤ 2
σ − λ

+
(

72σ(e− 1)(1 + |u0x(x0)|)
)

÷
(
σ(32e− 40− 324e− 324A2e+ 324A2 + 306)− 36λ2(e− 1)

+ (2|3− σ|+ σ)(e− 1)‖(u0, ρ0 − 1)‖2H1×L2

) (3.2)

and that lim inft→T−(infx∈S ux(t, x)) = −∞.
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Proof. Here we also consider s ≥ 3. We still consider along the trajectory q(t, x2)
defined as before. In this way, we can write the transport equation of ρ in (2.1)
along the trajectory of q(t, x2) as

dρ(t, ξ(t))
dt

= −ρ(t, ξ(t))ux(t, ξ(t)). (3.3)

By the assumption, we have

m(0) = ux(0, ξ(0)) = inf
x∈S

u0x(x) = u0x(x0).

Choose ξ(0) = x0 and then ρ0(ξ(0)) = ρ0(x0) = 0. Then by (3.3), we derive

ρ(t, ξ(t)) = 0, ∀t ∈ [0, T ). (3.4)

Evaluating the result at x = ξ(t) and combining (3.4) with uxx(t, ξ(t)) = 0, we have

m′(t) = −σ
2
m2(t)− λm(t) +

3− σ
2

u2(t, ξ(t)) +A(Gx ∗ ux)(t, ξ(t))

−G ∗ (
σ

2
u2
x +

3− σ
2

u2 +
1
2
ρ2)(t, ξ(t))

= −σ
2
m2(t)− λm(t) + f(t, q(t, x2))

= −σ
2

(m(t) +
λ

σ
)2 +

λ2

2σ
+ f(t, q(t, x2)).

(3.5)

We modify the estimates:

A|Gx ∗ ux| ≤ A‖Gx‖L2‖ux‖L2 ≤ 1
18
· e+ 1

2(e− 1)
+

9
2
A2‖ux‖2L2 ,

|G ∗ (ρ− 1)| ≤ ‖G‖L2‖ρ− 1‖L2 ≤ 1
18
· e+ 1

2(e− 1)
+

9
2
‖ρ− 1‖2L2 .

Similarly, we obtain the upper bound of f as

f ≤ 10− 8e
18(e− 1)

+
(18A2 + 19)e− (18A2 + 17) + (2|3− σ|+ σ)(e+ 1)

4(e− 1)
× ‖(u0, ρ0 − 1)‖2H1×L2 := −C3.

By assumption (3.1), we obtain λ2

2σ − C3 < 0 and

m′(t) ≤ −σ
2
(
m(t) +

λ

σ

)2 +
λ2

2σ
− C3 ≤

λ2

2σ
− C3 < 0, t ∈ [0, T ). (3.6)

So m(t) is strictly decreasing in [0, T ). If the solution (u, ρ) of (2.1) exists globally
in time, that is, T =∞, we will show that it leads to a contradiction.

Let t1 = 2σ(1+|u0x(x0)|)
2σC3−λ2 . Integrating (3.6) over [0, t1] gives

m(t1) = m(0) +
∫ t1

0

m′(t)dt ≤ |u0x(x0)|+ (
λ2

2σ
− C3)t1 = −1. (3.7)

For t ∈ [t1, T ), we have m(t) ≤ m(t1) ≤ −1. From (3.6), we have

m′(t) ≤ −σ
2
(
m(t) +

λ

σ

)2
. (3.8)

Integrating over [t1, T ), by (3.7), yields

− 1
m(t) + λ

σ

+
1

λ
σ − 1

≤ − 1
m(t) + λ

σ

+
1

m(t1) + λ
σ

≤ −σ
2

(t− t1), t ∈ [t1, T ),
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m(t) ≤ 1
σ
2 (t− t1) + σ

λ−σ
− λ

σ
→ −∞, as t→ t1 +

2
σ − λ

.

So, T ≤ t1 + 2
σ−λ , which is a contradiction to T = ∞. Consequently, the proofis

complete. �

Theorem 3.2. Let σ 6= 0 and (u, ρ) be the solution of (2.1) with initial data
(u0, ρ0 − 1) ∈ Hs(S) × Hs−1(S), s > 3/2, and T be the maximal time of the
existence.

(1) When σ > 0, assume that there is an x0 ∈ S such that ρ0(x0) = 0, u0x(x0) =

infx∈S u0x(x) and u0x(x0) < −
√

λ2

σ2 + C2
1
σ −

λ
σ , where C1 is defined in (2.8). Then

the corresponding solution to system (2.1) blows up in finite time in the following
sense: there exists a T1 such that

0 < T1 ≤ −
2(λ+ σu0x(x0))

(λ+ σu0x(x0))2 − (λ2 + σC2
1 )
,

and
lim inf
t→T−1

{ inf
x∈S

ux(t, x)} = −∞.

(2) When σ < 0, assume that there is some x0 ∈ S such that u0x(x0) >√
λ2

σ2 − C2
2
σ −

λ
σ , where C2 is defined in (2.9). Then the corresponding solution

to system (2.1) blows up in finite time in the following sense: there exists a T2 such
that

0 < T2 ≤ −
2(λ+ σu0x(x0))

(λ+ σu0x(x0))2 − (λ2 − σC2
2 )
,

and
lim inf
t→T−2

{sup
x∈S

ux(t, x)} =∞.

Proof. (1) When σ > 0, using the upper bound of f in (2.17) and (3.4), we have

m′(t) ≤ −σ
2

(
m(t) +

λ

σ

)2

+
λ2

2σ
+

1
2
C2

1 , t ∈ [0, T ).

By the assumption m(0) = u0x(x0) < −
√

λ2

σ2 + C2
1
σ −

λ
σ , we have that m′(0) < 0

and m(t) is strictly decreasing over [0, T ). Set

δ =
1
2
− 1
σ(u0x(x0) + λ

σ )2

(λ2

2σ
+

1
2
C2

1

)
∈ (0,

1
2

).

Since m(t) < m(0) = u0x(x0) < −λσ , it holds

m′(t) ≤ −σ
2

(
m(t) +

λ

σ

)2

+
λ2

2σ
+

1
2
C2

1 ≤ −δσ
(
m(t) +

λ

σ

)2

.

By a similar argument as in the proof of Theorem 3.1, we obtain

m(t) ≤ λ+ σu0x(x0)
σ + (δσ2u0x(x0) + λδσ)t

− λ

σ
→ −∞ as t→ − 1

λδ + δσu0x(x0)
.

Thus, we have 0 < T1 ≤ − 1
λδ+δσu0x(x0) .
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(2) when σ < 0, we consider the functions m̄(t) and η(t) as defined in (2.11) and
take the trajectory q(t, x1) with x1 defined in (2.13), then

m̄′(t) = −σ
2
m̄2(t)− λm̄(t) +

1
2
ρ2(t, η(t)) + f(t, q(t, x1))

≥ −σ
2

(
m̄(t) +

λ

σ

)2

+
λ2

2σ
+ f(t, q(t, x1)).

(3.9)

From the lower bound of f in (2.24), we obtain

m̄′(t) ≥ −σ
2

(
m̄(t) +

λ

σ

)2

+
λ2

2σ
− 1

2
C2

2 , t ∈ [0, T ).

By the assumption m̄(0) ≥ u0x(x0) >
√

λ2

σ2 − C2
2
σ −

λ
σ , we have that m̄′(0) > 0 and

m̄(t) is strictly increasing over [0, T ).
Set

θ =
(σu0x(x0) + λ)2 − (λ2 − σC2

2 )
2(σu0x(x0) + λ)2

∈ (0,
1
2

).

Since m̄(t) > m̄(0) ≥ u0x(x0) > −λσ , we obtain

m̄′(t) ≥ −σ
2

(
m̄(t) +

λ

σ

)2

+
λ2

2σ
− 1

2
C2

2 ≥ −θσ
(
m̄(t) +

λ

σ

)2

.

Similarly, we obtain

m̄(t) ≥ λ+ σu0x(x0)
σ + (θσ2u0x(x0) + λθσ)t

− λ

σ
→∞ as t→ − 1

λθ + θσu0x(x0)
.

Therefore, 0 < T2 ≤ − 1
λθ+θσu0x(x0) . The proof is complete. �

Remark. If σ = 3 and A = 0, then all solutions of system (2.1) with initial data
(u0, ρ0 − 1) ∈ Hs(S)×Hs−1(S) with s > 3/2 satisfying u0 6= 0 and ρ0(x0) = 0 for
some x0 ∈ S, blow up in finite time.

4. Blow-up rate

Theorem 4.1. Let σ 6= 0. If T < ∞ is the blow-up time of the solution (u, ρ)
to (2.1) with initial data (u0, ρ0 − 1) ∈ Hs(S) × Hs−1(S), s > 3/2 satisfying the
assumptions of Theorem 3.2. Then

lim
t→T−

{ inf
x∈S

ux(t, x)(T − t)} = − 2
σ
, σ > 0, (4.1)

lim
t→T−

{sup
x∈S

ux(t, x)(T − t)} = − 2
σ
, σ < 0. (4.2)

Proof. We assume that s = 3 to prove the theorem.
(1) when σ > 0, from (3.5) we have

m′(t) = −σ
2

(
m(t) +

λ

σ

)2

+
λ2

2σ
+ f(t, q(t, x)). (4.3)

From (2.19), note that

M =
5(e+ 1)
4(e− 1)

+ (
A2

4
+

2e+ (e+ 1)(|σ|+ 2|3− σ|)
4(e− 1)

)‖(u0, ρ0 − 1)‖2H1×L2 , (4.4)

Then

− σ

2
(m(t) +

λ

σ
)2 − λ2

2σ
−M ≤ m′(t) ≤ −σ

2
(m(t) +

λ

σ
)2 +

λ2

2σ
+M. (4.5)
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Choose ε ∈ (0, σ2 ), since limt→T−
(
m(t) + λ

σ

)
= −∞, there is some t0 ∈ (0, T ),

such that m(t0)+ λ
σ < 0 and

(
m(t0)+ λ

σ

)2
> 1

ε

(
λ2

2σ+M
)
. Since m is locally Lipschitz,

it follows that m is absolutely continuous. We deduce that m is decreasing on [t0, T )
and (

m(t) +
λ

σ

)2

>
1
ε

(λ2

2σ
+M

)
, t ∈ [t0, T ). (4.6)

Combining (4.5) with (4.6), we have

σ

2
− ε ≤ d

dt

( 1
m(t) + λ

σ

)
≤ σ

2
+ ε, t ∈ [t0, T ). (4.7)

Integrating over (t, T ) with t ∈ [t0, T ) and noticing that limt→T−
(
m(t)+ λ

σ

)
= −∞,

we obtain

(
σ

2
− ε)(T − t) ≤ − 1

m(t) + λ
σ

≤ (
σ

2
+ ε)(T − t).

Since ε ∈ (0, σ2 ) is arbitrary, in view of the definition of m(t), we have

lim
t→T−

{m(t)(T − t) +
λ

σ
(T − t)} = − 2

σ
;

that is, limt→T−{infx∈S ux(t, x)(T − t)} = − 2
σ .

(2) When σ < 0, we consider the functions m̄(t) and η(t) as defined in (2.11).

From (3.9) and (4.4), we have m̄′(t) ≥ −σ2
(
m̄(t) + λ

σ

)2

+ λ2

2σ −M .

Because m̄(t) → ∞ as t → T−, there is a t1 ∈ (0, T ), such that m̄(t1) >√
λ2

σ2 − 2M
σ −

λ
σ > 0. Thus, we have that m̄′(t) > 0 and m̄(t) is strictly increasing

on [t1, T ), and
m̄(t) > m̄(t1) > 0. (4.8)

By the transport equation for ρ, we have

dρ(t, η(t))
dt

= −m̄(t)ρ(t, η(t)).

Then
ρ(t, η(t)) = ρ(t1, η(t1))e−

R t
t1
m̄(τ)dτ

, t ∈ [t1, T ). (4.9)
Combining (4.8) with (4.9) yields

ρ2(t, η(t)) ≤ ρ2(t1, η(t1)), t ∈ [t1, T ) (4.10)

From (3.9) and (4.10), we have

− σ

2

(
m̄+

λ

σ

)2

+
λ2

2σ
− 1

2
ρ2(t1, η(t1))−M

≤ m̄′ ≤ −σ
2

(
m̄+

λ

σ

)2

− λ2

2σ
+

1
2
ρ2(t1, η(t1)) +M.

(4.11)

Choose ε ∈ (0,−σ2 ), and pick a t2 ∈ [t1, T ), such that(
m̄(t2) +

λ

σ

)2

>
1
ε

(1
2
ρ2(t1, η(t1)) +M − λ2

2σ

)
. (4.12)

From (4.11) and (4.12), we have

σ

2
− ε ≤ d

dt

( 1
m̄(t) + λ

σ

)
≤ σ

2
+ ε, t ∈ [t2, T ). (4.13)
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Integrating (4.13) over [t, T ) with t ∈ [t2, T ) and limt→T− m̄(t) =∞ gives

(
σ

2
− ε)(T − t) ≤ − 1

m̄(t) + λ
σ

≤ (
σ

2
+ ε)(T − t).

Since ε ∈ (0,−σ2 ) is arbitrary, in view of the definition of m̄(t), we have

lim
t→T−

{sup
x∈S

ux(t, x)(T − t)} = − 2
σ
.

This completes the proof of Theorem 4.1. �

5. Existence of a global solution

In this section, we provide a sufficient condition for the global solution of system
(2.1) in the case when 0 < σ < 2.

Lemma 5.1. Let 0 < σ < 2 and (u, ρ) be the solution of (2.1) with initial data
(u0, ρ0 − 1) ∈ Hs(S)×Hs−1(S), s > 3/2, and T be the maximal time of existence.
Assume that infx∈S ρ0(x) > 0.

(1) When 0 < σ ≤ 1, it holds

| inf
x∈S

ux(t, x)| ≤ 1
infx∈S ρ0(x)

C4e
C3t,

| sup
x∈S

ux(t, x)| ≤ 1

infx∈S ρ
σ

2−σ
0 (x)

C
1

2−σ
4 e

C3t
2−σ .

(2) When 1 < σ < 2, it holds

| inf
x∈S

ux(t, x)| ≤ 1

infx∈S ρ
σ

2−σ
0 (x)

C
1

2−σ
4 e

C3t
2−σ ,

| sup
x∈S

ux(t, x)| ≤ 1
infx∈S ρ0(x)

C4e
C3t,

where constants C3 and C4 are defined as follows:

C3 = 1 +
5(e+ 1)
4(e− 1)

+ (
A2

4
+

2e+ (e+ 1)(|σ|+ 2|3− σ|)
4(e− 1)

)‖(u0, ρ0 − 1)‖2H1×L2 ,

C4 = 1 + ‖u0x‖2L∞ + ‖ρ0‖2L∞ .

Proof. A density argument indicates that it suffices to prove the desired results for
s ≥ 3. Since s ≥ 3, we have u ∈ C1

0 (S) and

inf
x∈S

ux(t, x) < 0, sup
x∈S

ux(t, x) > 0, t ∈ [0, T ).

(1) First we will derive the estimate for | infx∈S ux(t, x)|. Define m(t) and ξ(t)
as in (2.25), and consider along the characteristics q(t, x2(t)). Then

m(t) ≤ 0 for t ∈ [0, T ). (5.1)

Let ζ(t) = ρ(t, ξ(t)) and evaluating (2.10) and the second equation of system (2.1)
at (t, ξ(t)), we have

m′(t) = −σ
2
m2(t)− λm(t) +

1
2
ζ2(t) + f(t, q(t, x2))

ζ ′(t) = −ζ(t)m(t),
(5.2)
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where f is defined in (2.16). The second equation above implies that ζ(t) and ζ(0)
are of the same sign.

Next we construct a Lyapunov function for our system as in [13]. Since here we
have a free parameter σ, we could not find a uniform Lyapunov function. Instead,
we split the case 0 < σ ≤ 1 and the case 1 < σ < 2. From the assumption of the
theorem, we know that ζ(0) = ρ(0, ξ(0)) > 0.

When 0 < σ ≤ 1, we define the Lyapunov function

ω1(t) = ζ(0)ζ(t) +
ζ(0)
ζ(t)

(1 +m2(t)),

which is always positive for t ∈ [0, T ). Differentiating ω1(t) and using (5.2) gives

ω′1(t) = ζ(0)ζ ′(t)− ζ(0)
ζ2(t)

(1 +m2(t))ζ ′(t) +
2ζ(0)
ζ(t)

m(t)m′(t)

= −ζ(0)ζ(t)m(t)− ζ(0)
ζ2(t)

(1 +m2(t))(−ζ(t)m(t))

+
2ζ(0)
ζ(t)

m(t)(−σ
2
m2(t)− λm(t) +

1
2
ζ2(t) + f)

= (1− σ)
ζ(0)
ζ(t)

m3(t) +
ζ(0)
ζ(t)

m(t)− 2λζ(0)
ζ(t)

m2(t) +
2ζ(0)
ζ(t)

m(t)f

≤ ζ(0)
ζ(t)

m(t) +
2ζ(0)
ζ(t)

m(t)f

≤ ζ(0)
ζ(t)

(1 +m2(t))(1 + |f |) ≤ C3ω1(t),

(5.3)

where

C3 = 1 +
5(e+ 1)
4(e− 1)

+ (
A2

4
+

2e+ (e+ 1)(|σ|+ 2|3− σ|)
4(e− 1)

)‖(u0, ρ0 − 1)‖2H1×L2 .

This gives
ω1(t) ≤ ω1(0)eC3t = (ζ2(0) + 1 +m2(0))eC3t

≤ (1 + ‖u0x‖2L∞ + ‖ρ0‖2L∞)eC3t =: C4e
C3t,

(5.4)

where C4 = 1 + ‖u0x‖2L∞ + ‖ρ0‖2L∞ .
Recalling that ζ(t) and ζ(0) are of the same sign, the definition of ω1(t) implies

ζ(t)ζ(0) ≤ ω1(t) and |ζ(0)||m(t)| ≤ ω1(t). By (5.4), we obtain

| inf
x∈S

ux(t, x)| = |m(t)| ≤ ω1(t)
|ζ(0)|

≤ 1
infx∈S ρ0(x)

C4e
C3t, for t ∈ [0, T ).

When 1 < σ < 2, we define the Lyapunov function

ω2(t) = ζσ(0)
ζ2(t) + 1 +m2(t)

ζσ(t)
. (5.5)

Then

ω′2(t) =
2ζσ(0)
ζσ(t)

m(t)(
σ − 1

2
ζ2(t)− λm(t) + f +

σ

2
)

≤ ζσ(0)
ζσ(t)

(1 +m2(t))(|f |+ σ

2
) ≤ ζσ(0)

ζσ(t)
(1 +m2(t))(|f |+ 1) ≤ C3ω2(t).

(5.6)
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Thus, we obtain

ω2(t) ≤ ω2(0)eC3t = (ζ2(0) + 1 +m2(0))eC3t

≤ (1 + ‖u0x‖2L∞ + ‖ρ0‖2L∞)eC3t = C4e
C3t.

Applying Young’s inequality ab ≤ ap

p + bq

q to (5.5) with p = 2
σ and q = 2

2−σ yields

ω2(t)
ζσ(0)

=
(
ζ
σ(2−σ)

2

) 2
σ

+
( (1 +m2)

2−σ
2

ζ
σ(2−σ)

2

) 2
2−σ

≥ σ

2

(
ζ
σ(2−σ)

2

) 2
σ

+
2− σ

2

( (1 +m2)
2−σ

2

ζ
σ(2−σ)

2

) 2
2−σ

≥ (1 +m2)
2−σ

2 ≥ |m(t)|2−σ.

So we have

| inf
x∈S

ux(t, x)| ≤
(ω2(t)
ζσ(0)

) 1
2−σ ≤ 1

infx∈S ρ
σ

2−σ
0 (x)

C
1

2−σ
4 e

C3t
2−σ .

(2) Now, we estimate | supx∈S ux(t, x)|. Consider m̄(t), η(t), q(t, x1) as in (2.11)
and (2.13), and

m̄′(t) = −σ
2
m̄2(t)− λm̄(t) +

1
2
ζ̄2(t) + f(t, q(t, x1))

ζ̄ ′(t) = −ζ̄(t)m̄(t)
(5.7)

for t ∈ [0, T ), where ζ̄(t) = ρ(t, η(t)). We know that

m̄(t) ≥ 0 for t ∈ [0, T ). (5.8)

When 0 < σ ≤ 1, we define the Lyapunov function

ω̄1(t) = ζ̄σ(0)
ζ̄2(t) + 1 + m̄2(t)

ζ̄σ(t)
. (5.9)

Then from (5.6) and (5.8), we have ω̄′1(t) ≤ C3ω̄1(t), then ω̄1(t) ≤ C4e
C3t. Hence,

by a similar argument as before, we obtain

ω̄1(t)
ζ̄σ(0)

≥ |m̄(t)|2−σ.

Then

| sup
x∈S

ux(t, x)| ≤ (
ω̄1(t)
ζ̄σ(0)

)
1

2−σ ≤ 1

infx∈S ρ
σ

2−σ
0 (x)

C
1

2−σ
4 e

C3t
2−σ , t ∈ [0, T ).

When 1 < σ < 2, consider the Lyapunov function

ω̄2(t) = ζ̄(0)ζ̄(t) +
ζ̄(0)
ζ̄(t)

(1 + m̄2(t)). (5.10)

From (5.3) and (5.8), we have ω̄′2(t) ≤ C3ω̄2(t) and ω̄2(t) ≤ C4e
C3t. Therefore,

| sup
x∈S

ux(t, x)| = |m̄(t)| ≤ ω̄2(t)
ζ̄(0)

≤ 1
infx∈S ρ0(x)

C4e
C3t, t ∈ [0, T ).

The proof is complete. �
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Theorem 5.2. Let 0 < σ < 2 and (u, ρ) be the solution of (2.1) with initial data
(u0, ρ0 − 1) ∈ Hs(S)×Hs−1(S), s > 3/2, and T be the maximal time of existence.
If infx∈S ρ0(x) > 0, then T = +∞ and the solution (u, ρ) is global.

Proof. Assume on the contrary that T < +∞ and the solution blows up in finite
time. It then follows from Theorem 2.3, that∫ T

0

‖ux(t)‖L∞dt =∞. (5.11)

However, from the assumptions of the theorem and Lemma 5.1, we have |ux(t, x)| <
∞ for all (t, x) ∈ [0, T )× S. This is a contradiction to (5.11). So T = +∞, and it
means that the solution (u, ρ) is global. �
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