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EXISTENCE AND MULTIPLICITY OF PERIODIC SOLUTIONS
GENERATED BY IMPULSES FOR SECOND-ORDER

HAMILTONIAN SYSTEM

DAN ZHANG, QINGHUA WU, BINXIANG DAI

Abstract. In this article, we study the existence of non-zero periodic solu-

tions for Hamiltonian systems with impulsive conditions. By using a vari-

ational method and a variant fountain theorem, we obtain new criteria to
guarantee that the system has at least one non-zero periodic solution or infin-

itely many non-zero periodic solutions. However, without impulses, there is

no non-zero periodic solution for the system under our conditions.

1. Introduction

In this article, we consider the problem
q̈(t) = f(t, q(t)), a.e. t ∈ (sj−1, sj),

∆q̇(sj) = Gj(q(sj)), j = 1, 2, . . . ,m,
(1.1)

where j ∈ Z, q ∈ Rn, ∆q̇(sj) = q̇(s+
j )− q̇(s−j ) with q̇(s±j ) = limt→s±j

q̇(t), f(t, q) =

gradq F (t, q), F (t, q) ∈ C1(R × Rn,R), gj(q) = gradq Gj(q), Gj(q) ∈ C1(Rn,R) for
each k ∈ Z and there exist m ∈ N and T ∈ R+ such that 0 = s0 < s1 < s2 < · · · <
sm = T , sj+m = sj + T and gj+m = gj for all j ∈ Z.

The second-order Hamiltonian system without impulse

q̈(t) = f(t, q(t)), a.e. t ∈ R. (1.2)

had been studied widely, see [1, 5, 9, 15]. The authors studied the existence of
periodic and homoclinic solutions for the system (1.2). Moreover, the existence
of homoclinic solutions for other second-order Hamiltonian systems had been also
studied in [3, 8, 12, 13, 14, 16, 17]. The main methods used for Hamiltonian systems
are upper and lower solutions techniques, fixed point theorems and the coincidence
degree theory of Mawhin in a special Banach space [2, 6, 7, 10, 11, 19] .

Under normal circumstances, the authors would give some additional conditions
to impulsive functions when they studied the existence of solutions for the im-
pulsive differential equations. But as the impulse force disappeared, many results
remained to be established when the differential equations satisfied the same con-
ditions. Therefore, impulse effect cannot be seen clearly. Based on this, in recent
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years, some scholars have launched the research on the existence of solutions gen-
erated by impulse [4, 18].

Solutions generated by impulses means that the solutions appear when the im-
pulse is not zero , and disappear when the impulse is zero. Obviously, if the equa-
tions without impulse had only zero solution, the equations had non-zero solutions
when the impulse is not zero, that is to say, the non-zero solutions are controlled by
impulses. At present, the related research work on solutions generated by impulses
is seldom, refer to literature [4, 18].

Han and Zhang [4] studied (1.1) and obtained the existence of non-zero peri-
odic solutions generated by impulses. To obtain the existence of non-zero periodic
solutions, they used the following conditions:

(F1) F (t, q) ≥ 1
2f(t, q)q > 0 for all t ∈ [0, T ] and q ∈ Rn \ {0}.

(F2) f(t, q) = αq + w(t, q) for all t ∈ [0, T ] and q ∈ Rn, where α > 2
µ for some

µ > 2, w(t, q) = gradqW (t, q) and W (t, q) ≥ 1
2w(t, q)q > 0 for all t ∈ [0, T ]

and q ∈ Rn.
(F3) F (t, q) ≥ 1

2f(t, q)q ≥ 0 for all t ∈ [0, T ] and q ∈ Rn.
(G1) There exists µ > 2 such that gj(q)q ≤ µGj(q) < 0 for all j = 1, 2, . . . ,m

and q ∈ Rn \ {0}.
(G2) gj(q) = 2q+wj(q), where wj(q) = gradqWj(q) and satisfy that there exists

µ > 2 such that wj(q)q ≤ µWj(q) < 0 for all j = 1, 2, . . . ,m and q ∈ Rn.
By using critical point theory, they obtained the following theorems.

Theorem 1.1 ([4, Theorem 1]). If F is T -periodic in t and satisfies (F1), gj(q)
satisfies (G1) for all j = 1, 2, . . . ,m, then (1.1) possesses at least one non-zero
periodic solution generated by impulses.

Corollary 1.2 ([4, Corollary 1]). If F is T -periodic in t and satisfies (F2), gj(q)
satisfies (G1) for all j = 1, 2, . . . ,m, then (1.1) possesses at least one non-zero
periodic solution generated by impulses.

Theorem 1.3 ([4, Theorem 2]). If F is T -periodic in t and satisfies (F3), gj(q)
satisfies (G2) for all j = 1, 2, . . . ,m, then (1.1) possesses at least one non-zero
periodic solution generated by impulses.

They only obtained that system (1.1) has at least non-zero periodic solution
generated by impulses when f(t, x) is asymptotically linear or sublinear. However,
there is no work on studying the existence of infinitely many solutions generated by
impulses for system (1.1) when f is asymptotically linear or sublinear. As a result,
the goal of this article is to fill the gap in this area. By using a variant fountain
theorem, the results that the system (1.1) has infinitely many periodic solutions
generated by impulses will be obtained. Meanwhile, we will also consider some
cases which are not included in [4].

This article is organized as follows. In Section 2, we present some preliminaries.
In Section 3, we give the main results and their proofs. Some examples are presented
to illustrate our main results in the last section.

2. Preliminaries

First, we introduce some notation and some definitions. Let E be a Banach
space with the norm ‖ · ‖ and E = ⊕j∈NXj with dimXj < ∞ for any j ∈ N. Set
Yk = ⊕kj=0Xj , Zk = ⊕∞j=kXj , Bk = {u ∈ Yk : ‖u‖ ≤ ρk}, Nk = {u ∈ Zk : ‖u‖ =



EJDE-2014/121 EXISTENCE AND MULTIPLICITY OF PERIODIC SOLUTIONS 3

rk}, here ρk > rk > 0. Consider the following C1-functional ϕλ : E → R defined
by

ϕλ(u) = A(u)− λB(u), λ ∈ [1, 2].

Assumed that:
((C1) ϕλ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2]. Further-

more, ϕλ(−u) = ϕλ(u) for all (λ, u) ∈ [1, 2]× E.
(C2) B(u) ≥ 0 for all u ∈ E; A(u)→∞ or B(u)→∞ as ‖u‖ → ∞; or

(C2’) B(u) ≤ 0 for all u ∈ E; B(u)→ −∞ as ‖u‖ → ∞.
For k ≥ 2, define Γk = {γ ∈ C(Bk, E) : γ is odd; γ|∂Bk = id},

ck(λ) := inf
u∈Γk

max
u∈Bk

ϕλ(u)

bk(λ) := inf
u∈Zk,‖u‖=rk

ϕλ(u)

ak(λ) := max
u∈Yk,‖u‖=ρk

ϕλ(u)

Theorem 2.1 ([19, Theorem 2.1]). Assume that (C1) and (C2) (or (C2’)) hold.
If bk(λ) > ak(λ) for all λ ∈ [1, 2], then ck(λ) ≥ bk(λ) for all λ ∈ [1, 2]. Moreover,
for a.e. λ ∈ [1, 2], there exists a sequence {ukn(λ)}∞n=1 such that supn ‖ukn(λ)‖ <
∞, ϕ′λ(ukn(λ))→ 0 and ϕλ(ukn(λ))→ ck(λ) as n→∞. In particular, if {ukn} has a
convergent subsequence for every k, then ϕ1 has infinitely many nontrivial critical
points {uk} ⊂ E \ {0} satisfying ϕ1(uk)→ 0− as k →∞.

Let E = {q : R → Rn is absolutely continuous, q̇ ∈ L2((0, T ),Rn) and q(t) =
q(t+ T ) for t ∈ R}, equipped with the norm

‖q‖ =
(∫ T

0

|q̇(t)|2dt
)1/2

.

It is easy to verify that E is a reflexive Banach space. We define the norm in
C([0, T ],Rn) as ‖q‖∞ = maxt∈[0,T ] |q(t)|. Since E is continuously embedded into
C([0, T ],Rn), then there exists a constant C > 0 such that

‖q‖∞ ≤ C‖q‖, ∀q ∈ E. (2.1)

For each q ∈ E, consider the functional ϕ defined on E by

ϕ(q) =
1
2

∫ T

0

|q̇(t)|2dt+
∫ T

0

F (t, q(t))dt+
m∑
j=1

Gj(q(sj))

=
1
2
‖q‖2 +

∫ T

0

F (t, q(t))dt+
m∑
j=1

Gj(q(sj)).

(2.2)

Suppose F is T -periodic in t and gj(s) are continuous for j = 1, 2, . . . ,m, then ϕ is
differentiable at any q ∈ E and

ϕ′(q)p =
∫ T

0

q̇(t)ṗ(t)dt+
∫ T

0

f(t, q(t))p(t)dt+
m∑
j=1

gj(q(sj))p(sj), (2.3)

for any p ∈ E. Obviously, ϕ′ is continuous.

Lemma 2.2 ([4, Lemma 1]). If q ∈ E is a critical point of the functional ϕ, then
q is a T -periodic solution of system (1.1).
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Definition 2.3 ([7, P 81]). Let E be a real reflexive Banach space. For any
sequence {qn} ⊂ E, if {ϕ(qn)} is bounded and ϕ′(qn) → 0 as n → ∞ possesses a
convergent subsequence, then we say ϕ satisfies the Palais-Smale condition (denoted
by the PS condition for short).

Theorem 2.4 ([11, Theorem 2.7]). Let E be a real Banach space and ϕ ∈ C1(E,R)
satisfying the (PS) condition. If ϕ is bounded from below, then

c = inf
E
ϕ

is a critical value of ϕ.

3. Main results

In this article, we will use the following conditions:
(V1) There exists a constant δ1 ∈ [0, 1

2TC2 ) such that f(t, q)q ≥ −δ1|q|2 for all
t ∈ [0, T ] and q ∈ Rn.

(V2) F (t, q) ≥ 1
β f(t, q)q for all t ∈ [0, T ] and q ∈ Rn, where β > 1.

(V3) There exist constants δ2 > 0 and γ ∈ [0, 2) such that F (t, q) ≥ −δ2|q|γ for
all t ∈ [0, T ] and q ∈ Rn.

(S1) Gj(q) ≥ 0 for all j = 1, 2, . . . ,m and q ∈ Rn.
(S2) There cannot exist a constant q such that gj(q) = 0 for all j = 1, 2, . . . ,m.
(S3) There exist constants aj , bj > 0 and γj ∈ [0, 1) such that |gj(q)| ≤ aj +

bj |q|γj for all j = 1, 2, . . . ,m and q ∈ Rn.
(S4) There exist constants aj , bj > 0 and αj > 1 such that |gj(q)| ≤ aj + bj |q|αj

for all j = 1, 2, . . . ,m and q ∈ Rn.

Theorem 3.1. If F is T -periodic in t and satisfies (V1)–(V2), gj(q) satisfies (S1)–
(S2) for all j = 1, 2, . . . ,m, then system (1.1) possesses at least one non-zero peri-
odic solution generated by impulses.

Proof. It follows form the conditions (V1)–(V2), (S1)–(S2) and (2.3) that

ϕ(q) =
1
2

∫ T

0

|q̇(t)|2dt+
∫ T

0

F (t, q(t))dt+
m∑
j=1

Gj(q(sj))

≥ 1
2
‖q‖2 +

1
β

∫ T

0

f(t, q(t))q(t)dt

≥ 1
2
‖q‖2 − δ1

β

∫ T

0

|q(t)|2dt

≥ 1
2
‖q‖2 − δ1T

β
‖q‖2∞

≥ 1
2
‖q‖2 − δ1TC

2

β
‖q‖2

= (
1
2
− δ1TC

2

β
)‖q‖2.

(3.1)

Since δ1 ∈ [0, 1/(2TC2)) and β > 1, we have ( 1
2 −

δ1TC
2

β ) > 0. The inequality (3.1)
implies that lim‖q‖→∞ ϕ(q) = +∞. So ϕ is a functional bounded from below.

Next we prove that ϕ satisfies the Palais-Smale condition. Let {qn} be a sequence
in E such that {ϕ(qn)} is bounded and ϕ′(qn)→ 0 as n→∞. Then there exists a
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constant C0 such that |ϕ(qn)| ≤ C0. We first prove that {qn} is bounded. By (3.1),
one has

C0 ≥ ϕ(qn) ≥ (
1
2
− δ1TC

2

β
)‖qn‖2.

Since ( 1
2 −

δ1TC
2

β ) > 0, it follows that {qn} is bounded in E. Going if necessary
to a subsequence, we can assume that there exists q ∈ E such that qn ⇀ q in E,
qn → q on C([0, T ),Rn) as n→ +∞. Hence

(ϕ′(qn)− ϕ′(q))(qn − q)→ 0,∫ T

0

[f(t, qn)− f(t, q)](qn(t)− q(t))dt→ 0,

m∑
j=1

[gj(qn(sj))− gj(q(sj))](qn(sj)− q(sj))→ 0,

as n→ +∞. Moreover, an easy computation shows that

(ϕ′(qn)− ϕ′(q))(qn − q)

= ‖qn − q‖2 +
∫ T

0

[f(t, qn)− f(t, q)](qn(t)− q(t))dt

+
m∑
j=1

[gj(qn(sj))− gj(q(sj))](qn(sj)− q(sj)).

So ‖qn− q‖ → 0 as n→ +∞, which implies that {qn} converges strongly to q in E.
Therefore, ϕ satisfies the Palais-Smale condition. According to Theorem 2.4, there
is a critical point q of ϕ, i.e. q is a periodic solution of system (1.1). The condition
(S2) means q is non-zero. So system (1.1) possesses a non-zero periodic solution.

Finally, let us verify that system (1.2) possesses only a zero periodic solution.
Suppose q(t) is a periodic solution of system (1.2), then q(0) = q(T ). According to
condition (V1), we have

0 = −
∫ T

0

q̈qdt+
∫ T

0

f(t, q)qdt

=
∫ T

0

|q̇|2dt+
∫ T

0

f(t, q)qdt− q̇q|T0

≥ ‖q‖2 − δ1
∫ T

0

|q|2dt

≥ ‖q‖2 − δ1T‖q‖2∞
≥ ‖q‖2 − δ1TC2‖q‖2

≥ (1− δ1TC2)‖q‖2.

Since δ1 ∈ [0, 1/(2TC2)), which implies system (1.2) does not possess any non-
trivial periodic solution. �

Remark 3.2. Condition (F1) guarantee that the conditions (V1) and (V2) hold,
but the reverse is not true. For example, take

F (t, q) = − 1
8TC2

h(t)q2,
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where h : R→ (0, 1] is continuous with period T . Then

qf(t, q) = − 1
4TC2

h(t)q2 ≥ − 1
4TC2

|q|2.

Take δ1 = 1
4TC2 , β = 2. It is easy to check that conditions (V1) and (V2) are

satisfied, but (F1) cannot be satisfied. Meanwhile, conditions (S1) and (S2) consider
the case that Gj(s) are positive functions. Let

Gj(q) = κ(j)(q2 + eq),

where κ : Z → R+ is positive and m-periodic in Z. Obviously, gj(s) can satisfies
conditions (S1) and (S2) for all j = 1, 2, . . . ,m. In [4], they only consider the case
that Gj(q) < 0, so we extend and improve Theorem 1.1.

Next, we assume that the impulsive functions gj(q) are sublinear.

Theorem 3.3. If F is T -periodic in t and satisfies (V1)–(V2), gj(s) satisfies con-
ditions (S2) and (S3) for all j = 1, 2, . . . ,m, then system (1.1) possesses at least
one non-zero periodic solution generated by impulses.

Proof. It follows form the conditions (V1)–(V2), (S2)–(S3) and (2.3) that

ϕ(q) =
1
2

∫ T

0

|q̇(t)|2dt+
∫ T

0

F (t, q(t))dt+
m∑
j=1

Gj(q(sj))

≥ 1
2
‖q‖2 − δ1

β

∫ T

0

|q|2dt+
m∑
j=1

Gj(q(sj))

≥ 1
2
‖q‖2 − δ1T

β
‖q‖2∞ −

m∑
j=1

[aj‖q‖∞ + bj‖q‖γj+1
∞ ]

≥ (
1
2
− δ1TC

2

β
)‖q‖2 −

m∑
j=1

[ajC‖q‖+ bjC
γj+1‖q‖γj+1].

(3.2)

Since ( 1
2−

δ1TC
2

β ) > 0 and γj ∈ [0, 1), the above inequality implies lim‖q‖→∞ ϕ(q) =
+∞. So the functional ϕ is bounded from below.

Next we prove that ϕ satisfies the Palais-Smale condition. Let {qn} be a sequence
in E such that {ϕ(qn)} is bounded and ϕ′(qn)→ 0 as n→∞. Then there exists a
constant C0 such that |ϕ(qn)| ≤ C0. We first prove that {qn} is bounded. By (3.2),
one has

C0 ≥ ϕ(qn) ≥ (
1
2
− δ1TC

2

β
)‖qn‖2 −

m∑
j=1

[ajC‖qn‖+ bjC
γj+1‖qn‖γj+1].

Since ( 1
2 −

δ1TC
2

β ) > 0, we know that {qn} is bounded in E. Then, as the proof
of Theorem 3.1, we can prove ϕ satisfies the Palais-Smale condition. According to
Theorem 2.4, there is a critical point q of ϕ, i.e. q is a periodic solution of system
(1.1). The condition (S2) means q is non-zero. Similar to the proof of Theorem 3.1,
we know system (1.2) does not possess any non-trivial periodic solution. So system
(1.1) possesses a non-zero periodic solution generated by impulses. �

Example 3.4. Let
F (t, q) = h(t)q6,
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where h : R → R+ is continuous with period T . Then f(t, q) = 6h(t)q5. It is easy
to check that f(t, q) satisfies the conditions (V1) and (V2). Let

Gj(q) = (q
5
3 + q +

1
2

sin 2q),

then gj(q) = (5
3q

2
3 +1+cos 2q) = 5

3q
2
3 +2 cos2 q. Hence, 0 < gj(q) ≤ (2+ 5

3 |q|
2
3 ) for all

q ∈ Rn, the conditions (S2) and (S3) are satisfied. Therefore, according to Theorem
3.3, system (1.1) possesses at least one non-zero periodic solution generated by
impulses.

Remark 3.5. Obviously, Gj(q) = (q
5
3 + q + 1

2 sin 2q) cannot satisfy the condition
(G1). So example 3.4 cannot obtain the existence of non-zero periodic solutions in
[4].

Theorem 3.6. If F is T -periodic in t and satisfies (V1) and (V3), gj(q) satisfies
conditions (S2) and (S3) for all j = 1, 2, . . . ,m, then system (1.1) possesses at least
one non-zero periodic solution generated by impulses.

Proof. It follows form the conditions (V1) and (V3), (S2)–(S3) and (2.2) that

ϕ(q) ≥ 1
2

∫ T

0

|q̇|2dt− δ2
∫ T

0

|q|γdt+
m∑
j=1

Gj(q(sj))

≥ 1
2
‖q‖2 − δ2T‖q‖γ∞ −

m∑
j=1

[aj‖q‖∞ + bj‖q‖γj+1
∞ ]

≥ 1
2
‖q‖2 − δ2TCγ‖q‖γ −

m∑
j=1

[ajC‖q‖+ bjC
γj+1‖q‖γj+1].

(3.3)

Since γ ∈ [0, 2) and γj ∈ [0, 1), the above inequality implies that lim‖q‖→∞ ϕ(q) =
+∞. So the functional ϕ is bounded from below.

Next we prove that ϕ satisfies the Palais-Smale condition. Let {qn} be a sequence
in E such that {ϕ(qn)} is bounded and ϕ′(qn)→ 0 as n→∞. Then there exists a
constant C0 such that |ϕ(qn)| ≤ C0. We first prove that {qn} is bounded. By (3.3),
we get

C0 ≥ ϕ(qn) ≥ 1
2
‖qn‖2 − δ2TCγ‖qn‖γ −

m∑
j=1

[ajC‖qn‖+ bjC
γj+1‖qn‖γj+1].

Since γ ∈ [0, 2) and γj ∈ [0, 1) it follows that {qn} is bounded in E. Then, as
the proof of Theorem 3.1, we can prove ϕ satisfies the Palais-Smale condition.
According to Theorem 2.4, there is a critical point q of ϕ; i.e., q is a periodic solution
of system (1.1). The condition (S2) means q is non-zero. Similar to the proof
of Theorem 3.1, we know system (1.2) does not possess any non-trivial periodic
solution. So system (1.1) possesses a non-zero periodic solution. �

Example 3.7. Let
F (t, q) = h(t)[q4/3 + e(q2)],

where h : R→ R+ is continuous with period T . Then f(t, q) = h(t)[ 4
3q

1/3 +2qe(q2)].
An easy computation shows that F (t, q) > 0, qf(t, q) ≥ 0, so the conditions (V1)
and (V3) are satisfied. We also take Gj(q) the same as in Example 3.7, then
according to Theorem 3.6, system (1.1) possesses at least one non-zero periodic
solution generated by impulses.
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Remark 3.8. Obviously, F (t, q) cannot satisfy the conditions (F1) or (F2). So
Example 3.7 cannot obtain the existence of non-zero periodic solutions in [4].

Corollary 3.9. If F is T -periodic in t and satisfies (V1) and (V3), gj(q) satisfies
conditions (S1) and (S2) for all j = 1, 2, . . . ,m, then system (1.1) possesses at least
one non-zero periodic solution generated by impulses.

Theorem 3.10. If F is T -periodic in t and satisfies (F1), gj(q) satisfies conditions
(G1) and (S4) for all j = 1, 2, . . . ,m. Moreover if f(t, q), gj(q) are odd about q, then
system (1.1) possesses infinitely many periodic solutions generated by impulses.

To apply Theorem 2.1 and to prove Theorem 3.10, we define the functionals A,B
and ϕλ on our working space E by

A(q) =
1
2
‖q‖2 +

∫ T

0

F (t, q(t))dt,

B(q) = −
m∑
j=1

Gj(q(sj)),

and

ϕλ(q) = A(q)− λB(q) =
1
2
‖q‖2 +

∫ T

0

F (t, q(t))dt+ λ

m∑
j=1

Gj(q(sj)), (3.4)

for all q ∈ E and λ ∈ [1, 2]. Clearly, we know that ϕλ(q) ∈ C1(E,R) for all λ ∈ [1, 2].
We choose a completely orthonormal basis {ej} of E and define Xj := Rej . Then
Zk, Yk can be defined as that in the beginning of Section 2. Note that ϕ1 = ϕ,
where ϕ is the functional defined in (2.3).

Remark 3.11. If (F1) holds, f(t, q) is T -periodic in t, then there exist constants
d1, d2 > 0 such that

F (t, q) ≤ d1|q|2 + d2, ∀q ∈ Rn.
Assume that (G1) holds, then there exist constants a, b > 0 such that

Gj(q) ≥ −a|q|µ, for 0 < |q| ≤ 1, (3.5)

Gj(q) ≤ −b|q|µ, for |q| ≥ 1. (3.6)

The assumption gj+m = gj and (3.5)-(3.6) imply that there exists M > 0 such that

Gj(q) ≤ −b|q|µ +M, ∀q ∈ Rn. (3.7)

Lemma 3.12. Under the assumptions of Theorem 3.10, B(q) ≥ 0 and A(q)→∞
as ‖q‖ → ∞ for all q ∈ E.

Proof. By (F1) and (G1), for any q ∈ E, we have

B(q) = −
m∑
j=1

Gj(q(sj)) ≥ 0,

A(q) =
1
2
‖q‖2 +

∫ T

0

F (t, q(t))dt ≥ 1
2
‖q‖2.

Which implies that A(q)→∞ as ‖q‖ → ∞. �
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Lemma 3.13. Under the assumptions of Theorem 3.10, there exists a sequence
ρk > 0 large enough such that

ak(λ) := max
q∈Yk,‖q‖=ρk

ϕλ(q) ≤ 0,

for all λ ∈ [1, 2].

Proof. By (F1) and (G1), for any q ∈ Yk, we have

ϕλ(q) ≤ 1
2
‖q‖2 +

∫ T

0

(d1|q|2 + d2)dt+ λ

m∑
j=1

(−b|q|µ + C2)

=
1
2
‖q‖2 + d1

∫ T

0

|q|2dt+ d2T − λ
m∑
j=1

b|q|µ + λMm,

(3.8)

Let q = rw, r > 0, w ∈ Yk with ‖w‖ = 1, we have

ϕλ(rw) ≤ 1
2
r2 + r2d1

∫ T

0

|w|2dt+ d2T − λrµ
m∑
j=1

b|w|µ + λMm. (3.9)

Since µ > 2, for ‖q‖ = ρk = r large enough, we have ϕλ(q) ≤ 0; i.e., ak(λ) :=
maxq∈Yk,‖q‖=ρk ϕλ(q) ≤ 0 for all λ ∈ [1, 2]. �

Lemma 3.14. Under the assumptions of Theorem 3.10, there exists rk > 0, b̃k →
∞ such that

bk(λ) := inf
q∈Zk,‖q‖=rk

ϕλ(q) ≥ b̃k,

for all λ ∈ [1, 2].

Proof. Set βk := supq∈Zk,‖q‖=1 ‖q‖∞. Then βk → 0 as k → ∞. Indeed, it is clear
that 0 < βk+1 ≤ βk, so that βk → β ≥ 0, as k →∞. For every k ≥ 0, there exists
qk ∈ Zk such that ‖qk‖ = 1 and ‖qk‖∞ > βk/2. By definition of Zk, qk ⇀ 0 in E.
Then it implies that qk → 0 in C([0, T ),Rn). Thus we have proved that β = 0.

By (F1) and (S4), for any q ∈ Zk, we have

ϕλ(q) ≥ 1
2
‖q‖2 + λ

m∑
j=1

Gj(q(sj))

≥ 1
2
‖q‖2 − 2

m∑
j=1

(aj |q|+ bj |q|αj+1)

≥ 1
2
‖q‖2 − 2

m∑
j=1

(aj‖q‖∞ + bj‖q‖αj+1
∞ )

≥ 1
2
‖q‖2 − 2

m∑
j=1

(ajβk‖q‖+ bjβ
αj+1
k ‖q‖αj+1).

(3.10)

Let

rk = (8
m∑
j=1

(ajβk + bjβ
αj+1
k ))

1
1−αj .

Since αj > 2, then rk → ∞ as k → ∞. Evidently, there exists an positive integer
k0 > n̄+ 1 such that

rk > 1, ∀k ≥ k0.
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For any k ≥ k0, let ‖q‖ = rk > 1, we have

2
m∑
j=1

(ajβk‖q‖+ bjβ
αj+1
k ‖q‖αj+1) ≤ 2

m∑
j=1

(ajβk + bjβ
αk+1
k )‖q‖αj+1

=
1
4
r

1−αj
k r

αj+1
k =

1
4
r2
k.

Combining this with (3.10), straightforward computation shows that

bk(λ) := inf
q∈Zk,‖q‖=rk

ϕλ(q) ≥ 1
4
r2
k = b̃k →∞,

as k →∞ for all λ ∈ [1, 2]. �

Proof of Theorem 3.10. Evidently, the condition (C1) in Theorem 2.1 holds. By
Lemmas 3.12, 3.13, 3.14 and Theorem 2.1, there exist a sequence λn → 1 as n→∞,
{qn(k)}∞n=1 ⊂ E such that ϕ

′

λn
(qn(k)) → 0, ϕλn(qn(k)) → ck ∈ [̃bk, c̃k], where

c̃k = supq∈Bk ϕ1(q)
For the sake of simplicity, in what follows we set qn = qn(k) for all n ∈ N.
Now we show that {qn}∞n=1 is bounded in E. Indeed, by (F1), (g1) and (3.4), we

have

µϕλn(qn)− ϕ′λn(qn)qn = (
µ

2
− 1)‖qn‖2 + µ

∫ T

0

F (t, qn)dt−
∫ T

0

f(t, qn)qndt

+ λn[µ
m∑
j=1

Gj(qn(sj))−
m∑
j=1

gj(qn(sj))qn(sj)]

≥ (
µ

2
− 1)‖qn‖2.

Since µ > 2, the above inequality implied that {qn} is bounded in E.
Finally, we show that {qn} possesses a strong convergent subsequence in E. In

fact, in view of the boundedness of {qn}, without loss of generality, we may assume
qn ⇀ q0 as n→∞, for some q0 ∈ E, then qn → q0 on C([0, T ),Rn). Moreover, an
easy computation shows that

(ϕ′λn(qn)− ϕ′λn(q0))(qn − q0)

= ‖qn − q0‖2 +
∫ T

0

[f(t, qn(t))− f(t, q0(t))](qn(t)− q0(t))dt

+ λn

m∑
j=1

[gj(qn(sj))− gj(q0(sj))](qn(sj)− q0(sj)).

So ‖qn − q0‖ → 0 as n → +∞, which implies that {qn} converges strongly to q0

in E and ϕ′1(q0) = 0. Hence, ϕ = ϕ1 has a critical point q0 with ϕ1(q0) ∈ [̃bk, c̃k].
Consequently, we obtain infinitely many periodic solutions since b̃k → ∞. Similar
to the proof of Theorem 3.1, we know system (1.2) does not possess any non-
trivial periodic solution. Therefore, all the non-zero periodic solutions we obtain
are generated by impulses. �

Example 3.15. Let F (t, q) = h(t)q6/5, where h : R → R+ is continuous with
period T . Then f(t, q) = 6

5h(t)q1/5. It is easy to know that f(t, q)q = 6
5h(t)q6/5 > 0
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and 1
2f(t, q)q = 3

5h(t)q6/5 ≤ F (t, q), so f(t, q) satisfies the condition (F1). Let

Gj(q) = −κ(j)(q4 + q6),

where κ : Z → (0, 10] is positive and m-periodic in Z. Then gj(q) = −κ(j)(4q3 +
6q5) ≤ 100(1+|q|5). For gj(q)q = −κ(j)(4q4+6q6) ≤ −4κ(j)(q4+q6), take µ = 4, it
is easy to show that conditions (G1) and (S4) are satisfied. Moreover, f(t, q), gj(q)
are odd about q. Therefore, according to Theorem 3.10, system (1.1) has infinitely
many periodic solutions generated by impulses.

In [4], by Theorem 1.1, Example 3.15 we can only have the existence of at least
one non-zero periodic solution. In this article, we obtain the existence of infinitely
many periodic solutions.
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