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GENERALIZED VAN DER POL EQUATION AND
HILBERT’S 16TH PROBLEM

XENAKIS IOAKIM

Abstract. In this article, we study the bifurcation of limit cycles from the

harmonic oscillator ẋ = y, ẏ = −x in the system

ẋ = y, ẏ = −x + εf(y)
`
1− x2

´
,

where ε is a small positive parameter tending to 0 and f is an odd polynomial
of degree 2n + 1, with n an arbitrary but fixed natural number. We prove

that, the above differential system, in the global plane, for particularly chosen

odd polynomials f of degree 2n + 1 has exactly n + 1 limit cycles and that
this number is an upper bound for the number of limit cycles for every case

of an arbitrary odd polynomial f of degree 2n + 1. More specifically, the

existence of the limit cycles, which is the first of the main results in this
work, is obtained by using the Poincaré’s method, and the upper bound for

the number of limit cycles can be derived from the work of Iliev [4]. We also

investigate the possible relative positions of the limit cycles for this differential
system, which is the second main problem studying in this work. In particular,

we construct differential systems with n given limit cycles and one limit cycle

whose position depends on the position of the previous n limit cycles. Finally,
we give some examples in order to illustrate the general theory presented in

this work.

1. Introduction

1.1. Generalized Van der Pol equation and statement of the main results.
In this article, we study the second part of Hilbert’s 16th problem for a generalized
Van der Pol equation. More specifically, we consider the system

ẋ = y,

ẏ = −x+ εf(y)
(
1− x2

)
,

(1.1)

where f is an odd polynomial of degree 2n + 1, with n an arbitrary but fixed
natural number and 0 < ε� 1. System (1.1) reduces to the Van der Pol equation
for f(y) = y. Our purpose here is to find an upper bound for the number of
limit cycles for system (1.1), depending only on the degree of its polynomials and
investigate their relative positions.
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System (1.1) is the generalized Van der Pol equation of the form

ẍ− εf(ẋ)
(
1− x2

)
+ x = 0, (1.2)

where f is an odd polynomial of degree 2n+1, with n an arbitrary but fixed natural
number and 0 < ε � 1. The problem is to find an upper bound for the number
of limit cycles for equation (1.2), depending only on the degree 2n + 1 of the odd
polynomial f and investigate their relative positions. We prove that the generalized
Van der Pol equation (1.2) has exactly n + 1 limit cycles for particularly chosen
odd polynomials f of degree 2n+1 and that this number is an upper bound for the
number of limit cycles for every case of an arbitrary odd polynomial f of degree
2n+1. Furthermore, we show how to construct these polynomials of equation (1.2)
which attain that upper bound. On the possible relative positions of the n + 1
limit cycles we show that there exists a limit cycle whose position depends on the
position of the rest n limit cycles (actually, this limit cycle is close to the circle with
the dependent radius (see Definition 1.13)).

Now, we state the main results of this article, which are the following theorems.
The proofs of these theorems will be given in Section 3. For the definitions appear
in these theorems, like the sets V n, V nn+1, n ∈ N, n ≥ 2, V 1 and the dependent
radius, see the next subsection. The first and second of our results, consider the
system (1.1), with f an odd polynomial of degree 2n+ 1, where n ∈ N, n ≥ 2.

Theorem 1.1. Let (λ1, λ2, . . . , λn) ∈ V n be such that (λ1, λ2, . . . , λn, λn+1) ∈
V nn+1, where λn+1 is the dependent radius given by (1.6), if n ∈ N, n ≥ 2. Then
the system (1.1), with 0 < ε� 1 and

f(y) = τy2n+1 + · · ·+ τ(2n− 2k + 3) . . . (2n+ 1)

×
[
1− 1

2(n+ 2)

n+1∑
i1=1

λi1 +
1

4(n+ 1)(n+ 2)

n+1∑
i1,i2=1
i1<i2

λi1λi2 + . . .

+
1

2k(n− k + 3) . . . (n+ 2)
(−1)k

n+1∑
i1,...,ik=1
i1<···<ik

λi1 . . . λik

]
y2(n−k)+1

+ · · ·+ τ
[1 · 3 . . . (2n+ 1)

2n+1(n+ 2)!
(−1)n

n+1∏
i1=1

λi1

]
y,

(1.3)

where τ ∈ R \ {0} and 1 ≤ k ≤ n− 1, has exactly the following n+ 1 limit cycles:

x2 + y2 = λ1 +O(ε), x2 + y2 = λ2 +O(ε), . . . , x2 + y2 = λn+1 +O(ε).

Furthermore, (assuming from now on an ordering such that λ1 < λ2 < · · · <
λn < λn+1, where now λn+1 is not necessary the dependent radius) we have for the
stability of the limit cycles that, if τ > 0 (respectively τ < 0),

x2 + y2 = λ1 +O(ε), x2 + y2 = λ3 +O(ε), . . . , x2 + y2 = λn+1 +O(ε)

are stable (respectively unstable) and

x2 + y2 = λ2 +O(ε), x2 + y2 = λ4 +O(ε), . . . , x2 + y2 = λn +O(ε)

are unstable (respectively stable) for n even; and

x2 + y2 = λ1 +O(ε), x2 + y2 = λ3 +O(ε), . . . , x2 + y2 = λn +O(ε)
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are unstable (respectively stable) and

x2 + y2 = λ2 +O(ε), x2 + y2 = λ4 +O(ε), . . . , x2 + y2 = λn+1 +O(ε)

are stable (respectively unstable) for n odd.

Theorem 1.2. For system (1.1), where ε is small and f is an arbitrary odd polyno-
mial of degree 2n+1 we have that the number of n+1 limit cycles is an upper bound
for the number of limit cycles. Moreover, from the set of all the odd polynomials,
the polynomials f given by (1.3), are the only that attain that upper bound.

Our third and fourth results, concern the system (1.1), with f an odd polynomial
of degree 3.

Theorem 1.3. Let λ1 ∈ V 1. Then the system (1.1), with 0 < ε� 1 and

f(y) = τy3 − τ 1
8
λ1λ2y, (1.4)

where τ ∈ R \ {0} and λ2 is the dependent radius given by (1.7), has exactly the
following 2 limit cycles:

x2 + y2 = λ1 +O(ε), x2 + y2 = λ2 +O(ε).

Furthermore, (assuming from now on an ordering such that λ1 < λ2, where now λ2

is not necessary the dependent radius) we have for the stability of the limit cycles
that, if τ > 0 (respectively τ < 0) x2 + y2 = λ1 + O(ε) is unstable (respectively
stable) and x2 + y2 = λ2 +O(ε) is stable (respectively unstable).

Theorem 1.4. For system (1.1), where ε is small and f is an arbitrary odd poly-
nomial of degree 3 we have that the number of 2 limit cycles is an upper bound for
the number of limit cycles. Moreover, from the set of all the odd polynomials, the
polynomials f given by (1.4), are the only that attain that upper bound.

Remark 1.5. It is important to note that the above theorems don’t inform us
which limit cycles we have for a differential equation of the form (1.1). That we
succeed through these theorems is to construct differential equations of the form
(1.1) with n given limit cycles and one limit cycle which is close to the circle with
the dependent radius, for particularly chosen odd polynomials f of degree 2n + 1.
So, we show how to construct differential equations of the form (1.1) that attain the
upper bound of n+ 1 limit cycles, when the odd polynomial f is of degree 2n+ 1.
Evenly important it is still and one negative result which can be obtained by these
theorems, that we know a priori which limit cycles we can’t have for system (1.1)
with odd polynomials f of degree 2n+ 1. Substantially, we construct the set of all
the possible limiting radii of limit cycles for the system (1.1) with odd polynomials
f of degree 2n+ 1. This is the set V nn+1 which contains the Λ-points (see Definition
1.22).

Remark 1.6. It is surprising the connection between the dependent radius for a
circle (see Definition 1.13) and the existence of one branch which can not separate
from the rest branches for an algebraic curve. More specifically, relatively to the
existence of such branch we refer the following of Hilbert’s speech about the first
part of Hilbert’s 16th problem “As of the curves of degree 6, I have -admittedly in
a rather elaborate way- convinced myself that the 11 branches, that they can have
according to Harnack, never all can be separate, rather there must exist one branch,
which have another branch running in its interior and nine branches running in its
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exterior, or opposite”. Here, we have for the relative positions of limit cycles that
the limit cycle which is close to the circle with the dependent radius can not lie
wherever, contrary the position of this limit cycle depends on the position of the
rest limit cycles. In this sense, we can say that the first and second part of Hilbert’s
16th problem come closer.

Remark 1.7. I would mention for system (1.1) that by forcing the coefficients of
an arbitrary odd polynomial to be those given in the Theorem 1.1 when n ∈ N,
n ≥ 2 (respectively in the Theorem 1.3 when n = 1), do not allow us to put n+ 1
(respectively 2) limit cycles in arbitrary placements. The reason for this is the
Theorem 1.2 (respectively the Theorem 1.4); in the statement of these theorems we
see that the proposing polynomials f (given in Theorems 1.1 and 1.3) are the only
that attain the upper bound of the n + 1 limit cycles. Now it is easy to see that
in the coefficients of these polynomials (unless in the first monomial in each case)
appears the dependent radius, and this observation in turn implies that one limit
cycle do not lie in arbitrary placements.

In order to see this more clearly consider for the system (1.1) the case where
n = 1. Once we chose λ1 from V 1, the dependent radius λ2 follows from (1.7) will
be positive (see Proposition 1.14) and different from the associated λ1 (see Remark
1.17), and then for the system (1.1) with n = 1, the polynomial f given by (1.4) is
the only that realizing the maximal number of 2 limit cycles, and are asymptotic
to the circles x2 + y2 = λ1 and x2 + y2 = λ2 (note that for this circle the placement
is not arbitrary, it depends on λ1) as ε → 0 (see Theorems 1.3 and 1.4). (See and
Example 4.7.)

1.2. Definitions. In this subsection, we introduce some new definitions. These
definitions are obtained by using technical integral expressions (see Remark 1.8)
and properties of symmetric functions of the roots of polynomials (Vieta’s formu-
las). The first of these definitions has an important role in the construction of the
sinusoidal-type sets and also the advantage played by this definition along with the
Definition 1.11 is going to be understandable in the proof of Proposition 1.14.

Remark 1.8. I adopt the sinusoidal terminology for the next two definitions, due
to the formula∫ 2π

0

sin2n t dt =
1 · 3 . . . (2n− 3)(2n− 1)

2n−1n!
π, for n ∈ N, (1.5)

(see [9]) which gives the coefficients of the sums and products.

Definition 1.9 (sinusoidal-type numbers). Let λ1, λ2, . . . , λn−1, λn be distinct pos-
itive real numbers, where n ∈ N, n ≥ 2. We define for n ∈ N, n ≥ 3, the sinusoidal-
type numbers of order n, associated to the λ1, λ2, . . . , λn−1, λn

s̄n := 2(n+ 2) + · · ·+ (−1)k

2k−1(n− k + 3) . . . (n+ 1)

n∑
i1,...,ik=1
i1<···<ik

λi1 . . . λik + . . .

+
(−1)n

2n−2(n+ 1)!

n∏
i1=1

λi1 ,

ŝn := 2(n+ 1) + · · ·+ (−1)k

2k−1(n− k + 2)(n− k + 3) . . . n

n∑
i1,...,ik=1
i1<···<ik

λi1 . . . λik + . . .
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+
(−1)n

2n−1n!

n∏
i1=1

λi1 ,

s̃n :=
1

4n(n+ 1)

n∑
i1,i2=1
i1<i2

λi1λi2 + . . .

+
(−1)k(k − 1)

2k(n− k + 2)(n− k + 3) . . . (n+ 1)

n∑
i1,...,ik=1
i1<···<ik

λi1 . . . λik + . . .

+
(−1)n(n− 1)

2n(n+ 1)!

n∏
i1=1

λi1 ,

where 2 ≤ k ≤ n − 1 for the s̄n, ŝn and 3 ≤ k ≤ n − 1 for s̃n. In the special case
where n = 2, we define the sinusoidal-type numbers of second order, associated to
the λ1, λ2

s̄2 := 8 +
1
6
λ1λ2,

ŝ2 := 6 +
1
4
λ1λ2,

s̃2 :=
1
24
λ1λ2.

For n = 1, we define the sinusoidal-type numbers of first order

s̄1 := 6, ŝ1 := 4.

For the sinusoidal-type numbers we have the following result. The proof is given
in the Appendix.

Lemma 1.10. For n ∈ N, n ≥ 2, we have that

s̄n = ŝn ⇐⇒ s̃n = 1,

s̄n > ŝn ⇐⇒ s̃n < 1,

s̄n < ŝn ⇐⇒ s̃n > 1,

where s̄n, ŝn and s̃n are the sinusoidal-type numbers of order n, with n ∈ N, n ≥ 2,
of the Definition 1.9.

We continue with another definition. The role played by this definition is that
the square roots of the coordinates λ1, λ2, . . . , λn of the points (λ1, λ2, . . . , λn),
where n ∈ N, n ≥ 2, are going to be the limiting radii of the limit cycles which
are asymptotic to circles of radii

√
λi for i = 1, 2, . . . , n centered at the origin when

the small positive parameter of our system tending to 0. This will be done by
forcing

√
λ1,
√
λ2, . . . ,

√
λn to be simple roots of the polynomial F defined in (2.5)

(see Theorem 2.2). For this reason, we assume that the given λ1, λ2, . . . , λn are all
positive and with λi 6= λj for all i 6= j where i, j = 1, 2, . . . , n. In this way, we are
going to construct n limit cycles for system (1.1). But Iliev in [4] proved that the
maximal number of limit cycles due to polynomial perturbations of degree n of the
harmonic oscillator is equal to [n−1

2 ] (the largest integer less than or equal to n−1
2 ).

Since in our case the polynomial perturbations are of degree 2n+ 3 we can achieve
n+ 1 limit cycles. Now, we see that we can have an additional limit cycle. About
the position of this limit cycle we later give the definition of the dependent radius.
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The same observation of all the above is valid and in the case where n = 1.

Definition 1.11 (sinusoidal-type sets). For n ∈ N, n ≥ 2, we define the sinusoidal-
type sets of order n as

Sn1 :=
{

(λ1, λ2, . . . , λn) : λi 6= λj ∀i 6= j where i, j = 1, 2, . . . , n with λi > 0

∀i = 1, 2, . . . , n and
n∑
i=1

λi < s̄n when s̃n > 1
}
,

Sn2 :=
{

(λ1, λ2, . . . , λn) : λi 6= λj ∀i 6= j where i, j = 1, 2, . . . , n with λi > 0

∀i = 1, 2, . . . , n and
n∑
i=1

λi < ŝn when s̃n < 1
}
,

Sn3 :=
{

(λ1, λ2, . . . , λn) : λi 6= λj ∀i 6= j where i, j = 1, 2, . . . , n with λi > 0

∀i = 1, 2, . . . , n and
n∑
i=1

λi < s̄n = ŝn when s̃n = 1
}
,

Sn4 :=
{

(λ1, λ2, . . . , λn) : λi 6= λj ∀i 6= j where i, j = 1, 2, . . . , n with λi > 0

∀i = 1, 2, . . . , n and
n∑
i=1

λi > s̄n when s̃n < 1
}
,

Sn5 :=
{

(λ1, λ2, . . . , λn) : λi 6= λj ∀i 6= j where i, j = 1, 2, . . . , n with λi > 0

∀i = 1, 2, . . . , n and
n∑
i=1

λi > ŝn when s̃n > 1
}
,

Sn6 :=
{

(λ1, λ2, . . . , λn) : λi 6= λj ∀i 6= j where i, j = 1, 2, . . . , n with λi > 0

∀i = 1, 2, . . . , n and
n∑
i=1

λi > s̄n = ŝn when s̃n = 1
}
,

where s̄n, ŝn and s̃n are the sinusoidal-type numbers of order n, with n ∈ N, n ≥ 2,
of the Definition 1.9. For n = 1, we define the sinusoidal-type sets of first order

S1
1 :=

{
λ1 : λ1 ∈ (0, 4)

}
,

S1
2 :=

{
λ1 : λ1 ∈ (6,+∞)

}
.

Definition 1.12. We define for n ∈ N, n ≥ 2, the set V n as the set

V n := ∪6
i=1S

n
i .

For n = 1, we define the set V 1 as the set

V 1 := S1
1 ∪ S1

2 .

Now, we continue with the last statement of the observation that we made before
the Definition 1.11. The positions of the n limit cycles have to satisfy an algebraic
relation in order that there is an odd polynomial f , realizing the maximal number
of limit cycles, and the position of the (n+ 1)-th limit cycle is estimated in terms
of the positions of these n limit cycles. On this we have the following definition.
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Definition 1.13 (dependent radius). Let (λ1, λ2, . . . , λn) ∈ Rn, n ∈ N, n ≥ 2. We
call dependent radius representing with λn+1 the quantity (when is defined) given
by the formula

λn+1 = λn+1(λ1, λ2, . . . , λn−1, λn) :=
Ξ
Ψ
, (1.6)

where

Ξ = 2n+1(n+ 2)! + · · ·+ (−1)k2n−k+1(n− k + 2)!
n∑

i1,...,ik=1
i1<···<ik

λi1 . . . λik

+ · · ·+ 4(−1)n
n∏

i1=1

λi1

and

Ψ = 2n(n+ 1)! + · · ·+ (−1)k2n−k(n− k + 1)!
n∑

i1,...,ik=1
i1<···<ik

λi1 . . . λik

+ · · ·+ (−1)n
n∏

i1=1

λi1 ,

where 1 ≤ k ≤ n− 1. So, the dependent radius is the (n+ 1)-th radius associated
to the radii λ1, λ2, . . . , λn−1, λn.

For n = 1, let λ1 ∈ R, then we call dependent radius representing with λ2 the
quantity (when is defined) given by the formula

λ2 = λ2(λ1) :=
24− 4λ1

4− λ1
. (1.7)

So, in this case the dependent radius is the second radius associated to the radius
λ1.

For the dependent radius we have the following result. The proof is given in the
Appendix.

Proposition 1.14. If (λ1, λ2, . . . , λn−1, λn) ∈ V n, n ∈ N, n ≥ 2, then the depen-
dent radius λn+1 = λn+1(λ1, λ2, . . . , λn−1, λn), n ∈ N, n ≥ 2, is positive. If n = 1
and suppose that λ1 ∈ V 1, then the dependent radius λ2 = λ2(λ1) is positive.

On the other hand if λ1, λ2, . . . , λn−1, λn, n ∈ N, n ≥ 2, are distinct positive real
numbers so that the dependent radius λn+1, n ∈ N, n ≥ 2, associated with the radii
λ1, λ2, . . . , λn−1, λn is positive, then (λ1, λ2, . . . , λn−1, λn) ∈ V n, n ∈ N, n ≥ 2. If
λ1 is a positive real number so that the dependent radius λ2 associated to the radius
λ1 is positive, then λ1 ∈ V 1.

Remark 1.15. According to Proposition 1.14, the set V n is the biggest set from
which we can choose the points (λ1, λ2, . . . , λn) so that the corresponding dependent
radius λn+1 given by (1.6), is positive if n ∈ N, n ≥ 2 and the set V 1 is the biggest
set from which we can choose the numbers λ1 so that the corresponding dependent
radius λ2 given by (1.7), is positive.

Now, is following the definition which has the central role. The advantage played
by this definition is that the square roots of the coordinates λ1, λ2, . . . , λn, λn+1

(where λn+1 is the dependent radius associated to the radii λ1, λ2, . . . , λn−1, λn)
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of the points (λ1, λ2, . . . , λn, λn+1), where n ∈ N, n ≥ 2, are going to be the
limiting radii of the limit cycles which are asymptotic to circles of radii

√
λi for

i = 1, 2, . . . , n, n+1 centered at the origin when the small positive parameter of our
system tending to 0. This will be done by forcing

√
λ1,
√
λ2, . . . ,

√
λn,
√
λn+1 to be

all the simple roots of the polynomial F defined in (2.5) (see Theorem 2.2). For this
reason, we assume that the given points (λ1, λ2, . . . , λn) belong to V n and we want
for the corresponding dependent radius λn+1 = λn+1(λ1, λ2, . . . , λn−1, λn) (which
from Proposition 1.14 is positive) to satisfy that λn+1 6= λj for all j = 1, 2, . . . , n.
In this way, we construct n+ 1 limit cycles for system (1.1), and so we achieve the
maximal number of limit cycles due to polynomial perturbations of degree 2n + 3
of the harmonic oscillator (see [4]).

The same observation of all the above is valid and in the case where n = 1.

Definition 1.16. We define now for n ∈ N, n ≥ 2, the sets

Sn1,n+1 :=
{

(λ1, λ2, . . . , λn, λn+1) : (λ1, λ2, . . . , λn) ∈ Sn1 , λn+1 = λn+1(λ1, . . . , λn),

λn+1 6= λj ∀j = 1, 2, . . . , n
}
,

Sn2,n+1 :=
{

(λ1, λ2, . . . , λn, λn+1) : (λ1, λ2, . . . , λn) ∈ Sn2 , λn+1 = λn+1(λ1, . . . , λn),

λn+1 6= λj ∀j = 1, 2, . . . , n
}
,

Sn3,n+1 :=
{

(λ1, λ2, . . . , λn, λn+1) : (λ1, λ2, . . . , λn) ∈ Sn3 , λn+1 = λn+1(λ1, . . . , λn),

λn+1 6= λj ∀j = 1, 2, . . . , n
}
,

Sn4,n+1 :=
{

(λ1, λ2, . . . , λn, λn+1) : (λ1, λ2, . . . , λn) ∈ Sn4 , λn+1 = λn+1(λ1, . . . , λn),

λn+1 6= λj ∀j = 1, 2, . . . , n
}
,

Sn5,n+1 :=
{

(λ1, λ2, . . . , λn, λn+1) : (λ1, λ2, . . . , λn) ∈ Sn5 , λn+1 = λn+1(λ1, . . . , λn),

λn+1 6= λj ∀j = 1, 2, . . . , n
}
,

Sn6,n+1 :=
{

(λ1, λ2, . . . , λn, λn+1) : (λ1, λ2, . . . , λn) ∈ Sn6 , λn+1 = λn+1(λ1, . . . , λn),

λn+1 6= λj ∀j = 1, 2, . . . , n
}
,

where Sn1 , S
n
2 , S

n
3 , S

n
4 , S

n
5 and Sn6 are the sinusoidal-type sets of order n, with n ∈ N,

n ≥ 2, of the Definition 1.11 and λn+1 is the dependent radius given by (1.6). For
n = 1, we define the sets

S1
1,2 :=

{
(λ1, λ2) : λ1 ∈ S1

1 , λ2 = λ2(λ1), λ2 6= λ1

}
,

S1
2,2 :=

{
(λ1, λ2) : λ1 ∈ S1

2 , λ2 = λ2(λ1), λ2 6= λ1

}
,

where S1
1 and S1

2 are the sinusoidal-type sets of first order of the Definition 1.11
and λ2 is the dependent radius given by (1.7).

Remark 1.17. Notice that, if λ1 ∈ (0, 4), then the dependent radius λ2 given by
(1.7), belongs to (6,+∞) and so we have that (λ1, λ2) ∈ S1

1,2. If λ1 ∈ (6,+∞),
then the dependent radius λ2 given by (1.7), belongs to (0, 4) and so we have that
(λ1, λ2) ∈ S1

2,2.

Remark 1.18. According to Remark 1.17, the sets S1
1,2 and S1

2,2, which defined
as above, take the more simple form

S1
1,2 =

{
(λ1, λ2) : λ1 ∈ S1

1 , λ2 = λ2(λ1)
}
,

S1
2,2 =

{
(λ1, λ2) : λ1 ∈ S1

2 , λ2 = λ2(λ1)
}
,
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where S1
1 and S1

2 are the sinusoidal-type sets of first order of the Definition 1.11
and λ2 is the dependent radius given by (1.7).

Definition 1.19. We define for n ∈ N, n ≥ 2, the set V nn+1 as the set

V nn+1 := ∪6
i=1S

n
i,n+1.

For n = 1, we define the set V 1
2 as the set

V 1
2 := S1

1,2 ∪ S1
2,2.

Remark 1.20. In the set V nn+1, n ∈ N, the positive dependent radius λn+1, n ∈ N,
is obviously different from λ1, λ2, . . . , λn−1, λn, n ∈ N.

Remark 1.21. It is possible, for n ∈ N, n ≥ 2, the point (λ1, λ2, . . . , λn) ∈ V n
but the point (λ1, λ2, . . . , λn, λn+1) /∈ V nn+1, where λn+1 is the dependent radius
given by (1.6), associated to the radii λ1, λ2, . . . , λn. (For example, it is easy to see
that the point (4, 6) ∈ V 2; in particular belongs to S2

3 . We calculate the dependent
radius λ3, associated to the 4, 6, which from Proposition 1.14 is positive and we
have that λ3 = 6. Now, the point (4, 6, 6) /∈ V 2

3 .)
For n = 1, according to Remark 1.17, if λ1 ∈ V 1, then (λ1, λ2) ∈ V 1

2 , where λ2

is the dependent radius given by (1.7), associated to the radius λ1.

Definition 1.22 (Λ-points (lambda points)). We will call the points

(λ1, λ2, . . . , λn, λn+1) ∈ V nn+1, n ∈ N,
the Λ-points.

1.3. Known results on Liénard equations. We now continue with known re-
sults on Liénard equations. Such equations are very challenging and many questions
about these are still open. Note that Smale [11] proposed to study Hilbert’s 16th
problem restricted to these special classes. This is Smale’s 13th problem. We
mention several interesting works here. The Liénard equation

ẍ+ g(x)ẋ+ x = 0, (1.8)

where g is a polynomial, is another generalization of the Van der Pol equation.
Equation (1.8) can be studied in a phase plane as a system

ẋ = y,

ẏ = −x− g(x)y,
(1.9)

or in the so-called Liénard plane as
ẋ = y −G(x),
ẏ = −x, (1.10)

where G(x) =
∫ x
0
g(s) ds. The systems (1.9) and (1.10) are analytically conjugate.

We observe that system (1.1) is not of the form of Liénard’s equation (1.9), except
when f(y) = y. Obviously, for f(y) 6= y, (1.9) can not reduce to (1.1). So, in
general, (1.1) is not a special case of (1.9) and (1.9) is not a special case of (1.1).

Liénard [6] proved that, if G is a continuous odd function, which has a unique
positive root at x = a and is monotone increasing for x ≥ a, then (1.10) has a
unique limit cycle. Rychkov [10] proved that, if G is an odd polynomial of degree
5, then (1.10) has at most two limit cycles.

Lins, de Melo and Pugh [7] have studied the Liénard equation (1.10), where G
is a polynomial of degree d. They proved that, if G(x) = a3x

3 + a2x
2 + a1x, then



10 X. IOAKIM EJDE-2014/120

(1.10) has at most one limit cycle. In fact, they gave a complete classification of
the phase space of the cubic Liénard’s equation, in terms of some explicit algebraic
conditions on the coefficients of G. Also, using a method due to Poincaré they
proved that, if d = 2n + 1 or 2n + 2, then for any k ∈ N0 with 0 ≤ k ≤ n there
exists a polynomial G(x) = adx

d+ · · ·+a1x such that the system (1.10) has exactly
k closed orbits. Motivated by this, they conjectured that the maximum number of
limit cycles for system (1.10), where G is a polynomial of degree n would be equal
to [n−1

2 ].
However, in [3] it has been proven by Dumortier, Panazzolo and Roussarie the

existence of classical Liénard equations (1.10) of degree 7 with at least 4 limit cycles.
This easily implied the existence of classical Liénard equations of degree n, n ≥ 7,
with [n−1

2 ] + 1 limit cycles. The counterexamples were proven to occur in systems

ẋ = y −
(
x7 +

6∑
i=2

cix
i
)
,

ẏ = ε(b− x),

for small ε > 0. Recently, in [8] it has been proven by De Maesschalck and Du-
mortier the existence of classical Liénard equations (1.10) of degree 6 having 4 limit
cycles. It implies the existence of classical Liénard equations of degree n, n ≥ 6,
having at least [n−1

2 ] + 2 limit cycles.
Ilyashenko and Panov [5] proved that, if

G(x) = xn +
n−1∑
i=1

aix
i, |ai| ≤ C, C ≥ 4, n ≥ 5,

and suppose that n is odd, then the number L(n,C) of limit cycles of (1.10) admits
the upper estimate

L(n,C) ≤ exp(exp C14n).
Caubergh and Dumortier [2] proved that the maximal number of limit cycles for
(1.10) of even degree is finite when restricting the coefficients to a compact, thus
proving the existential part of Hilbert’s 16th problem for Liénard equations when
restricting the coefficients to a compact set.

2. Elementary remarks about small perturbation of a Hamiltonian
system

We consider the system
ẋ = y + εf1(x, y),

ẏ = −x+ εf2(x, y),
(2.1)

where 0 < ε� 1 and f1, f2 are C1 functions of x and y, which is a perturbation of
the linear harmonic oscillator

ẋ = y,

ẏ = −x,
which has all the solutions periodic with:

x0(t) = A cos(t− t0) and y0(t) = −A sin(t− t0).

In general, the phase curves of (2.1) are not closed and it is possible to have
the form of a spiral with a small distance of order ε between neighboring turns.
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In order to decide if the phase curve approaches the origin or recedes from it, we
consider the function (mechanic energy)

E(x, y) =
1
2
(
x2 + y2

)
.

It is easy to compute the derivative of the energy and it is proportional to ε:
d

dt
E(x, y) = xẋ+ yẏ = ε

(
xf1(x, y) + yf2(x, y)

)
=: εĖ(x, y). (2.2)

We want information for the sign of the quantity∫ T (ε)

0

εĖ
(
xε(t), yε(t)

)
dt =: ∆E, (2.3)

which corresponds to the change of energy of (xε(t), yε(t)) in one complete turn:
yε(0) = yε(T (ε)) = 0. Using the theorem of continuous dependence on parameters
in ODEs, one can prove the following lemma (see [1]):

Lemma 2.1. For (2.3) we have

∆E = ε

∫ 2π

0

Ė
(
A cos(t− t0),−A sin(t− t0)

)
dt+ o(ε). (2.4)

Let

F (A) :=
∫ 2π

0

Ė
(
x0(t), y0(t)

)
dt, (2.5)

and we write (2.4) as

∆E = ε
[
F (A) +

o(ε)
ε

]
.

Using the implicit function theorem, one can prove the following theorem, which
is the Poincaré’s method (see [1]):

Theorem 2.2. If the function F given by (2.5), has a positive simple root A0,
namely

F (A0) = 0 and F ′(A0) 6= 0,
then (2.1) has a periodic solution with amplitude A0 +O(ε) for 0 < ε� 1.

3. Proofs of Theorems 1.1, 1.2, 1.3 and 1.4

Proof of Theorem 1.1. From (2.2) we have

Ė(x, y) = yf(y)
(
1− x2

)
, (3.1)

where f is the polynomial introduced in (1.3). Substituting (3.1) into (2.5), we
obtain that

F (A) =
∫ 2π

0

y0(t)f(y0(t))
(
1− (x0(t))2

)
dt, (3.2)

where f is the polynomial introduced in (1.3). We insert the definition of f given
by (1.3) in (3.2) to obtain

F (A) = τ

∫ 2π

0

[
(y0(t))2(n+1) + (2n+ 1)

(
1− 1

2(n+ 2)

n+1∑
i1=1

λi1

)
(y0(t))2n

+ · · ·+
(1 · 3 . . . (2n+ 1)

2n+1(n+ 2)!
(−1)n

n+1∏
i1=1

λi1

)
(y0(t))2

](
1− (x0(t))2

)
dt.

(3.3)
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Substituting x0(t) = A cos(t− t0) and y0(t) = −A sin(t− t0) into (3.3) we get

F (A) = τA2

∫ 2π

0

[
A2n sin2(n+1)(t− t0)

+ (2n+ 1)
(

1− 1
2(n+ 2)

n+1∑
i1=1

λi1

)
A2(n−1) sin2n(t− t0)

+ · · ·+
(1 · 3 . . . (2n+ 1)

2n+1(n+ 2)!
(−1)n

n+1∏
i1=1

λi1

)
sin2(t− t0)

]
×
[
1−A2 +A2 sin2(t− t0)

]
dt,

whence, after multiplying the terms in the two brackets we get

F (A) = τA2

∫ 2π

0

[
A2n sin2(n+1)(t− t0)−A2(n+1) sin2(n+1)(t− t0)

+A2(n+1) sin2(n+2)(t− t0)

+ (2n+ 1)
(

1− 1
2(n+ 2)

n+1∑
i1=1

λi1

)
A2(n−1) sin2n(t− t0)

− (2n+ 1)
(

1− 1
2(n+ 2)

n+1∑
i1=1

λi1

)
A2n sin2n(t− t0)

+ (2n+ 1)
(

1− 1
2(n+ 2)

n+1∑
i1=1

λi1

)
A2n sin2(n+1)(t− t0)

+ · · ·+
(1 · 3 . . . (2n+ 1)

2n+1(n+ 2)!
(−1)n

n+1∏
i1=1

λi1

)
sin2(t− t0)

−
(1 · 3 . . . (2n+ 1)

2n+1(n+ 2)!
(−1)n

n+1∏
i1=1

λi1

)
A2 sin2(t− t0)

+
(1 · 3 . . . (2n+ 1)

2n+1(n+ 2)!
(−1)n

n+1∏
i1=1

λi1

)
A2 sin4(t− t0)

]
dt.

Using now (1.5), we finally obtain

F (A) = πτA2 1 · 3 . . . (2n+ 1)
2n+1(n+ 2)!

[
−A2(n+1) +

n+1∑
i1=1

λi1A
2n −

n+1∑
i1,i2=1
i1<i2

λi1λi2A
2(n−1)

+ · · · − (−1)k
n+1∑

i1,...,ik=1
i1<···<ik

λi1 . . . λikA
2(n−k+1) − . . .

− (−1)n
n+1∑

i1,...,in=1
i1<···<in

λi1 . . . λinA
2 + (−1)n

n+1∏
i1=1

λi1

]
.
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We show now that
√
λ1,
√
λ2, . . . ,

√
λn,
√
λn+1 are roots of the polynomial F .

Let

W (A) := A2(n+1) −
n+1∑
i1=1

λi1A
2n +

n+1∑
i1,i2=1
i1<i2

λi1λi2A
2(n−1) − . . .

+ (−1)n
n+1∑

i1,...,in=1
i1<···<in

λi1 . . . λinA
2 − (−1)n

n+1∏
i1=1

λi1 ,

namely, we write

F (A) = −πτA2 1 · 3 . . . (2n+ 1)
2n+1(n+ 2)!

·W (A).

Now, it suffices to show that
√
λ1,
√
λ2, . . . ,

√
λn,
√
λn+1 are roots of the polynomial

W . Without loss of generality we consider the quantity
√
λ1. For W

(√
λ1

)
we have

W
(√

λ1

)
= λn+1

1 − λn1
n+1∑
i1=1

λi1 + λn−1
1

n+1∑
i1,i2=1
i1<i2

λi1λi2 − · · · − (−1)n
n+1∏
i1=1

λi1

= λn+1
1 − λn+1

1 − λn1
n+1∑
i1=2

λi1 + λn1

n+1∑
i1=2

λi1 + λn−1
1

n+1∑
i1,i2=2
i1<i2

λi1λi2

− λn−1
1

n+1∑
i1,i2=2
i1<i2

λi1λi2 − λn−2
1

n+1∑
i1,i2,i3=2
i1<i2<i3

λi1λi2λi3

+ λn−2
1

n+1∑
i1,i2,i3=2
i1<i2<i3

λi1λi2λi3 + · · ·+ (−1)n
n+1∏
i1=1

λi1 − (−1)n
n+1∏
i1=1

λi1

= 0.

So,
√
λ1,
√
λ2, . . . ,

√
λn,
√
λn+1 are roots of the polynomial W and therefore and

for the polynomial F .
Now, using Theorem 2.2, it suffices to show that

√
λ1,
√
λ2, . . . ,

√
λn,
√
λn+1 are

not roots of the polynomial W ′; therefore they are not roots and for polynomial
F ′. For the derivative of W we have that

W ′(A) = 2A
[
(n+ 1)A2n − n

n+1∑
i1=1

λi1A
2(n−1) + (n− 1)

n+1∑
i1,i2=1
i1<i2

λi1λi2A
2(n−2)

− · · ·+ (−1)n
n+1∑

i1,...,in=1
i1<···<in

λi1 . . . λin

]
.

Now, we have that one root of W ′ is A = 0 and we also have another 2n roots.
From those 2n roots, n are positive and the other n are negative (these roots are
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opposite numbers). Let

G(A) := (n+ 1)A2n − n
n+1∑
i1=1

λi1A
2(n−1) + (n− 1)

n+1∑
i1,i2=1
i1<i2

λi1λi2A
2(n−2)

− · · ·+ (−1)n
n+1∑

i1,...,in=1
i1<···<in

λi1 . . . λin ,

namely, we write
W ′(A) = 2A ·G(A).

Now, we check if the roots
√
λ1,
√
λ2, . . . ,

√
λn,
√
λn+1 of the polynomial W are

possible to be roots and for the polynomial W ′, therefore and for the polynomial
G. Without loss of generality we consider the root

√
λ1 of W . For G

(√
λ1

)
we

have

G
(√

λ1

)
= (n+ 1)λn1 − nλn−1

1

n+1∑
i1=1

λi1 + (n− 1)λn−2
1

n+1∑
i1,i2=1
i1<i2

λi1λi2

− · · ·+ (−1)n
n+1∑

i1,...,in=1
i1<···<in

λi1 . . . λin

= λn1 − λn−1
1

n+1∑
i1=2

λi1 + λn−2
1

n+1∑
i1,i2=2
i1<i2

λi1λi2 − λn−3
1

n+1∑
i1,i2,i3=2
i1<i2<i3

λi1λi2λi3

+ · · · − (−1)nλ1

n+1∑
i1,...,in=2
i1<···<in

λi1 . . . λin + (−1)nλ2λ3 . . . λnλn+1

= (λ1 − λ2)(λ1 − λ3) . . . (λ1 − λn)(λ1 − λn+1).

Obviously, W ′
(√
λ1

)
is not zero since in the set V nn+1 we have that λ1 6= λj for

j = 2, 3, . . . , n, n+ 1. Similarly, none of the
√
λ2,
√
λ3, . . . ,

√
λn,
√
λn+1 is a root of

W ′.
Therefore, we have that the roots

√
λ1,
√
λ2, . . . ,

√
λn,
√
λn+1 of W are not roots

of W ′. Finally, none of the roots
√
λ1,
√
λ2, . . . ,

√
λn,
√
λn+1 of F is a root of F ′.

That is essential so that the n + 1 simple roots of F create n + 1 limit cycles.
Hence, from Poincaré’s method (see Theorem 2.2) it follows that (1.1), with f be
the polynomial introduced in (1.3), has at least n+1 limit cycles, and are asymptotic
to circles of radius

√
λi for i = 1, 2, . . . , n+ 1 centered at the origin as ε→ 0.

Let now prove that the number of limit cycles for system (1.1), with ε small
and f be the polynomial introduced in (1.3), is exactly n + 1. The proof of this
can be derived from the work of Iliev [4] since it constitutes a special case of the
Theorem 1 proved there. Actually, applying this theorem from [4] for the special
case k = 1, since the degree of (1.1) is 2n + 3 we can obtain at most n + 1 limit
cycles. Finally, combining this result with the result that (1.1), with f be the
polynomial introduced in (1.3), has at least n + 1 limit cycles we get the desired
result, namely that the number of limit cycles for system (1.1), with ε small and f
be the polynomial introduced in (1.3) is exactly n+ 1.
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Now, concerning the stability of the limit cycles we have the following.
From now on we will suppose for the coordinates λ1, λ2, . . . , λn, λn+1 of the

points (λ1, λ2, . . . , λn, λn+1) ∈ V nn+1, n ∈ N, n ≥ 2, an ordering such that λ1 <
λ2 < · · · < λn < λn+1. We can always achieve this since the positive real numbers
λ1, λ2, . . . , λn, λn+1 are distinct. Note that in this order with λn+1 we do not
necessary mean the dependent radius. Since

G
(√

λ1

)
= (λ1 − λ2)(λ1 − λ3) . . . (λ1 − λn)(λ1 − λn+1),

we have that W ′
(√
λ1

)
< 0 if n is odd and that W ′

(√
λ1

)
> 0 if n is even.

So using the fact that, if F ′
(√
λi
)
< 0 the limit cycle x2 + y2 = λi + O(ε) is

stable and if F ′
(√
λi
)
> 0 the limit cycle is unstable we have for the stability of

the n+ 1 limit cycles that, if τ > 0 (respectively τ < 0)

x2 + y2 = λ1 +O(ε), x2 + y2 = λ3 +O(ε), . . . , x2 + y2 = λn+1 +O(ε)

are stable (respectively unstable) and

x2 + y2 = λ2 +O(ε), x2 + y2 = λ4 +O(ε), . . . , x2 + y2 = λn +O(ε)

are unstable (respectively stable) for n even; and

x2 + y2 = λ1 +O(ε), x2 + y2 = λ3 +O(ε), . . . , x2 + y2 = λn +O(ε)

are unstable (respectively stable) and

x2 + y2 = λ2 +O(ε), x2 + y2 = λ4 +O(ε), . . . , x2 + y2 = λn+1 +O(ε)

are stable (respectively unstable) for n odd. The proof is complete. �

Proof of Theorem 1.2. As we already saw, according to Theorem 1 from [4] the
number of n + 1 limit cycles is an upper bound for the number of limit cycles for
system (1.1), where ε is small and f is an arbitrary odd polynomial of degree 2n+1.

Now, it is easy to see that for system (1.1), where f is an arbitrary odd poly-
nomial of degree 2n + 1, the associated F given by (2.5) is an even polynomial of
degree 2n+ 4, with 0 as a double root. Therefore, in general the polynomial F has
at most n + 1 simple positive roots. Furthermore, since V n, n ∈ N, n ≥ 2 is the
biggest set from which we can choose the points (λ1, λ2, . . . , λn) so that the depen-
dent radius λn+1 given by (1.6), is positive if n ∈ N, n ≥ 2 (see Remark 1.15) and
F as we showed has at most n+ 1 simple positive roots, we must choose the points
(λ1, λ2, . . . , λn, λn+1) ∈ V nn+1, in order the polynomial F has exactly n + 1 simple
positive roots, and thus, from the set of all the odd polynomials, the polynomials
f given by (1.3) are the only such that the system (1.1) attains the upper bound
of the n+ 1 limit cycles. The proof is complete. �

Proof of Theorem 1.3. The proof is identical as in Theorem 1.1; the only modifica-
tion is that the polynomial f given by (1.3) will be replaced by the polynomial f
introduced in (1.4). �

Proof of Theorem 1.4. The proof is identical as in Theorem 1.2; the only modifica-
tion is that the case where n ∈ N, n ≥ 2 will be replaced by n = 1. �
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4. Examples

In this section we illustrate the general theory of this work by some examples.

Example 4.1. We consider λ1 = 4, λ2 = 5. These λ1, λ2 are distinct and positive.
We have according to Definition 1.9 that the sinusoidal-type numbers of second
order, associated to the values 4, 5 are

s̄2 := 8 +
1
6
λ1λ2 = 8 +

1
6
· 4 · 5 =

34
3
,

ŝ2 := 6 +
1
4
λ1λ2 = 6 +

1
4
· 4 · 5 = 11,

s̃2 :=
1
24
λ1λ2 =

1
24
· 4 · 5 =

5
6
.

Since λ1 + λ2 = 4 + 5 = 9, we have that (4, 5) ∈ S2
2 and therefore (4, 5) ∈ V 2.

We calculate the dependent radius λ3, associated to the values 4, 5, which from
Proposition 1.14 is positive and we have that

λ3 :=
192− 24(λ1 + λ2) + 4λ1λ2

24− 4(λ1 + λ2) + λ1λ2
=

192− 216 + 80
24− 36 + 20

= 7.

So, we have the Λ-point (4, 5, 7) which belongs to the set V 2
3 .

Now, using Theorem 1.1, for τ = 16, we have that the system
ẋ = y,

ẏ = −x+ ε
(
16y5 − 80y3 + 175y

)(
1− x2

)
,

(4.1)

with 0 < ε� 1 has exactly, the limit cycles x2 + y2 = 4 +O(ε), x2 + y2 = 5 +O(ε)
and x2 + y2 = 7 +O(ε).

Since 4 < 5 < 7, the limit cycles x2 + y2 = 4 + O(ε), x2 + y2 = 7 + O(ε) are
stable and the limit cycle x2 + y2 = 5 +O(ε) is unstable.

From Theorem 1.1 we have for the system (4.1) that, if we change τ from 16 to
−16 the unstable limit cycle x2 +y2 = 5+O(ε) becomes stable and the stable limit
cycles x2 + y2 = 4 +O(ε), x2 + y2 = 7 +O(ε) become unstable.

Example 4.2. We consider λ1 = 4, λ2 = 16. These λ1, λ2 are distinct and positive.
We have according to Definition 1.9 that the sinusoidal-type numbers of second
order, associated to the 4, 16 are

s̄2 := 8 +
1
6
λ1λ2 = 8 +

1
6
· 4 · 16 =

56
3
,

ŝ2 := 6 +
1
4
λ1λ2 = 6 +

1
4
· 4 · 16 = 22,

s̃2 :=
1
24
λ1λ2 =

1
24
· 4 · 16 =

8
3
.

Since λ1 + λ2 = 4 + 16 = 20, we have that (4, 16) /∈ S2
1 , (4, 16) /∈ S2

5 and therefore
(4, 16) /∈ V 2. Therefore from Proposition 1.14 the dependent radius λ3, associated
to the 4, 16 is not positive.

So, according to the Theorem 1.1 it does not exist a system of the form
ẋ = y,

ẏ = −x+ ε
(
a0y

5 + a1y
3 + a2y

)(
1− x2

)
,

where 0 < ε � 1 and a0, a1, a2 ∈ R, which has exactly three limit cycles whereof
the two of them have the equations x2 + y2 = 4 +O(ε), x2 + y2 = 16 +O(ε).
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Example 4.3. We consider λ1 = 1, λ2 = 2, λ3 = 3. These λ1, λ2, λ3 satisfy our
assertions, since λi 6= λj for all i 6= j where i, j = 1, 2, 3 and are positive. We
have according to Definition 1.9 that the sinusoidal-type numbers of third order,
associated to the 1, 2, 3 are

s̄3 := 10 +
1
8

(λ1λ2 + λ1λ3 + λ2λ3)− 1
48
λ1λ2λ3 = 10 +

11
8
− 1

8
=

45
4
,

ŝ3 := 8 +
1
6

(λ1λ2 + λ1λ3 + λ2λ3)− 1
24
λ1λ2λ3 = 8 +

11
6
− 1

4
=

115
12

,

s̃3 :=
1
48

(λ1λ2 + λ1λ3 + λ2λ3)− 1
96
λ1λ2λ3 =

11
48
− 1

16
=

1
6
.

Since λ1 + λ2 + λ3 = 1 + 2 + 3 = 6, we have that (1, 2, 3) ∈ S3
2 and therefore

(1, 2, 3) ∈ V 3. We calculate the dependent radius λ4, associated to the 1, 2, 3,
which from Proposition 1.14 is positive and we have that

λ4 :=
1920− 192(λ1 + λ2 + λ3) + 24(λ1λ2 + λ1λ3 + λ2λ3)− 4λ1λ2λ3

192− 24(λ1 + λ2 + λ3) + 4(λ1λ2 + λ1λ3 + λ2λ3)− λ1λ2λ3
=

504
43

.

So, we have the Λ-point (1, 2, 3, 504/43) which belongs to the set V 3
4 .

Now, using Theorem 1.1, for τ = 43/8, we have that the system

ẋ = y,

ẏ = −x+ ε
(43

8
y7 − 581

20
y5 +

5887
128

y3 − 1323
64

y
)(

1− x2
)
,

(4.2)

with 0 < ε� 1 has exactly, the limit cycles x2 + y2 = 1 +O(ε), x2 + y2 = 2 +O(ε),
x2 + y2 = 3 +O(ε) and x2 + y2 = (504/43) +O(ε).

Since 1 < 2 < 3 < 504/43, the limit cycles x2 +y2 = 1+O(ε), x2 +y2 = 3+O(ε)
are unstable and the limit cycles x2 + y2 = 2 +O(ε), x2 + y2 = (504/43) +O(ε) are
stable.

From Theorem 1.1 we have for the system (4.2) that, if we change τ from 43/8
to −43/8 the unstable limit cycles x2 + y2 = 1 +O(ε), x2 + y2 = 3 +O(ε) become
stable and the stable limit cycles x2 + y2 = 2 + O(ε), x2 + y2 = (504/43) + O(ε)
become unstable.

Example 4.4. We consider λi = i for i = 1, 2, . . . , 6. These λ1, λ2, λ3, λ4, λ5, λ6

satisfy our assertions, since λi 6= λj for all i 6= j where i, j = 1, 2, 3, 4, 5, 6 and
are positive. It is easy to show, after some calculations, that (1, 2, 3, 4, 5, 6) ∈ V 6.
We calculate the dependent radius λ7, associated to the 1, 2, 3, 4, 5, 6, which from
Proposition 1.14 is positive and we have that λ7 = 13337/690. So, we have the
Λ-point (1, 2, 3, 4, 5, 6, 13337/690) which belongs to the set V 6

7 .
Therefore, from Theorem 1.1 exists a system of the form (1.1), where 0 < ε �

1 and f is an odd polynomial of degree 13, which has exactly the limit cycles:
x2 + y2 = 1 + O(ε), x2 + y2 = 2 + O(ε), x2 + y2 = 3 + O(ε), x2 + y2 = 4 + O(ε),
x2 + y2 = 5 +O(ε), x2 + y2 = 6 +O(ε), x2 + y2 = (13337/690) +O(ε).

Example 4.5. We consider λ1 = 7, λ2 = 701/100. It is easy to show, after some
calculations, that (7, 701/100) ∈ V 2. We calculate the dependent radius λ3, asso-
ciated to the 7, 701/100, which from Proposition 1.14 is positive and we have that
λ3 = 5204/1703. So, we have the Λ-point (7, 701/100, 5204/1703) which belongs to
the set V 2

3 .
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Now, using Theorem 1.1, for τ = −2179840, we have that the system
ẋ = y,

ẏ = −x+ ε
(
− 2179840y5 + 12351224y3 − 25536028y

)(
1− x2

)
,

(4.3)

with 0 < ε � 1 has exactly, the limit cycles x2 + y2 = 7 + O(ε), x2 + y2 =
(701/100) +O(ε) and x2 + y2 = (5204/1703) +O(ε).

Since 5204/1703 < 7 < 701/100, the limit cycles x2 + y2 = (5204/1703) +O(ε),
x2 + y2 = (701/100) +O(ε) are unstable and the limit cycle x2 + y2 = 7 +O(ε) is
stable.

Since
√
λ1 and

√
λ2 have very small difference (|

√
λ1 −

√
λ2| = | 10

√
7−
√

701
10 | '

0.0019), the qualitative and quantitative image that one gets using a program, may
give the misimpression that system (4.3) has a semistable limit cycle. This happens
because the stable limit cycle x2 + y2 = 7 +O(ε) lies close enough to the unstable
limit cycle x2 + y2 = (701/100) +O(ε). This of course is prospective since a priori
we have chosen the λ1 and λ2 so as to be close enough the one to the other. So, the
two limit cycles x2 + y2 = 7 + O(ε) and x2 + y2 = (701/100) + O(ε), create “one
system with one pseudosemistable limit cycle” as we can say, since the two limit
cycles together behave like a semistable limit cycle.

Remark 4.6. It is easy to see, according to Remark 1.17, that system (1.1) with
n = 1 can’t have “a system with a pseudosemistable limit cycle” as we mean above
“the system with a pseudosemistable limit cycle”.

Example 4.7. We consider λ1 = 7. This λ1 belongs to S1
2 . We know from Remark

1.17 that the point (7, λ2) ∈ S1
2,2, where λ2 is the dependent radius associated to

the 7.
We calculate the dependent radius λ2, associated to the 7, (which from Propo-

sition 1.14 is positive) and we have that

λ2 :=
24− 4λ1

4− λ1
=

24− 28
4− 7

=
4
3
.

So, we have the Λ-point (7, 4/3) which belongs to the set V 1
2 .

Now, using Theorem 1.3, for τ = 6, we have that the system
ẋ = y,

ẏ = −x+ ε
(
6y3 − 7y

)(
1− x2

)
,

(4.4)

with 0 < ε � 1 has exactly, the limit cycles x2 + y2 = 7 + O(ε) and x2 + y2 =
(4/3) +O(ε).

Since 4/3 < 7, the limit cycle x2 + y2 = (4/3) + O(ε) is unstable and the limit
cycle x2 + y2 = 7 +O(ε) is stable.

From Theorem 1.3 we have for the system (4.4) that, if we change τ from 6 to
−6 the unstable limit cycle x2 + y2 = (4/3) + O(ε) becomes stable and the stable
limit cycle x2 + y2 = 7 +O(ε) becomes unstable.

Appendix

Proof of Lemma 1.10. Clearly, for n ∈ N, n ≥ 3,

2(n+ 2) +
1

2(n+ 1)

n∑
i1,i2=1
i1<i2

λi1λi2 −
1

4n(n+ 1)

n∑
i1,i2,i3=1
i1<i2<i3

λi1λi2λi3 + . . .
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+
(−1)k

2k−1(n− k + 3) . . . (n+ 1)

n∑
i1,...,ik=1
i1<···<ik

λi1 . . . λik + · · ·+ (−1)n

2n−2(n+ 1)!

n∏
i1=1

λi1

= 2(n+ 1) +
1

2n

n∑
i1,i2=1
i1<i2

λi1λi2 −
1

4(n− 1)n

n∑
i1,i2,i3=1
i1<i2<i3

λi1λi2λi3 + . . .

+
(−1)k

2k−1(n− k + 2)(n− k + 3) . . . n

n∑
i1,...,ik=1
i1<···<ik

λi1 . . . λik + · · ·+ (−1)n

2n−1n!

n∏
i1=1

λi1

if and only if

1
4n(n+ 1)

n∑
i1,i2=1
i1<i2

λi1λi2 −
2

8(n− 1)n(n+ 1)

n∑
i1,i2,i3=1
i1<i2<i3

λi1λi2λi3 + . . .

+
(−1)k(k − 1)

2k(n− k + 2)(n− k + 3) . . . (n+ 1)

n∑
i1,...,ik=1
i1<···<ik

λi1 . . . λik + . . .

+
(−1)n(n− 1)

2n(n+ 1)!

n∏
i1=1

λi1 = 1,

and the first equivalence has been proved. Similarly, one can prove and the rest
two equivalences. For n = 2, (i.e. for the sinusoidal-type numbers of second order),
it is easy to see that the above equivalences hold. The proof of the lemma is
complete. �

Proof of Proposition 1.14. To prove that the dependent radius λn+1, n ∈ N, n ≥ 2,
associated to the radii λ1, λ2, . . . , λn is positive when (λ1, λ2, . . . , λn) ∈ V n, n ∈ N,
n ≥ 2, it suffices to show that both numerator and denominator of (1.6) are of the
same sign.

We will check the case where (λ1, λ2, . . . , λn−1, λn) ∈ Sn1 , n ∈ N, n ≥ 2. Simi-
larly, one can prove and the other cases.

In the set Sn1 , n ∈ N, n ≥ 2, we have
∑n
i1=1 λi1 < s̄n. Now, for n ∈ N, n ≥ 3,

using the definition of s̄n and multiplying the last inequality by −2n(n + 1)! we
have

2n+1(n+ 2)!− 2n(n+ 1)!
n∑

i1=1

λi1 + 2n−1n!
n∑

i1,i2=1
i1<i2

λi1λi2 − · · ·+ 4(−1)n
n∏

i1=1

λi1 > 0,

which shows that the numerator of (1.6) is positive.
Since

∑n
i1=1 λi1 < s̄n in the set Sn1 , we have that −

∑n
i1=1 λi1 > −s̄n. Using this

observation we obtain the first inequality for the denominator of (1.6)

2n(n+ 1)!− 2n−1n!
n∑

i1=1

λi1 + 2n−2(n− 1)!
n∑

i1,i2=1
i1<i2

λi1λi2 − · · ·+ (−1)n
n∏

i1=1

λi1

> 2n(n+ 1)!− 2n−1n!s̄n + 2n−2(n− 1)!
n∑

i1,i2=1
i1<i2

λi1λi2 − · · ·+ (−1)n
n∏

i1=1

λi1
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= 2n(n+ 1)!− 2nn!(n+ 2)− 2n−2 n!
n+ 1

n∑
i1,i2=1
i1<i2

λi1λi2 + · · · − 2(−1)n

n+ 1

n∏
i1=1

λi1

+ 2n−2(n− 1)!
n∑

i1,i2=1
i1<i2

λi1λi2 − · · ·+ (−1)n
n∏

i1=1

λi1

= −2nn! + 2nn!s̃n > −2nn! + 2nn! = 0.

Here, we have used in the first equality the definition of s̄n for n ∈ N, n ≥ 3 and in
the last inequality that s̃n > 1 in the set Sn1 .

So, we proved that both numerator and denominator of (1.6) when n ∈ N,
n ≥ 3, are positive, which show that the dependent radius λn+1 is positive if
(λ1, . . . , λn) ∈ Sn1 , n ∈ N, n ≥ 3.

In the case where n = 2, it is easy to show that the dependent radius λ3 associ-
ated to the radii λ1, λ2 is positive if (λ1, λ2) ∈ S2

1 , since in that case both numerator
and denominator of (1.6) with n = 2, are positive.

If n = 1, it is easy to show that the dependent radius λ2 associated to the radius
λ1 is positive if λ1 ∈ V 1, since in that case both numerator and denominator of
(1.7) are of the same sign.

Let us now show the inverse. Let λ1, λ2, . . . , λn−1, λn, n ∈ N, n ≥ 2, be distinct
positive real numbers so that the dependent radius λn+1, n ∈ N, n ≥ 2, associated
to the radii λ1, λ2, . . . , λn is positive.

First, we examine the case where both numerator and denominator of λn+1 are
positive.

Since we suppose that the numerator of λn+1 is positive, we have that

2n+1(n+ 2)!− 2n(n+ 1)!
n∑

i1=1

λi1 + 2n−1n!
n∑

i1,i2=1
i1<i2

λi1λi2 − · · ·+ 4(−1)n
n∏

i1=1

λi1 > 0,

and dividing this inequality by −2n(n+ 1)! we have that
∑n
i1=1 λi1 < s̄n.

Since we suppose that the denominator of λn+1 is positive, we have that

2n(n+ 1)!− 2n−1n!
n∑

i1=1

λi1 + 2n−2(n− 1)!
n∑

i1,i2=1
i1<i2

λi1λi2 − · · ·+ (−1)n
n∏

i1=1

λi1 > 0,

and dividing this inequality by −2n−1n! we have that
∑n
i1=1 λi1 < ŝn.

Now, we have the following possibilities: s̄n = ŝn or s̄n > ŝn or s̄n < ŝn, where
n ∈ N, n ≥ 2.

In the case where s̄n = ŝn we know from Lemma 1.10 that s̃n = 1 and hence
(λ1, λ2, . . . , λn) ∈ Sn3 , n ∈ N, n ≥ 2.

In the case where s̄n > ŝn we know from Lemma 1.10 that s̃n < 1 and hence
(λ1, λ2, . . . , λn) ∈ Sn2 , n ∈ N, n ≥ 2.

In the case where s̄n < ŝn we know from Lemma 1.10 that s̃n > 1 and hence
(λ1, λ2, . . . , λn) ∈ Sn1 , n ∈ N, n ≥ 2.

Let us now examine the case where both numerator and denominator of λn+1

are negative.
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Since we suppose that the numerator of λn+1 is negative, we have that

2n+1(n+ 2)!− 2n(n+ 1)!
n∑

i1=1

λi1 + 2n−1n!
n∑

i1,i2=1
i1<i2

λi1λi2 − · · ·+ 4(−1)n
n∏

i1=1

λi1 < 0,

and dividing this inequality by −2n(n+ 1)! we have that
∑n
i1=1 λi1 > s̄n.

Since we suppose that the denominator of λn+1 is negative, we have that

2n(n+ 1)!− 2n−1n!
n∑

i1=1

λi1 + 2n−2(n− 1)!
n∑

i1,i2=1
i1<i2

λi1λi2 − · · ·+ (−1)n
n∏

i1=1

λi1 < 0,

and dividing this inequality by −2n−1n! we have that
∑n
i1=1 λi1 > ŝn.

Now, we have the following possibilities: s̄n = ŝn or s̄n > ŝn or s̄n < ŝn, where
n ∈ N, n ≥ 2.

In the case where s̄n = ŝn we know from Lemma 1.10 that s̃n = 1 and hence
(λ1, λ2, . . . , λn) ∈ Sn6 , n ∈ N, n ≥ 2.

In the case where s̄n > ŝn we know from Lemma 1.10 that s̃n < 1 and hence
(λ1, λ2, . . . , λn) ∈ Sn4 , n ∈ N, n ≥ 2.

In the case where s̄n < ŝn we know from Lemma 1.10 that s̃n > 1 and hence
(λ1, λ2, . . . , λn) ∈ Sn5 , n ∈ N, n ≥ 2.

We have thus proved the inverse of Proposition 1.14 for n ∈ N, n ≥ 2. In fact
we proved a stronger result. Let λ1, λ2, . . . , λn, n ∈ N, n ≥ 2, be distinct positive
real numbers. Supposing that both numerator and denominator of the positive
dependent radius λn+1, n ∈ N, n ≥ 2, associated to the radii λ1, λ2, . . . , λn are
positive, then (λ1, λ2, . . . , λn) ∈ ∪3

i=1S
n
i , n ∈ N, n ≥ 2. If we suppose that both

numerator and denominator of the positive dependent radius λn+1, n ∈ N, n ≥ 2,
associated to the radii λ1, λ2, . . . , λn are negative, then (λ1, λ2, . . . , λn) ∈ ∪6

i=4S
n
i ,

n ∈ N, n ≥ 2.
If n = 1, let λ1 be a positive real number so that the dependent radius λ2

associated to the radius λ1 is positive.
First, we examine the case where both numerator and denominator of λ2 are

positive. In that case we have for the numerator that 24 − 4λ1 > 0 which implies
that λ1 < 6 and for the denominator that 4 − λ1 > 0 which implies that λ1 < 4.
Combining the last two results about λ1, we have that 0 < λ1 < 4 and hence
λ1 ∈ S1

1 .
Let now examine the case where both numerator and denominator of λ2 are

negative. In that case we have for the numerator that 24− 4λ1 < 0 which implies
that λ1 > 6 and for the denominator that 4 − λ1 < 0 which implies that λ1 > 4.
Combining the last two results about λ1, we have that 6 < λ1 < +∞ and hence
λ1 ∈ S1

2 .
So, we proved that, if λ1 is a positive real number so that the dependent radius λ2

associated to the radius λ1 is positive, then λ1 ∈ V 1. The proof of the proposition
is complete. �
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