Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 114, pp. 1-17. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

GROWTH OF SOLUTIONS TO HIGHER-ORDER LINEAR DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENTS

HABIB HABIB, BENHARRAT BELAÏDI

Abstract

In this article, we discuss the order and hyper-order of the linear differential equation $$
f^{(k)}+\sum_{j=1}^{k-1}\left(B_{j} e^{b_{j} z}+D_{j} e^{d_{j} z}\right) f^{(j)}+\left(A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}\right) f=0
$$ where $A_{j}(z), B_{j}(z), D_{j}(z)$ are entire functions $(\not \equiv 0)$ and a_{1}, a_{2}, d_{j} are complex numbers $(\neq 0)$, and b_{j} are real numbers. Under certain conditions, we prove that every solution $f \not \equiv 0$ of the above equation is of infinite order. Then, we obtain an estimate of the hyper-order. Finally, we give an estimate of the exponent of convergence for distinct zeros of the functions $f^{(j)}-\varphi(j=0,1,2)$, where φ is an entire function $(\not \equiv 0)$ and of order $\sigma(\varphi)<1$, while the solution f of the differential equation is of infinite order. Our results extend the previous results due to Chen, Peng and Chen and others.

1. Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the fundamental results and the standard notations of the Nevanlinna's value distribution theory (see [13, 19]). Let $\sigma(f)$ denote the order of growth of an entire function f and the hyper-order $\sigma_{2}(f)$ of f is defined by (see [19])

$$
\sigma_{2}(f)=\limsup _{r \rightarrow+\infty} \frac{\log \log T(r, f)}{\log r}=\limsup _{r \rightarrow+\infty} \frac{\log \log \log M(r, f)}{\log r}
$$

where $T(r, f)$ is the Nevanlinna characteristic function of f and

$$
M(r, f)=\max _{|z|=r}|f(z)|
$$

To give some estimates of fixed points, we recall the following definition.
Definition 1.1 (3,15). Let f be a meromorphic function. Then the exponent of convergence of the sequence of distinct fixed points of $f(z)$ is defined by

$$
\bar{\tau}(f)=\bar{\lambda}(f-z)=\limsup _{r \rightarrow+\infty} \frac{\log \bar{N}\left(r, \frac{1}{f-z}\right)}{\log r}
$$

[^0]where $\bar{N}(r, 1 / f)$ is the counting function of distinct zeros of $f(z)$ in $\{z:|z| \leq r\}$. We also define
$$
\bar{\lambda}(f-\varphi)=\limsup _{r \rightarrow+\infty} \frac{\log \bar{N}\left(r, \frac{1}{f-\varphi}\right)}{\log r}
$$
for any meromorphic function $\varphi(z)$.
For the second-order linear differential equation
\[

$$
\begin{equation*}
f^{\prime \prime}+e^{-z} f^{\prime}+B(z) f=0, \tag{1.1}
\end{equation*}
$$

\]

where $B(z)$ is an entire function, it is well-known that each solution f of equation (1.1) is an entire function, and that if f_{1} and f_{2} are two linearly independent solutions of (1.1), then by [6], there is at least one of f_{1}, f_{2} of infinite order. Hence, "most" solutions of (1.1) will have infinite order. But equation (1.1) with $B(z)=-\left(1+e^{-z}\right)$ possesses a solution $f(z)=e^{z}$ of finite order.

A natural question arises: What conditions on $B(z)$ will guarantee that every solution $f \not \equiv 0$ of (1.1) has infinite order? Many authors, Frei [7, Ozawa 16, Amemiya-Ozawa [1] and Gundersen [9, Langley [14 have studied this problem. They proved that when $B(z)$ is a nonconstant polynomial or $B(z)$ is a transcendental entire function with order $\sigma(B) \neq 1$, then every solution $f \not \equiv 0$ of (1.1) has infinite order.

In 2002, Chen 4 considered the question: What conditions on $B(z)$ when $\sigma(B)=1$ will guarantee that every nontrivial solution of (1.1) has infinite order? He proved the following result, which improved results of Frei, Amemiya-Ozawa, Ozawa, Langley and Gundersen.

Theorem $1.2(4)$. Let $A_{j}(z)(\not \equiv 0)(j=0,1)$ be entire functions with $\max \left\{\sigma\left(A_{j}\right)\right.$ $(j=0,1)\}<1$. and let a, b be complex constants that satisfy $a b \neq 0$ and $a \neq b$. Then every solution $f \not \equiv 0$ of the differential equation

$$
f^{\prime \prime}+A_{1}(z) e^{a z} f^{\prime}+A_{0}(z) e^{b z} f=0
$$

is of infinite order.
In [17], Peng and Chen investigated the order and hyper-order of solutions of some second order linear differential equations and have proved the following result.
Theorem 1.3 ([17). Let $A_{j}(z)(\not \equiv 0)(j=1,2)$ be entire functions with $\sigma\left(A_{j}\right)<1$, a_{1}, a_{2} be complex numbers such that $a_{1} a_{2} \neq 0, a_{1} \neq a_{2}$ (suppose that $\left|a_{1}\right| \leq\left|a_{2}\right|$). If $\arg a_{1} \neq \pi$ or $a_{1}<-1$, then every solution $f(\not \equiv 0)$ of the differential equation

$$
f^{\prime \prime}+e^{-z} f^{\prime}+\left(A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}\right) f=0
$$

has infinite order and $\sigma_{2}(f)=1$.
Recently in [12], the authors extend and improve the results of Theorem 1.3 to some higher order linear differential equations as follows.
Theorem $1.4([12])$. Let $A_{j}(z)(\not \equiv 0)(j=1,2), B_{l}(z)(\not \equiv 0)(l=1, \ldots, k-1)$, $D_{m}(m=0, \ldots, k-1)$ be entire functions with $\max \left\{\sigma\left(A_{j}\right), \sigma\left(B_{l}\right), \sigma\left(D_{m}\right)\right\}<1, b_{l}$ ($l=1, \ldots, k-1$) be complex constants such that
(i) $\arg b_{l}=\arg a_{1}$ and $b_{l}=c_{l} a_{1}\left(0<c_{l}<1\right)\left(l \in I_{1}\right)$ and
(ii) b_{l} is a real constant such that $b_{l} \leq 0\left(l \in I_{2}\right)$, where $I_{1} \neq \emptyset, I_{2} \neq \emptyset$, $I_{1} \cap I_{2}=\emptyset, I_{1} \cup I_{2}=\{1,2, \ldots, k-1\}$, and a_{1}, a_{2} are complex numbers such that $a_{1} a_{2} \neq 0, a_{1} \neq a_{2}$ (suppose that $\left|a_{1}\right| \leq\left|a_{2}\right|$).

If $\arg a_{1} \neq \pi$ or a_{1} is a real number such that $a_{1}<\frac{b}{1-c}$, where $c=\max \left\{c_{l}: l \in I_{1}\right\}$ and $b=\min \left\{b_{l}: l \in I_{2}\right\}$, then every solution $f \not \equiv 0$ of the differential equation
$f^{(k)}+\left(D_{k-1}+B_{k-1} e^{b_{k-1} z}\right) f^{(k-1)}+\cdots+\left(D_{1}+B_{1} e^{b_{1} z}\right) f^{\prime}+\left(D_{0}+A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}\right) f=0$
satisfies $\sigma(f)=+\infty$ and $\sigma_{2}(f)=1$.
In this paper, we continue the research in this type of problems, the main purpose of this paper is to extend and improve the results of Theorems 1.21 .4 to some higher order linear differential equations. In fact we will prove the following results.

Theorem 1.5. Let $k \geq 2$ be an integer, $A_{j}(z)(\not \equiv 0)(j=1,2)$ and $B_{j}(z)(\not \equiv 0)$, $D_{j}(z)(\not \equiv 0)(j=1, \ldots, k-1)$ be entire functions with

$$
\max \left\{\sigma\left(A_{j}\right)(j=1,2), \sigma\left(B_{j}\right)(j=1, \ldots, k-1), \sigma\left(D_{j}\right)(j=1, \ldots, k-1)\right\}<1
$$

a_{1}, a_{2} be complex numbers such that $a_{1} a_{2} \neq 0, a_{1} \neq a_{2}, d_{j} \neq 0(j=1, \ldots, k-1)$ be complex numbers and $b_{j}(j=1, \ldots, k-1)$ be real numbers such that $b_{j}<0$. Suppose that there exists $\alpha_{j}, \beta_{j}(j=1, \ldots, k-1)$ where $0<\alpha_{j}<1,0<\beta_{j}<1$ and $d_{j}=\alpha_{j} a_{1}+\beta_{j} a_{2}$. Set $\alpha=\max \left\{\alpha_{j}: j=1, \ldots, k-1\right\}, \beta=\max \left\{\beta_{j}: j=\right.$ $1, \ldots, k-1\}$ and $b=\min \left\{b_{j}: j=1, \ldots, k-1\right\}$. If
(1) $\arg a_{1} \neq \pi$ and $\arg a_{1} \neq \arg a_{2}$; or
(2) $\arg a_{1} \neq \pi$, $\arg a_{1}=\arg a_{2}$ and (i) $\left|a_{2}\right|>\frac{\left|a_{1}\right|}{1-\beta}$ or (ii) $\left|a_{2}\right|<(1-\alpha)\left|a_{1}\right|$; or
(3) $a_{1}<0$ and $\arg a_{1} \neq \arg a_{2}$; or
(4) (i) $(1-\beta) a_{2}-b<a_{1}<0, a_{2}<\frac{b}{1-\beta}$ or (ii) $a_{1}<\frac{a_{2}+b}{1-\alpha}$ and $a_{2}<0$,
then every solution $f(\not \equiv 0)$ of the differential equation

$$
\begin{equation*}
f^{(k)}+\sum_{j=1}^{k-1}\left(B_{j} e^{b_{j} z}+D_{j} e^{d_{j} z}\right) f^{(j)}+\left(A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}\right) f=0 \tag{1.2}
\end{equation*}
$$

satisfies $\sigma(f)=+\infty$ and $\sigma_{2}(f)=1$.
Set

$$
\begin{aligned}
& I_{1}=\left\{2 a_{1}, 2 a_{2}, a_{1}+a_{2}, a_{1}, a_{2}, a_{1}+b_{i}, a_{2}+b_{i}, a_{1}+d_{i}, a_{2}+d_{i}(i=1, \ldots, k-1)\right\} \\
& I_{2}=\left\{2 a_{1}, 2 a_{2}, a_{1}+a_{2}, a_{1}+b_{1}, a_{2}+b_{1}, a_{1}+d_{1}, a_{2}+d_{1}\right\} \\
& I_{3}=\left\{3 a_{1}, 3 a_{2}, 2 a_{1}+a_{2}, a_{1}+2 a_{2}, 2 a_{1}, 2 a_{2}, a_{1}+a_{2}, a_{1}+b_{1}, a_{2}+b_{1}, a_{1}+d_{1}\right. \\
& a_{2}+d_{1}, 2 a_{1}+b_{i}, 2 a_{2}+b_{i}, 2 a_{1}+d_{i}, 2 a_{2}+d_{i}, a_{1}+a_{2}+b_{i}, a_{1}+a_{2}+d_{i} \\
& a_{1}+b_{1}+b_{i}, a_{2}+b_{1}+b_{i}, a_{1}+d_{1}+d_{i}, a_{2}+d_{1}+d_{i}, a_{1}+b_{1}+d_{i} \\
&\left.a_{2}+b_{1}+d_{i}(i=1, \ldots, k-1), a_{1}+d_{1}+b_{i}, a_{2}+d_{1}+b_{i}(i=2, \ldots, k-1)\right\} .
\end{aligned}
$$

Theorem 1.6. Let $A_{j}(z)(j=1,2), B_{j}(z), D_{j}(z)(j=1, \ldots, k-1), a_{1}, a_{2}, b_{j}, d_{j}$, $\alpha_{j}, \beta_{j}(j=1, \ldots, k-1), \alpha, \beta$ and b satisfy the additional hypotheses of Theorem 1.5. If $\varphi(\not \equiv 0)$ is an entire function of order $\sigma(\varphi)<1$, then every solution $f(\not \equiv 0)$ of equation 1.2 satisfies

$$
\bar{\lambda}(f-\varphi)=+\infty
$$

Furthermore, we have
(1) If $\left(2 a_{1}\right) \notin I_{1} \backslash\left\{2 a_{1}\right\}$ or $\left(2 a_{2}\right) \notin I_{1} \backslash\left\{2 a_{2}\right\}$, then

$$
\bar{\lambda}\left(f^{\prime}-\varphi\right)=+\infty
$$

(2) If (i) $\left(2 a_{1}\right) \notin I_{2} \backslash\left\{2 a_{1}\right\}$ or $\left(2 a_{2}\right) \notin I_{2} \backslash\left\{2 a_{2}\right\}$ and (ii) $\left(3 a_{1}\right) \notin I_{3} \backslash\left\{3 a_{1}\right\}$ or $\left(3 a_{2}\right) \notin I_{3} \backslash\left\{3 a_{2}\right\}$, then

$$
\bar{\lambda}\left(f^{\prime \prime}-\varphi\right)=+\infty
$$

Now set

$$
\begin{aligned}
J_{1}= & \left\{2 a_{1}, 2 a_{2}, a_{1}+a_{2}, a_{1}+b_{i}, a_{2}+b_{i}, a_{1}+d_{i}, a_{2}+d_{i}(i=1,2)\right\}, \\
J_{2}=\{ & \left\{3 a_{1}, 3 a_{2}, 2 a_{1}+a_{2}, a_{1}+2 a_{2}, 2 a_{1}+b_{i}, 2 a_{2}+b_{i}, 2 a_{1}+d_{i},\right. \\
& 2 a_{2}+d_{i}, a_{1}+a_{2}+b_{i}, a_{1}+a_{2}+d_{i}, a_{1}+b_{1}+b_{i}, a_{2}+b_{1}+b_{i}, a_{1} \\
& +d_{1}+d_{i}, a_{2}+d_{1}+d_{i}, a_{1}+b_{1}+d_{i}, a_{2}+b_{1}+d_{i}(i=1,2,3), \\
& \left.a_{1}+d_{1}+b_{i}, a_{2}+d_{1}+b_{i}(i=2,3)\right\} .
\end{aligned}
$$

From Theorem 1.6, we obtain the following corollary.
Corollary 1.7. Let $A_{j}(z)(j=1,2), B_{j}(z), D_{j}(z)(j=1, \ldots, k-1), a_{1}, a_{2}, b_{j}, d_{j}$, $\alpha_{j}, \beta_{j}(j=1, \ldots, k-1), \alpha, \beta$ and b satisfy the additional hypotheses of Theorem 1.5. If $f(\not \equiv 0)$ is any solution of $\sqrt[1.2]{ }$, then f has infinitely many fixed points and satisfies

$$
\bar{\tau}(f)=\infty
$$

Furthermore, we have
(1) If $\left(2 a_{1}\right) \notin J_{1} \backslash\left\{2 a_{1}\right\}$ or $\left(2 a_{2}\right) \notin J_{1} \backslash\left\{2 a_{2}\right\}$, then f^{\prime} has infinitely many fixed points and satisfies

$$
\bar{\tau}\left(f^{\prime}\right)=\infty
$$

(2) If (i) $\left(2 a_{1}\right) \notin I_{2} \backslash\left\{2 a_{1}\right\}$ or $\left(2 a_{2}\right) \notin I_{2} \backslash\left\{2 a_{2}\right\}$ and (ii) $\left(3 a_{1}\right) \notin J_{2} \backslash\left\{3 a_{1}\right\}$ or $\left(3 a_{2}\right) \notin J_{2} \backslash\left\{3 a_{2}\right\}$, then $f^{\prime \prime}$ has infinitely many fixed points and satisfies

$$
\bar{\tau}\left(f^{\prime \prime}\right)=\infty
$$

2. Preliminary lemmas

We define the linear measure of a set $E \subset[0,+\infty)$ by $m(E)=\int_{0}^{+\infty} \chi_{E}(t) d t$ and the logarithmic measure of a set $F \subset(1,+\infty)$ by $\operatorname{lm}(F)=\int_{1}^{+\infty} \frac{\chi_{F}(t)}{t} d t$, where χ_{H} is the characteristic function of a set H.

Lemma 2.1 (10). Let f be a transcendental meromorphic function with $\sigma(f)=$ $\sigma<+\infty$. Let $\varepsilon>0$ be a given constant, and let k, j be integers satisfying $k>j \geq 0$. Then, there exists a set $E_{1} \subset\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ with linear measure zero, such that, if $\psi \in\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right) \backslash E_{1}$, then there is a constant $R_{0}=R_{0}(\psi)>1$, such that for all z satisfying $\arg z=\psi$ and $|z| \geq R_{0}$, we have

$$
\begin{equation*}
\left|\frac{f^{(k)}(z)}{f^{(j)}(z)}\right| \leq|z|^{(k-j)(\sigma-1+\varepsilon)} \tag{2.1}
\end{equation*}
$$

Lemma $2.2([4])$. Suppose that $P(z)=(\alpha+i \beta) z^{n}+\ldots(\alpha, \beta$ are real numbers, $|\alpha|+|\beta| \neq 0)$ is a polynomial with degree $n \geq 1$, that $A(z)(\not \equiv 0)$ is an entire function with $\sigma(A)<n$. Set $g(z)=A(z) e^{P(z)}, z=r e^{i \theta}, \delta(P, \theta)=\alpha \cos n \theta-\beta \sin n \theta$. Then for any given $\varepsilon>0$, there is a set $E_{2} \subset[0,2 \pi)$ that has linear measure zero, such that for any $\theta \in[0,2 \pi) \backslash\left(E_{2} \cup E_{3}\right)$, there is $R>0$, such that for $|z|=r>R$, we have
(i) If $\delta(P, \theta)>0$, then

$$
\begin{equation*}
\exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\} \leq\left|g\left(r e^{i \theta}\right)\right| \leq \exp \left\{(1+\varepsilon) \delta(P, \theta) r^{n}\right\} \tag{2.2}
\end{equation*}
$$

(ii) If $\delta(P, \theta)<0$, then

$$
\begin{equation*}
\exp \left\{(1+\varepsilon) \delta(P, \theta) r^{n}\right\} \leq\left|g\left(r e^{i \theta}\right)\right| \leq \exp \left\{(1-\varepsilon) \delta(P, \theta) r^{n}\right\}, \tag{2.3}
\end{equation*}
$$ where $E_{3}=\{\theta \in[0,2 \pi): \delta(P, \theta)=0\}$ is a finite set.

Lemma 2.3 ([17). Suppose that $n \geq 1$ is a natural number. Let $P_{j}(z)=a_{j n} z^{n}+$ $\ldots(j=1,2)$ be nonconstant polynomials, where $a_{j q}(q=1, \ldots, n)$ are complex numbers and $a_{1 n} a_{2 n} \neq 0$. Set $z=r e^{i \theta}, a_{j n}=\left|a_{j n}\right| e^{i \theta_{j}}, \theta_{j} \in\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right), \delta\left(P_{j}, \theta\right)=$ $\left|a_{j n}\right| \cos \left(\theta_{j}+n \theta\right)$, then there is a set $E_{4} \subset\left[-\frac{\pi}{2 n}, \frac{3 \pi}{2 n}\right)$ that has linear measure zero such that if $\theta_{1} \neq \theta_{2}$, then there exists a ray $\arg z=\theta, \theta \in\left(-\frac{\pi}{2 n}, \frac{\pi}{2 n}\right) \backslash\left(E_{4} \cup E_{5}\right)$, satisfying

$$
\begin{equation*}
\delta\left(P_{1}, \theta\right)>0, \quad \delta\left(P_{2}, \theta\right)<0 \tag{2.4}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta\left(P_{1}, \theta\right)<0, \quad \delta\left(P_{2}, \theta\right)>0, \tag{2.5}
\end{equation*}
$$

where $E_{5}=\left\{\theta \in\left[-\frac{\pi}{2 n}, \frac{3 \pi}{2 n}\right): \delta\left(P_{j}, \theta\right)=0\right\}$ is a finite set, which has linear measure zero.
Remark 2.4 (17). In Lemma 2.3 if $\theta \in\left(-\frac{\pi}{2 n}, \frac{\pi}{2 n}\right) \backslash\left(E_{4} \cup E_{5}\right)$ is replaced by $\theta \in\left(\frac{\pi}{2 n}, \frac{3 \pi}{2 n}\right) \backslash\left(E_{4} \cup E_{5}\right)$, then we obtain the same result.
Lemma 2.5 ([5). Suppose that $k \geq 2$ and $B_{0}, B_{1}, \ldots, B_{k-1}$ are entire functions of finite order and let $\sigma=\max \left\{\sigma\left(B_{j}\right): j=0, \ldots, k-1\right\}$. Then every solution f of the differential equation

$$
\begin{equation*}
f^{(k)}+B_{k-1} f^{(k-1)}+\cdots+B_{1} f^{\prime}+B_{0} f=0 \tag{2.6}
\end{equation*}
$$

satisfies $\sigma_{2}(f) \leq \sigma$.
Lemma 2.6 (10). Let $f(z)$ be a transcendental meromorphic function, and let $\alpha>1$ be a given constant. Then there exist a set $E_{6} \subset(1, \infty)$ with finite logarithmic measure and a constant $B>0$ that depends only on α and $i, j(0 \leq i<j \leq k)$, such that for all z satisfying $|z|=r \notin[0,1] \cup E_{6}$, we have

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f^{(i)}(z)}\right| \leq B\left\{\frac{T(\alpha r, f)}{r}\left(\log ^{\alpha} r\right) \log T(\alpha r, f)\right\}^{j-i} \tag{2.7}
\end{equation*}
$$

Lemma 2.7 ([11). Let $\varphi:[0,+\infty) \rightarrow \mathbb{R}$ and $\psi:[0,+\infty) \rightarrow \mathbb{R}$ be monotone non-decreasing functions such that $\varphi(r) \leq \psi(r)$ for all $r \notin E_{7} \cup[0,1]$, where $E_{7} \subset$ $(1,+\infty)$ is a set of finite logarithmic measure. Let $\gamma>1$ be a given constant. Then there exists an $r_{1}=r_{1}(\gamma)>0$ such that $\varphi(r) \leq \psi(\gamma r)$ for all $r>r_{1}$.

Lemma 2.8 ([2]). Let $A_{0}, A_{1}, \ldots, A_{k-1}, F \not \equiv 0$ be finite order meromorphic functions. If $f(z)$ is an infinite order meromorphic solution of the equation

$$
\begin{equation*}
f^{(k)}+A_{k-1} f^{(k-1)}+\cdots+A_{1} f^{\prime}+A_{0} f=F, \tag{2.8}
\end{equation*}
$$

then f satisfies $\bar{\lambda}(f)=\lambda(f)=\sigma(f)=\infty$.
The following lemma, due to Gross [8], is important in the factorization and uniqueness theory of meromorphic functions, playing an important role in this paper as well.

Lemma 2.9 (8 , 19]). Suppose that $f_{1}(z), f_{2}(z), \ldots, f_{n}(z)(n \geq 2)$ are meromorphic functions and $g_{1}(z), g_{2}(z), \ldots, g_{n}(z)$ are entire functions satisfying the following conditions:
(i) $\sum_{j=1}^{n} f_{j}(z) e^{g_{j}(z)} \equiv 0$;
(ii) $g_{j}(z)-g_{k}(z)$ are not constants for $1 \leq j<k \leq n$;
(iii) For $1 \leq j \leq n, 1 \leq h<k \leq n, T\left(r, f_{j}\right)=o\left\{T\left(r, e^{g_{h}(z)-g_{k}(z)}\right)\right\} \quad(r \rightarrow \infty$, $\left.r \notin E_{8}\right)$, where E_{8} is a set with finite linear measure.
Then $f_{j}(z) \equiv 0(j=1, \ldots, n)$.
Lemma 2.10 (18). Suppose that $f_{1}(z), f_{2}(z), \ldots, f_{n}(z)(n \geq 2)$ are meromorphic functions and $g_{1}(z), g_{2}(z), \ldots, g_{n}(z)$ are entire functions satisfying the following conditions:
(i) $\sum_{j=1}^{n} f_{j}(z) e^{g_{j}(z)} \equiv f_{n+1}$;
(ii) If $1 \leq j \leq n+1,1 \leq k \leq n$, the order of f_{j} is less than the order of $e^{g_{k}(z)}$. If $n \geq 2,1 \leq j \leq n+1,1 \leq h<k \leq n$, and the order of f_{j} is less than the order of $e^{g_{h}-g_{k}}$.
Then $f_{j}(z) \equiv 0(j=1,2, \ldots, n+1)$.

3. Proof of Theorem 1.5

First step. Assume that $f(\not \equiv 0)$ is a solution of equation 1.2 . We prove that $\sigma(f)=+\infty$. Suppose that $\sigma(f)=\sigma<+\infty$. We rewrite 1.2 as

$$
\begin{equation*}
\frac{f^{(k)}}{f}+\sum_{j=1}^{k-1}\left(B_{j} e^{b_{j} z}+D_{j} e^{\left(\alpha_{j} a_{1}+\beta_{j} a_{2}\right) z}\right) \frac{f^{(j)}}{f}+A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}=0 \tag{3.1}
\end{equation*}
$$

Set

$$
\gamma=\max \left\{\sigma\left(B_{j}\right)(j=1, \ldots, k-1)\right\}<1
$$

Then, for any given $\varepsilon(0<\varepsilon<1-\gamma)$ and for sufficiently large r, we have

$$
\begin{equation*}
\left|B_{j}(z)\right| \leq \exp \left\{r^{\gamma+\varepsilon}\right\} \quad(j=1, \ldots, k-1) \tag{3.2}
\end{equation*}
$$

By Lemma 2.1, for any given $\varepsilon(0<\varepsilon<1-\gamma)$, there exists a set $E_{1} \subset\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right)$ of linear measure zero, such that if $\theta \in\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right) \backslash E_{1}$, then there is a constant $R_{0}=R_{0}(\theta)>1$, such that for all z satisfying $\arg z=\theta$ and $|z|=r \geq R_{0}$, we have

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f(z)}\right| \leq r^{j(\sigma-1+\varepsilon)} \quad(j=1, \ldots, k) \tag{3.3}
\end{equation*}
$$

Let $z=r e^{i \theta}, a_{1}=\left|a_{1}\right| e^{i \theta_{1}}, a_{2}=\left|a_{2}\right| e^{i \theta_{2}}, \theta_{1}, \theta_{2} \in\left[-\frac{\pi}{2}, \frac{3 \pi}{2}\right)$. We know that $\delta\left(\alpha_{j} a_{1} z, \theta\right)=\alpha_{j} \delta\left(a_{1} z, \theta\right), \delta\left(\beta_{j} a_{2} z, \theta\right)=\beta_{j} \delta\left(a_{2} z, \theta\right)(j=1, \ldots, k-1)$ and $\alpha<1$, $\beta<1$.
Case 1. Assume that $\arg a_{1} \neq \pi$ and $\arg a_{1} \neq \arg a_{2}$, which is $\theta_{1} \neq \pi$ and $\theta_{1} \neq \theta_{2}$. By Lemma 2.2 and Lemma 2.3, for any given ε,

$$
0<\varepsilon<\min \left\{1-\gamma, \frac{1-\alpha}{2(1+\alpha)}, \frac{1-\beta}{2(1+\beta)}\right\}
$$

there is a ray $\arg z=\theta$ such that $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{4} \cup E_{5}\right)$ (where E_{4} and E_{5} are defined as in Lemma 2.3, $E_{1} \cup E_{4} \cup E_{5}$ is of the linear measure zero), and satisfying

$$
\delta\left(a_{1} z, \theta\right)>0, \delta\left(a_{2} z, \theta\right)<0
$$

or

$$
\delta\left(a_{1} z, \theta\right)<0, \delta\left(a_{2} z, \theta\right)>0
$$

(a) When $\delta\left(a_{1} z, \theta\right)>0, \delta\left(a_{2} z, \theta\right)<0$, for sufficiently large r, we obtain by Lemma 2.2 .

$$
\begin{gather*}
\left|A_{1} e^{a_{1} z}\right| \geq \exp \left\{(1-\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \tag{3.4}\\
\left|A_{2} e^{a_{2} z}\right| \leq \exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\}<1, \tag{3.5}\\
\left|D_{j} e^{\alpha_{j} a_{1} z}\right| \leq \exp \left\{(1+\varepsilon) \alpha_{j} \delta\left(a_{1} z, \theta\right) r\right\} \tag{3.6}\\
\leq \exp \left\{(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right) r\right\} \quad(j=1, \ldots, k-1), \\
\left|e^{\beta_{j} a_{2} z}\right| \leq \exp \left\{(1-\varepsilon) \beta_{j} \delta\left(a_{2} z, \theta\right) r\right\}<1(j=1, \ldots, k-1) . \tag{3.7}
\end{gather*}
$$

By (3.6) and (3.7), we obtain

$$
\begin{equation*}
\left|D_{j} e^{\left(\alpha_{j} a_{1}+\beta_{j} a_{2}\right) z}\right|=\left|D_{j} e^{\alpha_{j} a_{1} z}\right|\left|e^{\beta_{j} a_{2} z}\right| \leq \exp \left\{(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right) r\right\} \tag{3.8}
\end{equation*}
$$

where $j=1, \ldots, k-1$. For $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, by 3.2 , we have

$$
\begin{equation*}
\left|B_{j} e^{b_{j} z}\right|=\left|B_{j}\right|\left|e^{b_{j} z}\right| \leq \exp \left\{r^{\gamma+\varepsilon}\right\} e^{b_{j} r \cos \theta} \leq \exp \left\{r^{\gamma+\varepsilon}\right\} \tag{3.9}
\end{equation*}
$$

because $b_{j}<0$ and $\cos \theta>0(j=1, \ldots, k-1)$. By (3.1), we obtain

$$
\begin{equation*}
\left|A_{1} e^{a_{1} z}\right| \leq\left|\frac{f^{(k)}}{f}\right|+\sum_{j=1}^{k-1}\left(\left|B_{j} e^{b_{j} z}\right|+\left|D_{j} e^{\left(\alpha_{j} a_{1}+\beta_{j} a_{2}\right) z}\right|\right)\left|\frac{f^{(j)}}{f}\right|+\left|A_{2} e^{a_{2} z}\right| \tag{3.10}
\end{equation*}
$$

Substituting (3.3)-3.5 , 3.8 and 3.9 in 3.10, we have

$$
\begin{align*}
\exp \left\{(1-\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} & \leq\left|A_{1} e^{a_{1} z}\right| \\
& \leq M_{1} r^{M_{2}} \exp \left\{r^{\gamma+\varepsilon}\right\} \exp \left\{(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right) r\right\} \tag{3.11}
\end{align*}
$$

where $M_{1}>0$ and $M_{2}>0$ are some constants. By $0<\varepsilon<\frac{1-\alpha}{2(1+\alpha)}$ and 3.11, we obtain

$$
\begin{equation*}
\exp \left\{\frac{1-\alpha}{2} \delta\left(a_{1} z, \theta\right) r\right\} \leq M_{1} r^{M_{2}} \exp \left\{r^{\gamma+\varepsilon}\right\} \tag{3.12}
\end{equation*}
$$

By $\delta\left(a_{1} z, \theta\right)>0$ and $\gamma+\varepsilon<1$ we know that 3.12 is a contradiction.
(b) When $\delta\left(a_{1} z, \theta\right)<0, \delta\left(a_{2} z, \theta\right)>0$, for sufficiently large r, we obtain

$$
\begin{gather*}
\left|A_{2} e^{a_{2} z}\right| \geq \exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} \tag{3.13}\\
\left|A_{1} e^{a_{1} z}\right| \leq \exp \left\{(1-\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\}<1, \tag{3.14}\\
\left|D_{j} e^{\alpha_{j} a_{1} z}\right| \leq \exp \left\{(1-\varepsilon) \alpha_{j} \delta\left(a_{1} z, \theta\right) r\right\}<1 \quad(j=1, \ldots, k-1), \tag{3.15}\\
\left|e^{\beta_{j} a_{2} z}\right| \leq \exp \left\{(1+\varepsilon) \beta_{j} \delta\left(a_{2} z, \theta\right) r\right\} \\
\leq \exp \left\{(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right) r\right\} \quad(j=1, \ldots, k-1) \tag{3.16}
\end{gather*}
$$

By (3.15) and (3.16), we have

$$
\begin{equation*}
\left|D_{j} e^{\left(\alpha_{j} a_{1}+\beta_{j} a_{2}\right) z}\right|=\left|D_{j} e^{\alpha_{j} a_{1} z}\right|\left|e^{\beta_{j} a_{2} z}\right| \leq \exp \left\{(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right) r\right\} \tag{3.17}
\end{equation*}
$$

where $j=1, \ldots, k-1$. By 3.1, we obtain

$$
\begin{equation*}
\left|A_{2} e^{a_{2} z}\right| \leq\left|\frac{f^{(k)}}{f}\right|+\sum_{j=1}^{k-1}\left(\left|B_{j} e^{b_{j} z}\right|+\left|D_{j} e^{\left(\alpha_{j} a_{1}+\beta_{j} a_{2}\right) z}\right|\right)\left|\frac{f^{(j)}}{f}\right|+\left|A_{1} e^{a_{1} z}\right| \tag{3.18}
\end{equation*}
$$

Substituting (3.3), 3.9, (3.13), (3.14) and 3.17) in 3.18), we have

$$
\begin{align*}
\exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} & \leq\left|A_{2} e^{a_{2} z}\right| \\
& \leq M_{1} r^{M_{2}} \exp \left\{r^{\gamma+\varepsilon}\right\} \exp \left\{(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right) r\right\} \tag{3.19}
\end{align*}
$$

By $0<\varepsilon<\frac{1-\beta}{2(1+\beta)}$ and (3.19), we obtain

$$
\begin{equation*}
\exp \left\{\frac{1-\beta}{2} \delta\left(a_{2} z, \theta\right) r\right\} \leq M_{1} r^{M_{2}} \exp \left\{r^{\gamma+\varepsilon}\right\} \tag{3.20}
\end{equation*}
$$

By $\delta\left(a_{2} z, \theta\right)>0$ and $\gamma+\varepsilon<1$ we know that 3.20 is a contradiction.
Case 2. Assume that $\arg a_{1} \neq \pi$, $\arg a_{1}=\arg a_{2}$, which is $\theta_{1} \neq \pi, \theta_{1}=\theta_{2}$. By Lemma 2.3 for any given ε

$$
0<\varepsilon<\min \left\{1-\gamma, \frac{(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|}{2\left[(1+\alpha)\left|a_{1}\right|+\left|a_{2}\right|\right]}, \frac{(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|}{2\left[(1+\beta)\left|a_{2}\right|+\left|a_{1}\right|\right]}\right\}
$$

there is a ray $\arg z=\theta$ such that $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{4} \cup E_{5}\right)$ and $\delta\left(a_{1} z, \theta\right)>0$. Since $\theta_{1}=\theta_{2}$, then $\delta\left(a_{2} z, \theta\right)>0$.
(i) $\left|a_{2}\right|>\frac{\left|a_{1}\right|}{1-\beta}$. For sufficiently large r, we have 3.6, (3.13), 3.16) hold and

$$
\begin{equation*}
\left|A_{1} e^{a_{1} z}\right| \leq \exp \left\{(1+\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \tag{3.21}
\end{equation*}
$$

By (3.6) and (3.16), we obtain

$$
\begin{equation*}
\left|D_{j} e^{\left(\alpha_{j} a_{1}+\beta_{j} a_{2}\right) z}\right| \leq \exp \left\{(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right) r\right\} \exp \left\{(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right) r\right\} \tag{3.22}
\end{equation*}
$$

where $j=1, \ldots, k-1$. Substituting (3.3), (3.9), 3.13), 3.21) and (3.22) in (3.18), we have

$$
\begin{align*}
& \exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} \\
& \leq\left|A_{2} e^{a_{2} z}\right| \\
& \leq k \exp \left\{r^{\gamma+\varepsilon}\right\} \exp \left\{(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right) r\right\} \exp \left\{(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right) r\right\} r^{k(\sigma-1+\varepsilon)} \tag{3.23}\\
& \quad+\exp \left\{(1+\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \\
& \leq M_{1} r^{M_{2}} \exp \left\{r^{\gamma+\varepsilon}\right\} \exp \left\{(1+\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \exp \left\{(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right) r\right\} .
\end{align*}
$$

From 3.23, we obtain

$$
\begin{equation*}
\exp \left\{\eta_{1} r\right\} \leq M_{1} r^{M_{2}} \exp \left\{r^{\gamma+\varepsilon}\right\} \tag{3.24}
\end{equation*}
$$

where

$$
\eta_{1}=(1-\varepsilon) \delta\left(a_{2} z, \theta\right)-(1+\varepsilon) \delta\left(a_{1} z, \theta\right)-(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right)
$$

Since

$$
0<\varepsilon<\frac{(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|}{2\left[(1+\beta)\left|a_{2}\right|+\left|a_{1}\right|\right]}
$$

$\theta_{1}=\theta_{2}$ and $\cos \left(\theta_{1}+\theta\right)>0$, we have

$$
\begin{aligned}
\eta_{1} & =[1-\beta-\varepsilon(1+\beta)] \delta\left(a_{2} z, \theta\right)-(1+\varepsilon) \delta\left(a_{1} z, \theta\right) \\
& =[1-\beta-\varepsilon(1+\beta)]\left|a_{2}\right| \cos \left(\theta_{1}+\theta\right)-(1+\varepsilon)\left|a_{1}\right| \cos \left(\theta_{1}+\theta\right) \\
& =\left\{[1-\beta-\varepsilon(1+\beta)]\left|a_{2}\right|-(1+\varepsilon)\left|a_{1}\right|\right\} \cos \left(\theta_{1}+\theta\right) \\
& =\left\{(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|-\varepsilon\left[(1+\beta)\left|a_{2}\right|+\left|a_{1}\right|\right]\right\} \cos \left(\theta_{1}+\theta\right) \\
& >\frac{(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|}{2} \cos \left(\theta_{1}+\theta\right)>0 .
\end{aligned}
$$

Since $\eta_{1}>0$ and $\gamma+\varepsilon<1$, we know that (3.24) is a contradiction.
(ii) $\left|a_{2}\right|<(1-\alpha)\left|a_{1}\right|$. For sufficiently large r, we have (3.4), (3.6), 3.16) and (3.22) hold; then we obtain

$$
\begin{equation*}
\left|A_{2} e^{a_{2} z}\right| \leq \exp \left\{(1+\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} . \tag{3.25}
\end{equation*}
$$

Substituting (3.3), (3.4), (3.9), 3.22 and (3.25) in 3.10), we have

$$
\begin{align*}
& \exp \left\{(1-\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \\
& \leq\left|A_{1} e^{a_{1} z}\right| \\
& \leq k \exp \left\{r^{\gamma+\varepsilon}\right\} \exp \left\{(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right) r\right\} \exp \left\{(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right) r\right\} r^{k(\sigma-1+\varepsilon)} \tag{3.26}\\
&+\exp \left\{(1+\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} \\
& \leq M_{1} r^{M_{2}} \exp \left\{r^{\gamma+\varepsilon}\right\} \exp \left\{(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right) r\right\} \exp \left\{(1+\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} .
\end{align*}
$$

From the above inequality we obtain

$$
\begin{equation*}
\exp \left\{\eta_{2} r\right\} \leq M_{1} r^{M_{2}} \exp \left\{r^{\gamma+\varepsilon}\right\} \tag{3.27}
\end{equation*}
$$

where

$$
\eta_{2}=(1-\varepsilon) \delta\left(a_{1} z, \theta\right)-(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right)-(1+\varepsilon) \delta\left(a_{2} z, \theta\right)
$$

Since $0<\varepsilon<\frac{(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|}{2\left[(1+\alpha)\left|a_{1}\right|+\left|a_{2}\right|\right]}, \theta_{1}=\theta_{2}$ and $\cos \left(\theta_{1}+\theta\right)>0$, then we obtain

$$
\begin{aligned}
\eta_{2} & =\left\{(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|-\varepsilon\left[(1+\alpha)\left|a_{1}\right|+\left|a_{2}\right|\right]\right\} \cos \left(\theta_{1}+\theta\right) \\
& >\frac{(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|}{2} \cos \left(\theta_{1}+\theta\right)>0
\end{aligned}
$$

By $\eta_{2}>0$ and $\gamma+\varepsilon<1$ we know that 3.27) is a contradiction.
Case 3. Assume that $a_{1}<0$ and $\arg a_{1} \neq \arg a_{2}$, which is $\theta_{1}=\pi$ and $\theta_{2} \neq \pi$. By Lemma 2.2, for the above ε, there is a ray $\arg z=\theta$ such that $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{4} \cup\right.$ $\left.E_{5}\right)$ and $\delta\left(a_{2} z, \theta\right)>0$. Because $\cos \theta>0, \delta\left(a_{1} z, \theta\right)=\left|a_{1}\right| \cos \left(\theta_{1}+\theta\right)=-\left|a_{1}\right| \cos \theta<$ 0 . Using the same reasoning as in Case $1(\mathrm{~b})$, we can get a contradiction.
Case 4. Assume that (i) $(1-\beta) a_{2}-b<a_{1}<0$ and $a_{2}<\frac{b}{1-\beta}$ or (ii) $a_{1}<\frac{a_{2}+b}{1-\alpha}$ and $a_{2}<0$, which is $\theta_{1}=\theta_{2}=\pi$. By Lemma 2.2, for any given ε satisfying

$$
0<\varepsilon<\min \left\{1-\gamma, \frac{(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|+b}{2\left[(1+\alpha)\left|a_{1}\right|+\left|a_{2}\right|\right]}, \frac{(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|+b}{2\left[(1+\beta)\left|a_{2}\right|+\left|a_{1}\right|\right]}\right\}
$$

there is a ray $\arg z=\theta$ such that $\theta \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right) \backslash\left(E_{1} \cup E_{4} \cup E_{5}\right)$, then $\cos \theta<0$, $\delta\left(a_{1} z, \theta\right)=\left|a_{1}\right| \cos \left(\theta_{1}+\theta\right)=-\left|a_{1}\right| \cos \theta>0$ and

$$
\delta\left(a_{2} z, \theta\right)=\left|a_{2}\right| \cos \left(\theta_{2}+\theta\right)=-\left|a_{2}\right| \cos \theta>0
$$

(i) $(1-\beta) a_{2}-b<a_{1}<0$ and $a_{2}<\frac{b}{1-\beta}$. For sufficiently large r, we obtain (3.6), (3.13), (3.16, (3.21) and (3.22 hold. For $\theta \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$, by (3.2) we have

$$
\begin{equation*}
\left|B_{j} e^{b_{j} z}\right|=\left|B_{j}\right|\left|e^{b_{j} z}\right| \leq \exp \left\{r^{\gamma+\varepsilon}\right\} e^{b_{j} r \cos \theta} \leq \exp \left\{r^{\gamma+\varepsilon}\right\} e^{b r \cos \theta} \tag{3.28}
\end{equation*}
$$

because $b \leq b_{j}<0$ and $\cos \theta<0(j=1, \ldots, k-1)$. Substituting (3.3), (3.13), (3.21), 3.22 and (3.28) in (3.18), we obtain

$$
\begin{align*}
& \exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} \\
& \leq\left|A_{2} e^{a_{2} z}\right| \\
& \leq M_{1} r^{M_{2}} e^{b r \cos \theta} \exp \left\{r^{\gamma+\varepsilon}\right\} \exp \left\{(1+\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \exp \left\{(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right) r\right\} \tag{3.29}
\end{align*}
$$

From 3.29 we have

$$
\begin{equation*}
\exp \left\{\eta_{3} r\right\} \leq M_{1} r^{M_{2}} \exp \left\{r^{\gamma+\varepsilon}\right\} \tag{3.30}
\end{equation*}
$$

where

$$
\eta_{3}=(1-\varepsilon) \delta\left(a_{2} z, \theta\right)-(1+\varepsilon) \delta\left(a_{1} z, \theta\right)-(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right)-b \cos \theta
$$

Since $(1-\beta) a_{2}-b<a_{1}, a_{2}=-\left|a_{2}\right|$ and $a_{1}=-\left|a_{1}\right|$, then we obtain $(1-\beta)\left|a_{2}\right|-$ $\left|a_{1}\right|+b>0$. We can see that $0<(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|+b<(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|<$ $2\left[(1+\beta)\left|a_{2}\right|+\left|a_{1}\right|\right]$. Therefore,

$$
0<\frac{(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|+b}{2\left[(1+\beta)\left|a_{2}\right|+\left|a_{1}\right|\right]}<1
$$

From $0<\varepsilon<\frac{(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|+b}{2\left[(1+\beta)\left|a_{2}\right|+\left|a_{1}\right|\right]}, \theta_{1}=\theta_{2}=\pi$ and $\cos \theta<0$, we obtain

$$
\begin{aligned}
\eta_{3} & =[1-\beta-\varepsilon(1+\beta)] \delta\left(a_{2} z, \theta\right)-(1+\varepsilon) \delta\left(a_{1} z, \theta\right)-b \cos \theta \\
& =-[1-\beta-\varepsilon(1+\beta)]\left|a_{2}\right| \cos \theta+(1+\varepsilon)\left|a_{1}\right| \cos \theta-b \cos \theta \\
& =(-\cos \theta)\left\{[1-\beta-\varepsilon(1+\beta)]\left|a_{2}\right|-(1+\varepsilon)\left|a_{1}\right|+b\right\} \\
& =(-\cos \theta)\left\{(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|+b-\varepsilon\left[(1+\beta)\left|a_{2}\right|+\left|a_{1}\right|\right]\right\} \\
& >\frac{-1}{2}\left[(1-\beta)\left|a_{2}\right|-\left|a_{1}\right|+b\right] \cos \theta>0 .
\end{aligned}
$$

From $\eta_{3}>0$ and $\gamma+\varepsilon<1$ we know that (3.30) is a contradiction.
(ii) $a_{1}<\frac{a_{2}+b}{1-\alpha}$ and $a_{2}<0$. For sufficiently large r, we obtain (3.4), (3.6), (3.16), (3.22), and (3.25) hold. Substituting (3.3), (3.4), 3.22), 3.25) and (3.28) in (3.10), we obtain

$$
\begin{align*}
\exp \left\{(1-\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \leq & \left|A_{1} e^{a_{1} z}\right| \\
\leq & M_{1} r^{M_{2}} e^{b r \cos \theta} \exp \left\{r^{\gamma+\varepsilon}\right\} \exp \left\{(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right) r\right\} \tag{3.31}\\
& \times \exp \left\{(1+\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\}
\end{align*}
$$

From this inequality we have

$$
\begin{equation*}
\exp \left\{\eta_{4} r\right\} \leq M_{1} r^{M_{2}} \exp \left\{r^{\gamma+\varepsilon}\right\} \tag{3.32}
\end{equation*}
$$

where

$$
\eta_{4}=(1-\varepsilon) \delta\left(a_{1} z, \theta\right)-(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right)-(1+\varepsilon) \delta\left(a_{2} z, \theta\right)-b \cos \theta
$$

Since $a_{1}<\frac{a_{2}+b}{1-\alpha}, a_{2}=-\left|a_{2}\right|$ and $a_{1}=-\left|a_{1}\right|$, then we obtain $(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|+b>0$. We can see that $0<(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|+b<(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|<2\left[(1+\alpha)\left|a_{1}\right|+\left|a_{2}\right|\right]$.
Therefore,

$$
0<\frac{(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|+b}{2\left[(1+\alpha)\left|a_{1}\right|+\left|a_{2}\right|\right]}<1
$$

From

$$
0<\varepsilon<\frac{(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|+b}{2\left[(1+\alpha)\left|a_{1}\right|+\left|a_{2}\right|\right]}
$$

$\theta_{1}=\theta_{2}=\pi$ and $\cos \theta<0$, we obtain

$$
\begin{aligned}
\eta_{4} & =(-\cos \theta)\left\{(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|+b-\varepsilon\left[(1+\alpha)\left|a_{1}\right|+\left|a_{2}\right|\right]\right\} \\
& >\frac{-1}{2}\left[(1-\alpha)\left|a_{1}\right|-\left|a_{2}\right|+b\right] \cos \theta>0
\end{aligned}
$$

By $\eta_{4}>0$ and $\gamma+\varepsilon<1$ we know that (3.32) is a contradiction. Concluding the above proof, we obtain $\sigma(f)=+\infty$.
Second step. We prove that $\sigma_{2}(f)=1$. By

$$
\max \left\{\sigma\left(B_{j} e^{b_{j} z}+D_{j} e^{d_{j} z}\right)(j=1, \ldots, k-1), \sigma\left(A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}\right)\right\}=1
$$

and Lemma 2.5. we obtain $\sigma_{2}(f) \leq 1$. By Lemma 2.6, we know that there exists a set $E_{6} \subset(1,+\infty)$ with finite logarithmic measure and a constant $C>0$, such that for all z satisfying $|z|=r \notin[0,1] \cup E_{6}$, we obtain

$$
\begin{equation*}
\left|\frac{f^{(j)}(z)}{f(z)}\right| \leq C[T(2 r, f)]^{j+1} \quad(j=1, \ldots, k) \tag{3.33}
\end{equation*}
$$

Case 1. $\arg a_{1} \neq \pi$ and $\arg a_{1} \neq \arg a_{2}$. In first step, we have proved that there is a ray $\arg z=\theta$ where $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{4} \cup E_{5}\right)$, satisfying

$$
\delta\left(a_{1} z, \theta\right)>0, \quad \delta\left(a_{2} z, \theta\right)<0 \quad \text { or } \quad \delta\left(a_{1} z, \theta\right)<0, \quad \delta\left(a_{2} z, \theta\right)>0
$$

(a) When $\delta\left(a_{1} z, \theta\right)>0, \delta\left(a_{2} z, \theta\right)<0$, for sufficiently large r, we obtain 3.4 3.8 hold. Substituting (3.4), (3.5), (3.8), (3.9) and (3.33) in (3.10), we obtain that for all $z=r e^{i \theta}$ satisfying $|z|=r \notin[0,1] \cup E_{6}, \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{4} \cup E_{5}\right)$,

$$
\begin{align*}
\exp \left\{(1-\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} & \leq\left|A_{1} e^{a_{1} z}\right| \\
& \leq M \exp \left\{r^{\gamma+\varepsilon}\right\} \exp \left\{(1+\varepsilon) \alpha \delta\left(a_{1} z, \theta\right) r\right\}[T(2 r, f)]^{k+1} \tag{3.34}
\end{align*}
$$

where $M>0$ is a constant. From (3.34) and $0<\varepsilon<\frac{1-\alpha}{2(1+\alpha)}$, we obtain

$$
\begin{equation*}
\exp \left\{\frac{1-\alpha}{2} \delta\left(a_{1} z, \theta\right) r\right\} \leq M \exp \left\{r^{\gamma+\varepsilon}\right\}[T(2 r, f)]^{k+1} \tag{3.35}
\end{equation*}
$$

Since $\delta\left(a_{1} z, \theta\right)>0$ and $\gamma+\varepsilon<1$, then by using Lemma 2.7 and 3.35, we obtain $\sigma_{2}(f) \geq 1$. Hence $\sigma_{2}(f)=1$.
(b) When $\delta\left(a_{1} z, \theta\right)<0, \delta\left(a_{2} z, \theta\right)>0$, for sufficiently large r, we obtain (3.13)(3.17) hold. By using the a same reasoning as above, we can get $\sigma_{2}(f)=1$.

Case 2. $\arg a_{1} \neq \pi, \arg a_{1}=\arg a_{2}$. In the first step, we have proved that there is a ray $\arg z=\theta$ where $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{4} \cup E_{5}\right)$, satisfying $\delta\left(a_{1} z, \theta\right)>0$ and $\delta\left(a_{2} z, \theta\right)>0$.
(i) $\left|a_{2}\right|>\frac{\left|a_{1}\right|}{1-\beta}$. For sufficiently large r, we have (3.6), (3.13, (3.16), 3.21) and (3.22) hold. Substituting (3.9), (3.13), (3.21), (3.22) and (3.33) in (3.18), we obtain that for all $z=r e^{i \theta}$ satisfying $|z|=r \notin[0,1] \cup E_{6}, \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{4} \cup E_{5}\right)$,

$$
\begin{align*}
\exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} \leq & \left|A_{2} e^{a_{2} z}\right| \\
\leq & M \exp \left\{r^{\gamma+\varepsilon}\right\} \exp \left\{(1+\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \tag{3.36}\\
& \times \exp \left\{(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right) r\right\}[T(2 r, f)]^{k+1}
\end{align*}
$$

From this inequality, we obtain

$$
\begin{equation*}
\exp \left\{\eta_{1} r\right\} \leq M \exp \left\{r^{\gamma+\varepsilon}\right\}[T(2 r, f)]^{k+1} \tag{3.37}
\end{equation*}
$$

where

$$
\eta_{1}=(1-\varepsilon) \delta\left(a_{2} z, \theta\right)-(1+\varepsilon) \delta\left(a_{1} z, \theta\right)-(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right)
$$

Since $\eta_{1}>0$ and $\gamma+\varepsilon<1$, then by using Lemma 2.7 and (3.37), we obtain $\sigma_{2}(f) \geq 1$. Hence $\sigma_{2}(f)=1$.
(ii) $\left|a_{2}\right|<(1-\alpha)\left|a_{1}\right|$. For sufficiently large r, we have (3.4), (3.6), (3.16), (3.22) and 3.25 hold. By using the same reasoning as above, we can get $\sigma_{2}(f)=1$.
Case 3. $a_{1}<0$ and $\arg a_{1} \neq \arg a_{2}$. In the first step, we have proved that there is a ray $\arg z=\theta$ where $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \backslash\left(E_{1} \cup E_{4} \cup E_{5}\right)$, satisfying $\delta\left(a_{2} z, \theta\right)>0$ and $\delta\left(a_{1} z, \theta\right)<0$. Using the same reasoning as in second step (Case 1 (b)), we can get $\sigma_{2}(f)=1$.

Case 4. (i) $(1-\beta) a_{2}-b<a_{1}<0$ and $a_{2}<\frac{b}{1-\beta}$ or (ii) $a_{1}<\frac{a_{2}+b}{1-\alpha}$ and $a_{2}<0$. In the first step, we have proved that there is a ray $\arg z=\theta$, where $\theta \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right) \backslash$ $\left(E_{1} \cup E_{4} \cup E_{5}\right)$, satisfying $\delta\left(a_{2} z, \theta\right)>0$ and $\delta\left(a_{1} z, \theta\right)>0$.
(i) $(1-\beta) a_{2}-b<a_{1}<0$ and $a_{2}<\frac{b}{1-\beta}$. For sufficiently large r, we obtain (3.6), (3.13), (3.16), (3.21) and (3.22) hold. Substituting (3.13), (3.21), 3.22), 3.28) and (3.33) in (3.18), we obtain that for all $z=r e^{i \theta}$ satisfying $|z|=r \notin[0,1] \cup E_{6}$, $\theta \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right) \backslash\left(E_{1} \cup E_{4} \cup E_{5}\right)$,

$$
\begin{align*}
\exp \left\{(1-\varepsilon) \delta\left(a_{2} z, \theta\right) r\right\} \leq & \left|A_{2} e^{a_{2} z}\right| \\
\leq & M e^{b r \cos \theta} \exp \left\{r^{\gamma+\varepsilon}\right\} \exp \left\{(1+\varepsilon) \delta\left(a_{1} z, \theta\right) r\right\} \tag{3.38}\\
& \times \exp \left\{(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right) r\right\}[T(2 r, f)]^{k+1} .
\end{align*}
$$

From this inequality we obtain

$$
\begin{equation*}
\exp \left\{\eta_{3} r\right\} \leq M \exp \left\{r^{\gamma+\varepsilon}\right\}[T(2 r, f)]^{k+1} \tag{3.39}
\end{equation*}
$$

where

$$
\eta_{3}=(1-\varepsilon) \delta\left(a_{2} z, \theta\right)-(1+\varepsilon) \delta\left(a_{1} z, \theta\right)-(1+\varepsilon) \beta \delta\left(a_{2} z, \theta\right)-b \cos \theta .
$$

Since $\eta_{3}>0$ and $\gamma+\varepsilon<1$, then by using Lemma 2.7 and (3.39), we obtain $\sigma_{2}(f) \geq 1$. Hence $\sigma_{2}(f)=1$.
(ii) $a_{1}<\frac{a_{2}+b}{1-\alpha}$ and $a_{2}<0$. For sufficiently large r, we obtain (3.4), (3.6), (3.16), (3.22) and (3.25) hold. By using the same reasoning as above, we can get $\sigma_{2}(f)=1$. Concluding the above proof, we obtain that every solution $f(\not \equiv 0)$ of 1.2) satisfies $\sigma_{2}(f)=1$. The proof of Theorem 1.5 is complete.

4. Proof of Theorem 1.6

Set $R_{0}(z)=A_{1} e^{a_{1} z}+A_{2} e^{a_{2} z}$ and $R_{i}(z)=B_{i} e^{b_{i} z}+D_{i} e^{d_{i} z}(i=1, \ldots, k-1)$. Assume $f(\not \equiv 0)$ is a solution of 1.2 . Then $\sigma(f)=+\infty$ by Theorem 1.5 Set $g_{0}(z)=f(z)-\varphi(z)$. Then we have $\sigma\left(g_{0}\right)=\sigma(f)=\infty$. Substituting $f=g_{0}+\varphi$ into $\sqrt{1.22}$, we obtain

$$
\begin{align*}
& g_{0}^{(k)}+R_{k-1} g_{0}^{(k-1)}+\cdots+R_{2} g_{0}^{\prime \prime}+R_{1} g_{0}^{\prime}+R_{0} g_{0} \tag{4.1}\\
& =-\left[\varphi^{(k)}+R_{k-1} \varphi^{(k-1)}+\cdots+R_{2} \varphi^{\prime \prime}+R_{1} \varphi^{\prime}+R_{0} \varphi\right] .
\end{align*}
$$

We can rewrite (4.1) in the form

$$
\begin{equation*}
g_{0}^{(k)}+h_{0, k-1} g_{0}^{(k-1)}+\cdots+h_{0,2} g_{0}^{\prime \prime}+h_{0,1} g_{0}^{\prime}+h_{0,0} g_{0}=h_{0}, \tag{4.2}
\end{equation*}
$$

where

$$
h_{0}=-\left[\varphi^{(k)}+R_{k-1} \varphi^{(k-1)}+\cdots+R_{2} \varphi^{\prime \prime}+R_{1} \varphi^{\prime}+R_{0} \varphi\right] .
$$

We prove that $h_{0} \equiv \equiv 0$. In fact, if $h_{0} \equiv 0$, then

$$
\varphi^{(k)}+R_{k-1} \varphi^{(k-1)}+\cdots+R_{2} \varphi^{\prime \prime}+R_{1} \varphi^{\prime}+R_{0} \varphi=0 .
$$

Hence, $\varphi \not \equiv 0$ is a solution of 1.2) with $\sigma(\varphi)=+\infty$ by Theorem 1.5, which is a contradiction. Hence, $h_{0} \not \equiv 0$ is proved. By Lemma 2.8 and 4.2 we know that $\bar{\lambda}\left(g_{0}\right)=\bar{\lambda}(f-\varphi)=\sigma\left(g_{0}\right)=\sigma(f)=\infty$.

Now we prove that $\bar{\lambda}\left(f^{\prime}-\varphi\right)=\infty$. Set $g_{1}(z)=f^{\prime}(z)-\varphi(z)$. Then we have $\sigma\left(g_{1}\right)=\sigma\left(f^{\prime}\right)=\sigma(f)=\infty$. Differentiating both sides of equation 1.2), we obtain

$$
\begin{align*}
& f^{(k+1)}+R_{k-1} f^{(k)}+\left(R_{k-1}^{\prime}+R_{k-2}\right) f^{(k-1)}+\left(R_{k-2}^{\prime}+R_{k-3}\right) f^{(k-2)} \tag{4.3}\\
& \quad+\cdots+\left(R_{3}^{\prime}+R_{2}\right) f^{\prime \prime \prime}+\left(R_{2}^{\prime}+R_{1}\right) f^{\prime \prime}+\left(R_{1}^{\prime}+R_{0}\right) f^{\prime}+R_{0}^{\prime} f=0
\end{align*}
$$

By (1.2), we have

$$
\begin{equation*}
f=-\frac{1}{R_{0}}\left[f^{(k)}+R_{k-1} f^{(k-1)}+\cdots+R_{2} f^{\prime \prime}+R_{1} f^{\prime}\right] \tag{4.4}
\end{equation*}
$$

Substituting (4.4) into 4.3), we have

$$
\begin{align*}
& f^{(k+1)}+\left(R_{k-1}-\frac{R_{0}^{\prime}}{R_{0}}\right) f^{(k)}+\left(R_{k-1}^{\prime}+R_{k-2}-R_{k-1} \frac{R_{0}^{\prime}}{R_{0}}\right) f^{(k-1)} \\
& +\left(R_{k-2}^{\prime}+R_{k-3}-R_{k-2} \frac{R_{0}^{\prime}}{R_{0}}\right) f^{(k-2)}+\cdots+\left(R_{3}^{\prime}+R_{2}-R_{3} \frac{R_{0}^{\prime}}{R_{0}}\right) f^{\prime \prime \prime} \tag{4.5}\\
& +\left(R_{2}^{\prime}+R_{1}-R_{2} \frac{R_{0}^{\prime}}{R_{0}}\right) f^{\prime \prime}+\left(R_{1}^{\prime}+R_{0}-R_{1} \frac{R_{0}^{\prime}}{R_{0}}\right) f^{\prime}=0
\end{align*}
$$

We can write equation (4.5) in the form

$$
\begin{equation*}
f^{(k+1)}+h_{1, k-1} f^{(k)}+h_{1, k-2} f^{(k-1)}+\cdots+h_{1,2} f^{\prime \prime \prime}+h_{1,1} f^{\prime \prime}+h_{1,0} f^{\prime}=0 \tag{4.6}
\end{equation*}
$$

where

$$
\begin{gathered}
h_{1, i}=R_{i+1}^{\prime}+R_{i}-R_{i+1} \frac{R_{0}^{\prime}}{R_{0}} \quad(i=0,1, \ldots, k-2) \\
h_{1, k-1}=R_{k-1}-\frac{R_{0}^{\prime}}{R_{0}}
\end{gathered}
$$

Substituting $f^{(j+1)}=g_{1}^{(j)}+\varphi^{(j)}(j=0, \ldots, k)$ into 4.6, we obtain

$$
\begin{equation*}
g_{1}^{(k)}+h_{1, k-1} g_{1}^{(k-1)}+h_{1, k-2} g_{1}^{(k-2)}+\cdots+h_{1,2} g_{1}^{\prime \prime}+h_{1,1} g_{1}^{\prime}+h_{1,0} g_{1}=h_{1} \tag{4.7}
\end{equation*}
$$

where

$$
h_{1}=-\left[\varphi^{(k)}+h_{1, k-1} \varphi^{(k-1)}+h_{1, k-2} \varphi^{(k-2)}+\cdots+h_{1,2} \varphi^{\prime \prime}+h_{1,1} \varphi^{\prime}+h_{1,0} \varphi\right] .
$$

We can get

$$
\begin{equation*}
h_{1, i}(z)=\frac{N_{i}(z)}{R_{0}(z)} \quad(i=0,1, \ldots, k-1) \tag{4.8}
\end{equation*}
$$

where

$$
\begin{gather*}
N_{0}=R_{1}^{\prime} R_{0}+R_{0}^{2}-R_{1} R_{0}^{\prime} \tag{4.9}\\
N_{i}=R_{i+1}^{\prime} R_{0}+R_{i} R_{0}-R_{i+1} R_{0}^{\prime} \quad(i=1,2, \ldots, k-2) \tag{4.10}\\
N_{k-1}=R_{k-1} R_{0}-R_{0}^{\prime} \tag{4.11}
\end{gather*}
$$

Now we prove that $h_{1} \not \equiv 0$. In fact, if $h_{1} \equiv 0$, then $\frac{h_{1}}{\varphi} \equiv 0$. Hence, by 4.8 we obtain

$$
\begin{equation*}
\frac{\varphi^{(k)}}{\varphi} R_{0}+\frac{\varphi^{(k-1)}}{\varphi} N_{k-1}+\frac{\varphi^{(k-2)}}{\varphi} N_{k-2}+\cdots+\frac{\varphi^{\prime \prime}}{\varphi} N_{2}+\frac{\varphi^{\prime}}{\varphi} N_{1}+N_{0}=0 \tag{4.12}
\end{equation*}
$$

Obviously, $\frac{\varphi^{(j)}}{\varphi}(j=1, \ldots, k)$ are meromorphic functions with $\sigma\left(\frac{\varphi^{(j)}}{\varphi}\right)<1$. By (4.9)-4.11 we can rewrite 4.12 in the form

$$
\begin{equation*}
A_{1}^{2} e^{2 a_{1} z}+A_{2}^{2} e^{2 a_{2} z}+\sum_{\lambda \in I_{1}^{\prime}} f_{\lambda} e^{\lambda z}=0 \tag{4.13}
\end{equation*}
$$

where $I_{1}^{\prime}=I_{1} \backslash\left\{2 a_{1}, 2 a_{2}\right\}$ and $f_{\lambda}\left(\lambda \in I_{1}^{\prime}\right)$ are meromorphic functions with order less than 1 .
(1) If $\left(2 a_{1}\right) \notin I_{1} \backslash\left\{2 a_{1}\right\}$, then we write 4.13$)$ in the form

$$
A_{1}^{2} e^{2 a_{1} z}+\sum_{\lambda \in \Gamma_{1}} g_{1, \lambda} e^{\lambda z}=0
$$

where $\Gamma_{1} \subseteq I_{1} \backslash\left\{2 a_{1}\right\}, g_{1, \lambda}\left(\lambda \in \Gamma_{1}\right)$ are meromorphic functions with order less than 1 and $2 a_{1}, \lambda\left(\lambda \in \Gamma_{1}\right)$ are distinct numbers. By Lemmas 2.9 and 2.10 , we obtain $A_{1} \equiv 0$, which is a contradiction.
(2) If $\left(2 a_{2}\right) \notin I_{1} \backslash\left\{2 a_{2}\right\}$, then we write 4.13 in the form

$$
A_{2}^{2} e^{2 a_{2} z}+\sum_{\lambda \in \Gamma_{2}} g_{2, \lambda} e^{\lambda z}=0
$$

where $\Gamma_{2} \subseteq I_{1} \backslash\left\{2 a_{2}\right\}, g_{2, \lambda}\left(\lambda \in \Gamma_{2}\right)$ are meromorphic functions with order less than 1 and $2 a_{2}, \lambda\left(\lambda \in \Gamma_{2}\right)$ are distinct numbers. By Lemmas 2.9 and 2.10, we obtain $A_{2} \equiv 0$, which is a contradiction. Hence, $h_{1} \not \equiv 0$ is proved. By Lemma 2.8 and 4.7 we know that $\bar{\lambda}\left(g_{1}\right)=\bar{\lambda}\left(f^{\prime}-\varphi\right)=\sigma\left(g_{1}\right)=\sigma(f)=\infty$.

Now we prove that $\bar{\lambda}\left(f^{\prime \prime}-\varphi\right)=\infty$. Set $g_{2}(z)=f^{\prime \prime}(z)-\varphi(z)$. Then we have $\sigma\left(g_{2}\right)=\sigma\left(f^{\prime \prime}\right)=\sigma(f)=\infty$. Differentiating both sides of equation 4.3), we have

$$
\begin{align*}
& f^{(k+2)}+R_{k-1} f^{(k+1)}+\left(2 R_{k-1}^{\prime}+R_{k-2}\right) f^{(k)}+\left(R_{k-1}^{\prime \prime}+2 R_{k-2}^{\prime}+R_{k-3}\right) f^{(k-1)} \\
& +\left(R_{k-2}^{\prime \prime}+2 R_{k-3}^{\prime}+R_{k-4}\right) f^{(k-2)}+\cdots+\left(R_{3}^{\prime \prime}+2 R_{2}^{\prime}+R_{1}\right) f^{\prime \prime \prime} \\
& +\left(R_{2}^{\prime \prime}+2 R_{1}^{\prime}+R_{0}\right) f^{\prime \prime}+\left(R_{1}^{\prime \prime}+2 R_{0}^{\prime}\right) f^{\prime}+R_{0}^{\prime \prime} f=0 \tag{4.14}
\end{align*}
$$

By (4.4) and (4.14), we have

$$
\begin{align*}
& f^{(k+2)}+R_{k-1} f^{(k+1)}+\left(2 R_{k-1}^{\prime}+R_{k-2}-\frac{R_{0}^{\prime \prime}}{R_{0}}\right) f^{(k)} \\
& +\left(R_{k-1}^{\prime \prime}+2 R_{k-2}^{\prime}+R_{k-3}-R_{k-1} \frac{R_{0}^{\prime \prime}}{R_{0}}\right) f^{(k-1)}+\ldots \tag{4.15}\\
& +\left(R_{4}^{\prime \prime}+2 R_{3}^{\prime}+R_{2}-R_{4} \frac{R_{0}^{\prime \prime}}{R_{0}}\right) f^{(4)}+\left(R_{3}^{\prime \prime}+2 R_{2}^{\prime}+R_{1}-R_{3} \frac{R_{0}^{\prime \prime}}{R_{0}}\right) f^{\prime \prime \prime} \\
& +\left(R_{2}^{\prime \prime}+2 R_{1}^{\prime}+R_{0}-R_{2} \frac{R_{0}^{\prime \prime}}{R_{0}}\right) f^{\prime \prime}+\left(R_{1}^{\prime \prime}+2 R_{0}^{\prime}-R_{1} \frac{R_{0}^{\prime \prime}}{R_{0}}\right) f^{\prime}=0
\end{align*}
$$

Now we prove that $R_{1}^{\prime}+R_{0}-R_{1} \frac{R_{0}^{\prime}}{R_{0}} \not \equiv 0$. Suppose that $R_{1}^{\prime}+R_{0}-R_{1} \frac{R_{0}^{\prime}}{R_{0}} \equiv 0$, then we have

$$
\begin{equation*}
A_{1}^{2} e^{2 a_{1} z}+A_{2}^{2} e^{2 a_{2} z}+\sum_{\lambda \in I_{2}^{\prime}} f_{\lambda} e^{\lambda z}=0 \tag{4.16}
\end{equation*}
$$

where $I_{2}^{\prime}=I_{2} \backslash\left\{2 a_{1}, 2 a_{2}\right\}$ and $f_{\lambda}\left(\lambda \in I_{2}^{\prime}\right)$ are meromorphic functions with order less than 1. By using the same reasoning as above, we can get a contradiction. Hence, $R_{1}^{\prime}+R_{0}-R_{1} \frac{R_{0}^{\prime}}{R_{0}} \not \equiv 0$ is proved. Set

$$
\begin{equation*}
\psi(z)=R_{1}^{\prime} R_{0}+R_{0}^{2}-R_{1} R_{0}^{\prime} \text { and } \phi(z)=R_{1}^{\prime \prime} R_{0}+2 R_{0}^{\prime} R_{0}-R_{1} R_{0}^{\prime \prime} \tag{4.17}
\end{equation*}
$$

By (4.5) and 4.17, we obtain

$$
\begin{align*}
f^{\prime}= & \frac{-R_{0}}{\psi(z)}\left\{f^{(k+1)}+\left(R_{k-1}-\frac{R_{0}^{\prime}}{R_{0}}\right) f^{(k)}+\left(R_{k-1}^{\prime}+R_{k-2}-R_{k-1} \frac{R_{0}^{\prime}}{R_{0}}\right) f^{(k-1)}\right. \\
& \left.+\left(R_{k-2}^{\prime}+R_{k-3}-R_{k-2} \frac{R_{0}^{\prime}}{R_{0}}\right) f^{(k-2)}+\cdots+\left(R_{2}^{\prime}+R_{1}-R_{2} \frac{R_{0}^{\prime}}{R_{0}}\right) f^{\prime \prime}\right\} . \tag{4.18}
\end{align*}
$$

Substituting 4.17 and 4.18 into 4.15, we obtain

$$
\begin{align*}
& f^{(k+2)}+\left[R_{k-1}-\frac{\phi}{\psi}\right] f^{(k+1)}+\left[2 R_{k-1}^{\prime}+R_{k-2}-\frac{R_{0}^{\prime \prime}}{R_{0}}-\frac{\phi}{\psi}\left(R_{k-1}-\frac{R_{0}^{\prime}}{R_{0}}\right)\right] f^{(k)} \\
& +\left[R_{k-1}^{\prime \prime}+2 R_{k-2}^{\prime}+R_{k-3}-R_{k-1} \frac{R_{0}^{\prime \prime}}{R_{0}}-\frac{\phi}{\psi}\left(R_{k-1}^{\prime}+R_{k-2}-R_{k-1} \frac{R_{0}^{\prime}}{R_{0}}\right)\right] f^{(k-1)} \\
& +\cdots+\left[R_{3}^{\prime \prime}+2 R_{2}^{\prime}+R_{1}-R_{3} \frac{R_{0}^{\prime \prime}}{R_{0}}-\frac{\phi}{\psi}\left(R_{3}^{\prime}+R_{2}-R_{3} \frac{R_{0}^{\prime}}{R_{0}}\right)\right] f^{\prime \prime \prime} \\
& +\left[R_{2}^{\prime \prime}+2 R_{1}^{\prime}+R_{0}-R_{2} \frac{R_{0}^{\prime \prime}}{R_{0}}-\frac{\phi}{\psi}\left(R_{2}^{\prime}+R_{1}-R_{2} \frac{R_{0}^{\prime}}{R_{0}}\right)\right] f^{\prime \prime}=0 \tag{4.19}
\end{align*}
$$

We can write 4.19) in the form

$$
\begin{equation*}
f^{(k+2)}+h_{2, k-1} f^{(k+1)}+h_{2, k-2} f^{(k)}+\cdots+h_{2,2} f^{(4)}+h_{2,1} f^{\prime \prime \prime}+h_{2,0} f^{\prime \prime}=0 \tag{4.20}
\end{equation*}
$$

where

$$
\begin{gathered}
h_{2, i}=R_{i+2}^{\prime \prime}+2 R_{i+1}^{\prime}+R_{i}-R_{i+2} \frac{R_{0}^{\prime \prime}}{R_{0}} \\
-\frac{\phi(z)}{\psi(z)}\left(R_{i+2}^{\prime}+R_{i+1}-R_{i+2} \frac{R_{0}^{\prime}}{R_{0}}\right) \quad(i=0,1, \ldots, k-3), \\
h_{2, k-2}=2 R_{k-1}^{\prime}+R_{k-2}-\frac{R_{0}^{\prime \prime}}{R_{0}}-\frac{\phi(z)}{\psi(z)}\left(R_{k-1}-\frac{R_{0}^{\prime}}{R_{0}}\right) \\
h_{2, k-1}=R_{k-1}-\frac{\phi(z)}{\psi(z)}
\end{gathered}
$$

Substituting $f^{(j+2)}=g_{2}^{(j)}+\varphi^{(j)}(j=0, \ldots, k)$ in 4.20 we have

$$
\begin{equation*}
g_{2}^{(k)}+h_{2, k-1} g_{2}^{(k-1)}+h_{2, k-2} g_{2}^{(k-2)}+\cdots+h_{2,1} g_{2}^{\prime}+h_{2,0} g_{2}=h_{2} \tag{4.21}
\end{equation*}
$$

where

$$
h_{2}=-\left[\varphi^{(k)}+h_{2, k-1} \varphi^{(k-1)}+h_{2, k-2} \varphi^{(k-2)}+\cdots+h_{2,2} \varphi^{\prime \prime}+h_{2,1} \varphi^{\prime}+h_{2,0} \varphi\right] .
$$

We obtain

$$
\begin{equation*}
h_{2, i}=\frac{L_{i}(z)}{\psi(z)} \quad(i=0,1, \ldots, k-1) \tag{4.22}
\end{equation*}
$$

where

$$
\begin{align*}
L_{0}(z)= & R_{2}^{\prime \prime} R_{1}^{\prime} R_{0}+R_{2}^{\prime \prime} R_{0}^{2}-R_{2}^{\prime \prime} R_{1} R_{0}^{\prime}+2 R_{1}^{\prime 2} R_{0}+3 R_{1}^{\prime} R_{0}^{2}-2 R_{1}^{\prime} R_{1} R_{0}^{\prime}+R_{0}^{3} \\
& -3 R_{1} R_{0}^{\prime} R_{0}-R_{2} R_{1}^{\prime} R_{0}^{\prime \prime}-R_{2} R_{0}^{\prime \prime} R_{0}-R_{2}^{\prime} R_{1}^{\prime \prime} R_{0}-2 R_{2}^{\prime} R_{0}^{\prime} R_{0}+R_{2}^{\prime} R_{1} R_{0}^{\prime \prime} \\
& -R_{1}^{\prime \prime} R_{1} R_{0}+R_{1}^{2} R_{0}^{\prime \prime}+R_{2} R_{1}^{\prime \prime} R_{0}^{\prime}+2 R_{2} R_{0}^{2} \tag{4.23}
\end{align*}
$$

$$
\begin{align*}
L_{i}= & R_{i+2}^{\prime \prime} R_{1}^{\prime} R_{0}+R_{i+2}^{\prime \prime} R_{0}^{2}-R_{i+2}^{\prime \prime} R_{1} R_{0}^{\prime}+2 R_{i+1}^{\prime} R_{1}^{\prime} R_{0}+2 R_{i+1}^{\prime} R_{0}^{2}-2 R_{i+1}^{\prime} R_{1} R_{0}^{\prime} \\
& +R_{i} R_{1}^{\prime} R_{0}+R_{i} R_{0}^{2}-R_{i} R_{1} R_{0}^{\prime}-R_{i+2} R_{1}^{\prime} R_{0}^{\prime \prime}-R_{i+2} R_{0}^{\prime \prime} R_{0}-R_{i+2}^{\prime} R_{1}^{\prime \prime} R_{0} \\
& -2 R_{i+2}^{\prime} R_{0}^{\prime} R_{0}+R_{i+2}^{\prime} R_{1} R_{0}^{\prime \prime}-R_{i+1} R_{1}^{\prime \prime} R_{0}-2 R_{i+1} R_{0}^{\prime} R_{0}+R_{i+1} R_{1} R_{0}^{\prime \prime} \\
& +R_{i+2} R_{1}^{\prime \prime} R_{0}^{\prime}+2 R_{i+2} R_{0}^{\prime 2} \quad(i=1,2, \ldots, k-3) \tag{4.24}\\
L_{k-2}= & 2 R_{k-1}^{\prime} R_{1}^{\prime} R_{0}+2 R_{k-1}^{\prime} R_{0}^{2}-2 R_{k-1}^{\prime} R_{1} R_{0}^{\prime}+R_{k-2} R_{1}^{\prime} R_{0}+R_{k-2} R_{0}^{2} \\
& \quad-R_{k-2} R_{1} R_{0}^{\prime}-R_{1}^{\prime} R_{0}^{\prime \prime}-R_{0}^{\prime \prime} R_{0}-R_{k-1} R_{1}^{\prime \prime} R_{0}-2 R_{k-1} R_{0}^{\prime} R_{0} \tag{4.25}\\
& +R_{k-1} R_{1} R_{0}^{\prime \prime}+R_{1}^{\prime \prime} R_{0}^{\prime}+2 R_{0}^{\prime 2} \\
L_{k-1}= & R_{k-1} R_{1}^{\prime} R_{0}+R_{k-1} R_{0}^{2}-R_{k-1} R_{1} R_{0}^{\prime}-R_{1}^{\prime \prime} R_{0}-2 R_{0}^{\prime} R_{0}+R_{1} R_{0}^{\prime \prime} . \tag{4.26}
\end{align*}
$$

Therefore,

$$
\begin{equation*}
\frac{-h_{2}}{\varphi}=\frac{1}{\psi}\left[\frac{\varphi^{(k)}}{\varphi} \psi+\frac{\varphi^{(k-1)}}{\varphi} L_{k-1}+\cdots+\frac{\varphi^{\prime \prime}}{\varphi} L_{2}+\frac{\varphi^{\prime}}{\varphi} L_{1}+L_{0}\right] \tag{4.27}
\end{equation*}
$$

Now we prove that $h_{2} \not \equiv 0$. In fact, if $h_{2} \equiv 0$, then $\frac{-h_{2}}{\varphi} \equiv 0$. Hence, by 4.27) we obtain

$$
\begin{equation*}
\frac{\varphi^{(k)}}{\varphi} \psi+\frac{\varphi^{(k-1)}}{\varphi} L_{k-1}+\cdots+\frac{\varphi^{\prime \prime}}{\varphi} L_{2}+\frac{\varphi^{\prime}}{\varphi} L_{1}+L_{0}=0 \tag{4.28}
\end{equation*}
$$

Obviously, $\frac{\varphi^{(j)}}{\varphi}(j=1, \ldots, k)$ are meromorphic functions with $\sigma\left(\frac{\varphi^{(j)}}{\varphi}\right)<1$. By 4.17) and 4.23) 4.26, we can rewrite 4.28 in the form

$$
\begin{equation*}
A_{1}^{3} e^{3 a_{1} z}+A_{2}^{3} e^{3 a_{2} z}+\sum_{\lambda \in I_{3}^{\prime}} f_{\lambda} e^{\lambda z}=0 \tag{4.29}
\end{equation*}
$$

where $I_{3}^{\prime}=I_{3} \backslash\left\{3 a_{1}, 3 a_{2}\right\}$ and $f_{\lambda}\left(\lambda \in I_{3}^{\prime}\right)$ are meromorphic functions with order less than 1 .
(1) If $\left(3 a_{1}\right) \notin I_{3} \backslash\left\{3 a_{1}\right\}$, then we write 4.29 in the form

$$
A_{1}^{3} e^{3 a_{1} z}+\sum_{\lambda \in \Gamma_{1}} g_{1, \lambda} e^{\lambda z}=0
$$

where $\Gamma_{1} \subseteq I_{3} \backslash\left\{3 a_{1}\right\}, g_{1, \lambda}\left(\lambda \in \Gamma_{1}\right)$ are meromorphic functions with order less than 1 and $3 a_{1}, \lambda\left(\lambda \in \Gamma_{1}\right)$ are distinct numbers. By Lemmas 2.9 and 2.10 , we obtain $A_{1} \equiv 0$, which is a contradiction.
(2) If $\left(3 a_{2}\right) \notin I_{3} \backslash\left\{3 a_{2}\right\}$, then we write 4.29 in the form

$$
A_{2}^{3} e^{3 a_{2} z}+\sum_{\lambda \in \Gamma_{2}} g_{2, \lambda} e^{\lambda z}=0
$$

where $\Gamma_{2} \subseteq I_{3} \backslash\left\{3 a_{2}\right\}, g_{2, \lambda}\left(\lambda \in \Gamma_{2}\right)$ are meromorphic functions with order less than 1 and $3 a_{2}, \lambda\left(\lambda \in \Gamma_{2}\right)$ are distinct numbers. By Lemmas 2.9 and 2.10 , we obtain $A_{2} \equiv 0$, which is a contradiction. Hence, $h_{2} \not \equiv 0$ is proved. By Lemma 2.8 and 4.21), we have $\bar{\lambda}\left(g_{2}\right)=\bar{\lambda}\left(f^{\prime \prime}-\varphi\right)=\sigma\left(g_{2}\right)=\sigma(f)=\infty$. The proof of Theorem 1.6 is complete.

Proof of Corollary 1.7. Setting $\varphi(z)=z$ and using the same reasoning as in the proof of Theorem 1.6, we obtain Corollary 1.7 .

References

[1] I. Amemiya, M. Ozawa; Non-existence of finite order solutions of $w^{\prime \prime}+e^{-z} w^{\prime}+Q(z) w=0$, Hokkaido Math. J. 10 (1981), Special Issue, 1-17.
[2] Z. X. Chen; Zeros of meromorphic solutions of higher order linear differential equations, Analysis 14 (1994), no. 4, 425-438.
[3] Z. X. Chen; The fixed points and hyper-order of solutions of second order complex differential equations (in Chinese), Acta Math. Sci. Ser. A Chin. Ed. 20 (2000), no. 3, 425-432.
[4] Z. X. Chen; The growth of solutions of $f^{\prime \prime}+e^{-z} f^{\prime}+Q(z) f=0$ where the order $(Q)=1$, Sci. China Ser. A 45 (2002), no. 3, 290-300.
[5] Z. X. Chen, K. H. Shon; On the growth of solutions of a class of higher order differential equations, Acta Math. Sci. Ser. B Engl. Ed. 24 (2004), no. 1, 52-60.
[6] M. Frei; Über die Lösungen linearer Differentialgleichungen mit ganzen Funktionen als Koeffizienten, Comment. Math. Helv. 35 (1961), 201-222.
[7] M. Frei; Uber die Subnormalen L ösungen der Differentialgleichung $w^{\prime \prime}+e^{-z} w^{\prime}+K w=0$, Comment. Math. Helv. 36 (1961), 1-8.
[8] F. Gross; On the distribution of values of meromorphic functions, Trans. Amer. Math. Soc. 131 (1968), 199-214.
[9] G. G. Gundersen; On the question of whether $f^{\prime \prime}+e^{-z} f^{\prime}+B(z) f=0$ can admit a solution $f \not \equiv 0$ of finite order, Proc. Roy. Soc. Edinburgh Sect. A 102 (1986), no. 1-2, 9-17.
[10] G. G. Gundersen; Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates, J. London Math. Soc. (2) 37(1988), no. 1, 88-104.
[11] G. G. Gundersen; Finite order solutions of second order linear differential equations, Trans. Amer. Math. Soc. 305 (1988), no. 1, 415-429.
[12] H. Habib, B. Belaïdi; On the growth of solutions of some higher order linear differential equations with entire coefficients, Electron. J. Qual. Theory Differ. Equ. 2011, No. 93, 1-13.
[13] W. K. Hayman; Meromorphic functions, Oxford Mathematical Monographs Clarendon Press, Oxford 1964.
[14] J. K. Langley; On complex oscillation and a problem of Ozawa, Kodai Math. J. 9 (1986), no. 3, 430-439.
[15] M. S. Liu, X. M. Zhang; Fixed points of meromorphic solutions of higher order Linear differential equations, Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 1, 191-211.
[16] M. Ozawa; On a solution of $w^{\prime \prime}+e^{-z} w^{\prime}+(a z+b) w=0$, Kodai Math. J. 3 (1980), no. 2, 295-309.
[17] F. Peng, Z. X. Chen; On the growth of solutions of some second-order linear differential equations, J. Inequal. Appl. 2011, Art. ID 635604, 1-9.
[18] J. F. Xu, H. X. Yi; The relations between solutions of higher order differential equations with functions of small growth, Acta Math. Sinica, Chinese Series, 53 (2010), 291-296.
[19] C. C. Yang, H. X. Yi; Uniqueness theory of meromorphic functions, Mathematics and its Applications, 557. Kluwer Academic Publishers Group, Dordrecht, 2003.

Habib Habib
Department of Mathematics, Laboratory of Pure and Applied Mathematics, University
of Mostaganem (UMAB), B. P. 227 Mostaganem, Algeria
E-mail address: habibhabib2927@yahoo.fr
Benharrat Belaïdi
Department of Mathematics, Laboratory of Pure and Applied Mathematics, University
of Mostaganem (UMAB), B. P. 227 Mostaganem, Algeria
E-mail address: belaidi@univ-mosta.dz

[^0]: 2000 Mathematics Subject Classification. 34M10, 30D35.
 Key words and phrases. Linear differential equation; entire solution; order of growth; hyper-order of growth; fixed point.
 (C)2014 Texas State University - San Marcos.

 Submitted November 22, 2013. Published April 21, 2014.

