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GROWTH OF SOLUTIONS TO HIGHER-ORDER LINEAR
DIFFERENTIAL EQUATIONS WITH ENTIRE COEFFICIENTS

HABIB HABIB, BENHARRAT BELAÏDI

Abstract. In this article, we discuss the order and hyper-order of the linear

differential equation

f (k) +

k−1X
j=1

(Bje
bjz +Dje

djz)f (j) + (A1e
a1z +A2e

a2z)f = 0,

where Aj(z), Bj(z), Dj(z) are entire functions ( 6≡ 0) and a1, a2, dj are complex

numbers (6= 0), and bj are real numbers. Under certain conditions, we prove
that every solution f 6≡ 0 of the above equation is of infinite order. Then,

we obtain an estimate of the hyper-order. Finally, we give an estimate of the

exponent of convergence for distinct zeros of the functions f (j)−ϕ (j = 0, 1, 2),
where ϕ is an entire function ( 6≡ 0) and of order σ(ϕ) < 1, while the solution f

of the differential equation is of infinite order. Our results extend the previous
results due to Chen, Peng and Chen and others.

1. Introduction and statement of results

Throughout this paper, we assume that the reader is familiar with the funda-
mental results and the standard notations of the Nevanlinna’s value distribution
theory (see [13, 19]). Let σ(f) denote the order of growth of an entire function f
and the hyper-order σ2(f) of f is defined by (see [19])

σ2(f) = lim sup
r→+∞

log log T (r, f)
log r

= lim sup
r→+∞

log log logM(r, f)
log r

,

where T (r, f) is the Nevanlinna characteristic function of f and

M(r, f) = max
|z|=r

|f(z)|.

To give some estimates of fixed points, we recall the following definition.

Definition 1.1 ([3, 15]). Let f be a meromorphic function. Then the exponent of
convergence of the sequence of distinct fixed points of f(z) is defined by

τ(f) = λ(f − z) = lim sup
r→+∞

logN(r, 1
f−z )

log r
,
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where N(r, 1/f) is the counting function of distinct zeros of f(z) in {z : |z| ≤ r}.
We also define

λ(f − ϕ) = lim sup
r→+∞

logN(r, 1
f−ϕ )

log r
for any meromorphic function ϕ(z).

For the second-order linear differential equation

f ′′ + e−zf ′ +B(z)f = 0, (1.1)

where B(z) is an entire function, it is well-known that each solution f of equation
(1.1) is an entire function, and that if f1 and f2 are two linearly independent
solutions of (1.1), then by [6], there is at least one of f1, f2 of infinite order.
Hence, “most” solutions of (1.1) will have infinite order. But equation (1.1) with
B(z) = −(1 + e−z) possesses a solution f(z) = ez of finite order.

A natural question arises: What conditions on B(z) will guarantee that every
solution f 6≡ 0 of (1.1) has infinite order? Many authors, Frei [7], Ozawa [16],
Amemiya-Ozawa [1] and Gundersen [9], Langley [14] have studied this problem.
They proved that when B(z) is a nonconstant polynomial or B(z) is a transcen-
dental entire function with order σ(B) 6= 1, then every solution f 6≡ 0 of (1.1) has
infinite order.

In 2002, Chen [4] considered the question: What conditions on B(z) when
σ(B) = 1 will guarantee that every nontrivial solution of (1.1) has infinite order?
He proved the following result, which improved results of Frei, Amemiya-Ozawa,
Ozawa, Langley and Gundersen.

Theorem 1.2 ([4]). Let Aj(z) (6≡ 0) (j = 0, 1) be entire functions with max{σ(Aj)
(j = 0, 1)} < 1. and let a, b be complex constants that satisfy ab 6= 0 and a 6= b.
Then every solution f 6≡ 0 of the differential equation

f ′′ +A1(z)eazf ′ +A0(z)ebzf = 0

is of infinite order.

In [17], Peng and Chen investigated the order and hyper-order of solutions of
some second order linear differential equations and have proved the following result.

Theorem 1.3 ([17]). Let Aj(z) (6≡ 0) (j = 1, 2) be entire functions with σ(Aj) < 1,
a1, a2 be complex numbers such that a1a2 6= 0, a1 6= a2 (suppose that |a1| ≤ |a2|).
If arg a1 6= π or a1 < −1, then every solution f(6≡ 0) of the differential equation

f ′′ + e−zf ′ + (A1e
a1z +A2e

a2z)f = 0

has infinite order and σ2(f) = 1.

Recently in [12], the authors extend and improve the results of Theorem 1.3 to
some higher order linear differential equations as follows.

Theorem 1.4 ([12]). Let Aj(z) ( 6≡ 0) (j = 1, 2), Bl(z) ( 6≡ 0) (l = 1, . . . , k − 1),
Dm (m = 0, . . . , k − 1) be entire functions with max{σ(Aj), σ(Bl), σ(Dm)} < 1, bl
(l = 1, . . . , k − 1) be complex constants such that

(i) arg bl = arg a1 and bl = cla1 (0 < cl < 1) (l ∈ I1) and
(ii) bl is a real constant such that bl ≤ 0 (l ∈ I2), where I1 6= ∅, I2 6= ∅,

I1 ∩ I2 = ∅, I1 ∪ I2 = {1, 2, . . . , k − 1}, and a1, a2 are complex numbers
such that a1a2 6= 0, a1 6= a2 (suppose that |a1| ≤ |a2|).



EJDE-2014/114 GROWTH OF SOLUTIONS 3

If arg a1 6= π or a1 is a real number such that a1 <
b

1−c , where c = max{cl : l ∈ I1}
and b = min{bl : l ∈ I2}, then every solution f 6≡ 0 of the differential equation

f (k)+(Dk−1+Bk−1e
bk−1z)f (k−1)+· · ·+(D1+B1e

b1z)f ′+(D0+A1e
a1z+A2e

a2z)f = 0

satisfies σ(f) = +∞ and σ2(f) = 1.

In this paper, we continue the research in this type of problems, the main purpose
of this paper is to extend and improve the results of Theorems 1.2–1.4 to some higher
order linear differential equations. In fact we will prove the following results.

Theorem 1.5. Let k ≥ 2 be an integer, Aj(z) (6≡ 0) (j = 1, 2) and Bj(z) (6≡ 0),
Dj(z) (6≡ 0) (j = 1, . . . , k − 1) be entire functions with

max{σ(Aj)(j = 1, 2), σ(Bj)(j = 1, . . . , k − 1), σ(Dj)(j = 1, . . . , k − 1)} < 1,

a1, a2 be complex numbers such that a1a2 6= 0, a1 6= a2, dj 6= 0 (j = 1, . . . , k − 1)
be complex numbers and bj (j = 1, . . . , k − 1) be real numbers such that bj < 0.
Suppose that there exists αj, βj (j = 1, . . . , k − 1) where 0 < αj < 1, 0 < βj < 1
and dj = αja1 + βja2. Set α = max{αj : j = 1, . . . , k − 1}, β = max{βj : j =
1, . . . , k − 1} and b = min{bj : j = 1, . . . , k − 1}. If

(1) arg a1 6= π and arg a1 6= arg a2; or
(2) arg a1 6= π, arg a1 = arg a2 and (i) |a2| > |a1|

1−β or (ii) |a2| < (1− α)|a1|; or
(3) a1 < 0 and arg a1 6= arg a2; or
(4) (i) (1− β)a2 − b < a1 < 0, a2 <

b
1−β or (ii) a1 <

a2+b
1−α and a2 < 0,

then every solution f( 6≡ 0) of the differential equation

f (k) +
k−1∑
j=1

(Bjebjz +Dje
djz)f (j) + (A1e

a1z +A2e
a2z)f = 0 (1.2)

satisfies σ(f) = +∞ and σ2(f) = 1.

Set

I1 = {2a1, 2a2, a1 + a2, a1, a2, a1 + bi, a2 + bi, a1 + di, a2 + di (i = 1, . . . , k − 1)},
I2 = {2a1, 2a2, a1 + a2, a1 + b1, a2 + b1, a1 + d1, a2 + d1},

I3 =
{

3a1, 3a2, 2a1 + a2, a1 + 2a2, 2a1, 2a2, a1 + a2, a1 + b1, a2 + b1, a1 + d1,

a2 + d1, 2a1 + bi, 2a2 + bi, 2a1 + di, 2a2 + di, a1 + a2 + bi, a1 + a2 + di,

a1 + b1 + bi, a2 + b1 + bi, a1 + d1 + di, a2 + d1 + di, a1 + b1 + di,

a2 + b1 + di(i = 1, . . . , k − 1), a1 + d1 + bi, a2 + d1 + bi (i = 2, . . . , k − 1)
}
.

Theorem 1.6. Let Aj(z) (j = 1, 2), Bj(z), Dj(z) (j = 1, . . . , k−1), a1, a2, bj, dj,
αj, βj (j = 1, . . . , k − 1), α, β and b satisfy the additional hypotheses of Theorem
1.5. If ϕ(6≡ 0) is an entire function of order σ(ϕ) < 1, then every solution f(6≡ 0)
of equation (1.2) satisfies

λ(f − ϕ) = +∞.
Furthermore, we have

(1) If (2a1) /∈ I1 \ {2a1} or (2a2) /∈ I1 \ {2a2}, then

λ(f ′ − ϕ) = +∞.
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(2) If (i) (2a1) /∈ I2 \ {2a1} or (2a2) /∈ I2 \ {2a2} and (ii) (3a1) /∈ I3 \ {3a1} or
(3a2) /∈ I3 \ {3a2}, then

λ(f ′′ − ϕ) = +∞.

Now set

J1 =
{

2a1, 2a2, a1 + a2, a1 + bi, a2 + bi, a1 + di, a2 + di (i = 1, 2)
}
,

J2 =
{

3a1, 3a2, 2a1 + a2, a1 + 2a2, 2a1 + bi, 2a2 + bi, 2a1 + di,

2a2 + di, a1 + a2 + bi, a1 + a2 + di, a1 + b1 + bi, a2 + b1 + bi, a1

+ d1 + di, a2 + d1 + di, a1 + b1 + di, a2 + b1 + di (i = 1, 2, 3),

a1 + d1 + bi, a2 + d1 + bi (i = 2, 3)
}
.

From Theorem 1.6, we obtain the following corollary.

Corollary 1.7. Let Aj(z) (j = 1, 2), Bj(z), Dj(z) (j = 1, . . . , k−1), a1, a2, bj, dj,
αj, βj (j = 1, . . . , k − 1), α, β and b satisfy the additional hypotheses of Theorem
1.5. If f(6≡ 0) is any solution of (1.2), then f has infinitely many fixed points and
satisfies

τ(f) =∞.
Furthermore, we have

(1) If (2a1) /∈ J1 \{2a1} or (2a2) /∈ J1 \{2a2}, then f ′ has infinitely many fixed
points and satisfies

τ(f ′) =∞.
(2) If (i) (2a1) /∈ I2 \ {2a1} or (2a2) /∈ I2 \ {2a2} and (ii) (3a1) /∈ J2 \ {3a1} or

(3a2) /∈ J2 \ {3a2}, then f ′′ has infinitely many fixed points and satisfies

τ(f ′′) =∞.

2. Preliminary lemmas

We define the linear measure of a set E ⊂ [0,+∞) by m(E) =
∫ +∞

0
χE(t)dt and

the logarithmic measure of a set F ⊂ (1,+∞) by lm(F ) =
∫ +∞

1
χF (t)
t dt, where χH

is the characteristic function of a set H.

Lemma 2.1 ([10]). Let f be a transcendental meromorphic function with σ(f) =
σ < +∞. Let ε > 0 be a given constant, and let k, j be integers satisfying k > j ≥ 0.
Then, there exists a set E1 ⊂ [−π2 ,

3π
2 ) with linear measure zero, such that, if

ψ ∈ [−π2 ,
3π
2 ) \ E1, then there is a constant R0 = R0(ψ) > 1, such that for all z

satisfying arg z = ψ and |z| ≥ R0, we have

|f
(k)(z)
f (j)(z)

| ≤ |z|(k−j)(σ−1+ε). (2.1)

Lemma 2.2 ([4]). Suppose that P (z) = (α + iβ)zn + . . . (α, β are real numbers,
|α|+|β| 6= 0) is a polynomial with degree n ≥ 1, that A(z) ( 6≡ 0) is an entire function
with σ(A) < n. Set g(z) = A(z)eP (z), z = reiθ, δ(P, θ) = α cosnθ − β sinnθ. Then
for any given ε > 0, there is a set E2 ⊂ [0, 2π) that has linear measure zero, such
that for any θ ∈ [0, 2π) \ (E2 ∪ E3), there is R > 0, such that for |z| = r > R, we
have
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(i) If δ(P, θ) > 0, then

exp{(1− ε)δ(P, θ)rn} ≤ |g(reiθ)| ≤ exp{(1 + ε)δ(P, θ)rn}. (2.2)

(ii) If δ(P, θ) < 0, then

exp{(1 + ε)δ(P, θ)rn} ≤ |g(reiθ)| ≤ exp{(1− ε)δ(P, θ)rn}, (2.3)

where E3 = {θ ∈ [0, 2π) : δ(P, θ) = 0} is a finite set.

Lemma 2.3 ([17]). Suppose that n ≥ 1 is a natural number. Let Pj(z) = ajnz
n +

. . . (j = 1, 2) be nonconstant polynomials, where ajq (q = 1, . . . , n) are complex
numbers and a1na2n 6= 0. Set z = reiθ, ajn = |ajn|eiθj , θj ∈ [−π2 ,

3π
2 ), δ(Pj , θ) =

|ajn| cos(θj + nθ), then there is a set E4 ⊂ [− π
2n ,

3π
2n ) that has linear measure zero

such that if θ1 6= θ2, then there exists a ray arg z = θ, θ ∈ (− π
2n ,

π
2n ) \ (E4 ∪ E5),

satisfying
δ(P1, θ) > 0, δ(P2, θ) < 0 (2.4)

or
δ(P1, θ) < 0, δ(P2, θ) > 0, (2.5)

where E5 = {θ ∈ [− π
2n ,

3π
2n ) : δ(Pj , θ) = 0} is a finite set, which has linear measure

zero.

Remark 2.4 ([17]). In Lemma 2.3, if θ ∈ (− π
2n ,

π
2n ) \ (E4 ∪ E5) is replaced by

θ ∈ ( π2n ,
3π
2n ) \ (E4 ∪ E5), then we obtain the same result.

Lemma 2.5 ([5]). Suppose that k ≥ 2 and B0, B1, . . . , Bk−1 are entire functions
of finite order and let σ = max{σ(Bj) : j = 0, . . . , k− 1}. Then every solution f of
the differential equation

f (k) +Bk−1f
(k−1) + · · ·+B1f

′ +B0f = 0 (2.6)

satisfies σ2(f) ≤ σ.

Lemma 2.6 ([10]). Let f(z) be a transcendental meromorphic function, and let
α > 1 be a given constant. Then there exist a set E6 ⊂ (1,∞) with finite logarithmic
measure and a constant B > 0 that depends only on α and i, j (0 ≤ i < j ≤ k),
such that for all z satisfying |z| = r /∈ [0, 1] ∪ E6, we have

|f
(j)(z)
f (i)(z)

| ≤ B{T (αr, f)
r

(logα r) log T (αr, f)}j−i. (2.7)

Lemma 2.7 ([11]). Let ϕ : [0,+∞) → R and ψ : [0,+∞) → R be monotone
non-decreasing functions such that ϕ(r) ≤ ψ(r) for all r /∈ E7 ∪ [0, 1], where E7 ⊂
(1,+∞) is a set of finite logarithmic measure. Let γ > 1 be a given constant. Then
there exists an r1 = r1(γ) > 0 such that ϕ(r) ≤ ψ(γr) for all r > r1.

Lemma 2.8 ([2]). Let A0, A1, . . . , Ak−1, F 6≡ 0 be finite order meromorphic func-
tions. If f(z) is an infinite order meromorphic solution of the equation

f (k) +Ak−1f
(k−1) + · · ·+A1f

′ +A0f = F, (2.8)

then f satisfies λ(f) = λ(f) = σ(f) =∞.

The following lemma, due to Gross [8], is important in the factorization and
uniqueness theory of meromorphic functions, playing an important role in this
paper as well.
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Lemma 2.9 ([8, 19]). Suppose that f1(z), f2(z), . . . , fn(z)(n ≥ 2) are meromorphic
functions and g1(z), g2(z), . . . , gn(z) are entire functions satisfying the following
conditions:

(i)
∑n
j=1 fj(z)e

gj(z) ≡ 0;
(ii) gj(z)− gk(z) are not constants for 1 ≤ j < k ≤ n;
(iii) For 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, T (r, fj) = o{T (r, egh(z)−gk(z))} (r → ∞,

r /∈ E8), where E8 is a set with finite linear measure.
Then fj(z) ≡ 0 (j = 1, . . . , n).

Lemma 2.10 ([18]). Suppose that f1(z), f2(z), . . . , fn(z)(n ≥ 2) are meromorphic
functions and g1(z), g2(z), . . . , gn(z) are entire functions satisfying the following
conditions:

(i)
∑n
j=1 fj(z)e

gj(z) ≡ fn+1;
(ii) If 1 ≤ j ≤ n+ 1, 1 ≤ k ≤ n, the order of fj is less than the order of egk(z).

If n ≥ 2, 1 ≤ j ≤ n+ 1, 1 ≤ h < k ≤ n, and the order of fj is less than the
order of egh−gk .

Then fj(z) ≡ 0 (j = 1, 2, . . . , n+ 1).

3. Proof of Theorem 1.5

First step. Assume that f(6≡ 0) is a solution of equation (1.2). We prove that
σ(f) = +∞. Suppose that σ(f) = σ < +∞. We rewrite (1.2) as

f (k)

f
+
k−1∑
j=1

(Bjebjz +Dje
(αja1+βja2)z)

f (j)

f
+A1e

a1z +A2e
a2z = 0. (3.1)

Set
γ = max{σ(Bj) (j = 1, . . . , k − 1)} < 1.

Then, for any given ε (0 < ε < 1− γ) and for sufficiently large r, we have

|Bj(z)| ≤ exp{rγ+ε} (j = 1, . . . , k − 1). (3.2)

By Lemma 2.1, for any given ε (0 < ε < 1 − γ), there exists a set E1 ⊂ [−π2 ,
3π
2 )

of linear measure zero, such that if θ ∈ [−π2 ,
3π
2 ) \ E1, then there is a constant

R0 = R0(θ) > 1, such that for all z satisfying arg z = θ and |z| = r ≥ R0, we have

|f
(j)(z)
f(z)

| ≤ rj(σ−1+ε) (j = 1, . . . , k). (3.3)

Let z = reiθ, a1 = |a1|eiθ1 , a2 = |a2|eiθ2 , θ1, θ2 ∈ [−π2 ,
3π
2 ). We know that

δ(αja1z, θ) = αjδ(a1z, θ), δ(βja2z, θ) = βjδ(a2z, θ) (j = 1, . . . , k − 1) and α < 1,
β < 1.
Case 1. Assume that arg a1 6= π and arg a1 6= arg a2, which is θ1 6= π and θ1 6= θ2.
By Lemma 2.2 and Lemma 2.3, for any given ε,

0 < ε < min{1− γ, 1− α
2(1 + α)

,
1− β

2(1 + β)
},

there is a ray arg z = θ such that θ ∈ (−π2 ,
π
2 ) \ (E1 ∪ E4 ∪ E5) (where E4 and

E5 are defined as in Lemma 2.3, E1 ∪ E4 ∪ E5 is of the linear measure zero), and
satisfying

δ(a1z, θ) > 0, δ(a2z, θ) < 0
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or
δ(a1z, θ) < 0, δ(a2z, θ) > 0.

(a) When δ(a1z, θ) > 0, δ(a2z, θ) < 0, for sufficiently large r, we obtain by Lemma
2.2,

|A1e
a1z| ≥ exp{(1− ε)δ(a1z, θ)r}, (3.4)

|A2e
a2z| ≤ exp{(1− ε)δ(a2z, θ)r} < 1, (3.5)

|Dje
αja1z| ≤ exp{(1 + ε)αjδ(a1z, θ)r}

≤ exp{(1 + ε)αδ(a1z, θ)r} (j = 1, . . . , k − 1),
(3.6)

|eβja2z| ≤ exp{(1− ε)βjδ(a2z, θ)r} < 1 (j = 1, . . . , k − 1). (3.7)

By (3.6) and (3.7), we obtain

|Dje
(αja1+βja2)z| = |Dje

αja1z||eβja2z| ≤ exp{(1 + ε)αδ(a1z, θ)r}, (3.8)

where j = 1, . . . , k − 1. For θ ∈ (−π2 ,
π
2 ), by (3.2), we have

|Bjebjz| = |Bj | |ebjz| ≤ exp{rγ+ε}ebjr cos θ ≤ exp{rγ+ε} (3.9)

because bj < 0 and cos θ > 0 (j = 1, . . . , k − 1). By (3.1), we obtain

|A1e
a1z| ≤ |f

(k)

f
|+

k−1∑
j=1

(
|Bjebjz|+ |Dje

(αja1+βja2)z|
)
|f

(j)

f
|+ |A2e

a2z|. (3.10)

Substituting (3.3) -(3.5), (3.8) and (3.9) in (3.10), we have

exp{(1− ε)δ(a1z, θ)r} ≤ |A1e
a1z|

≤M1r
M2 exp{rγ+ε} exp{(1 + ε)αδ(a1z, θ)r},

(3.11)

where M1 > 0 and M2 > 0 are some constants. By 0 < ε < 1−α
2(1+α) and (3.11), we

obtain

exp{1− α
2

δ(a1z, θ)r} ≤M1r
M2 exp{rγ+ε}. (3.12)

By δ(a1z, θ) > 0 and γ + ε < 1 we know that (3.12) is a contradiction.
(b) When δ(a1z, θ) < 0, δ(a2z, θ) > 0, for sufficiently large r, we obtain

|A2e
a2z| ≥ exp{(1− ε)δ(a2z, θ)r}, (3.13)

|A1e
a1z| ≤ exp{(1− ε)δ(a1z, θ)r} < 1, (3.14)

|Dje
αja1z| ≤ exp{(1− ε)αjδ(a1z, θ)r} < 1 (j = 1, . . . , k − 1), (3.15)

|eβja2z| ≤ exp{(1 + ε)βjδ(a2z, θ)r}
≤ exp{(1 + ε)βδ(a2z, θ)r} (j = 1, . . . , k − 1).

(3.16)

By (3.15) and (3.16), we have

|Dje
(αja1+βja2)z| = |Dje

αja1z| |eβja2z| ≤ exp{(1 + ε)βδ(a2z, θ)r}, (3.17)

where j = 1, . . . , k − 1. By (3.1), we obtain

|A2e
a2z| ≤ |f

(k)

f
|+

k−1∑
j=1

(
|Bjebjz|+ |Dje

(αja1+βja2)z|
)
|f

(j)

f
|+ |A1e

a1z|. (3.18)
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Substituting (3.3), (3.9), (3.13), (3.14) and (3.17) in (3.18), we have

exp{(1− ε)δ(a2z, θ)r} ≤ |A2e
a2z|

≤M1r
M2 exp{rγ+ε} exp{(1 + ε)βδ(a2z, θ)r}.

(3.19)

By 0 < ε < 1−β
2(1+β) and (3.19), we obtain

exp
{1− β

2
δ(a2z, θ)r

}
≤M1r

M2 exp{rγ+ε}. (3.20)

By δ(a2z, θ) > 0 and γ + ε < 1 we know that (3.20) is a contradiction.
Case 2. Assume that arg a1 6= π, arg a1 = arg a2, which is θ1 6= π, θ1 = θ2. By
Lemma 2.3, for any given ε

0 < ε < min
{

1− γ, (1− α)|a1| − |a2|
2[(1 + α)|a1|+ |a2|]

,
(1− β)|a2| − |a1|

2[(1 + β)|a2|+ |a1|]
}
,

there is a ray arg z = θ such that θ ∈ (−π2 ,
π
2 ) \ (E1 ∪ E4 ∪ E5) and δ(a1z, θ) > 0.

Since θ1 = θ2, then δ(a2z, θ) > 0.

(i) |a2| > |a1|
1−β . For sufficiently large r, we have (3.6), (3.13) , (3.16) hold and

|A1e
a1z| ≤ exp{(1 + ε)δ(a1z, θ)r}. (3.21)

By (3.6) and (3.16), we obtain

|Dje
(αja1+βja2)z| ≤ exp{(1 + ε)αδ(a1z, θ)r} exp{(1 + ε)βδ(a2z, θ)r}, (3.22)

where j = 1, . . . , k− 1. Substituting (3.3), (3.9), (3.13), (3.21) and (3.22) in (3.18),
we have

exp{(1− ε)δ(a2z, θ)r}
≤ |A2e

a2z|

≤ k exp{rγ+ε} exp{(1 + ε)αδ(a1z, θ)r} exp{(1 + ε)βδ(a2z, θ)r}rk(σ−1+ε)

+ exp{(1 + ε)δ(a1z, θ)r}
≤M1r

M2 exp{rγ+ε} exp{(1 + ε)δ(a1z, θ)r} exp{(1 + ε)βδ(a2z, θ)r}.

(3.23)

From (3.23), we obtain

exp{η1r} ≤M1r
M2 exp{rγ+ε}, (3.24)

where
η1 = (1− ε)δ(a2z, θ)− (1 + ε)δ(a1z, θ)− (1 + ε)βδ(a2z, θ).

Since

0 < ε <
(1− β)|a2| − |a1|

2[(1 + β)|a2|+ |a1|]
,

θ1 = θ2 and cos(θ1 + θ) > 0, we have

η1 = [1− β − ε(1 + β)]δ(a2z, θ)− (1 + ε)δ(a1z, θ)

= [1− β − ε(1 + β)]|a2| cos(θ1 + θ)− (1 + ε)|a1| cos(θ1 + θ)

= {[1− β − ε(1 + β)]|a2| − (1 + ε)|a1|} cos(θ1 + θ)

= {(1− β)|a2| − |a1| − ε[(1 + β)|a2|+ |a1|]} cos(θ1 + θ)

>
(1− β)|a2| − |a1|

2
cos(θ1 + θ) > 0.

Since η1 > 0 and γ + ε < 1, we know that (3.24) is a contradiction.
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(ii) |a2| < (1−α)|a1|. For sufficiently large r, we have (3.4), (3.6), (3.16) and (3.22)
hold; then we obtain

|A2e
a2z| ≤ exp{(1 + ε)δ(a2z, θ)r}. (3.25)

Substituting (3.3), (3.4), (3.9), (3.22) and (3.25) in (3.10), we have

exp{(1− ε)δ(a1z, θ)r}
≤ |A1e

a1z|

≤ k exp{rγ+ε} exp{(1 + ε)αδ(a1z, θ)r} exp{(1 + ε)βδ(a2z, θ)r}rk(σ−1+ε)

+ exp{(1 + ε)δ(a2z, θ)r}
≤M1r

M2 exp{rγ+ε} exp{(1 + ε)αδ(a1z, θ)r} exp{(1 + ε)δ(a2z, θ)r}.

(3.26)

From the above inequality we obtain

exp{η2r} ≤M1r
M2 exp{rγ+ε}, (3.27)

where
η2 = (1− ε)δ(a1z, θ)− (1 + ε)αδ(a1z, θ)− (1 + ε)δ(a2z, θ).

Since 0 < ε < (1−α)|a1|−|a2|
2[(1+α)|a1|+|a2|] , θ1 = θ2 and cos(θ1 + θ) > 0, then we obtain

η2 = {(1− α)|a1| − |a2| − ε[(1 + α)|a1|+ |a2|]} cos(θ1 + θ)

>
(1− α)|a1| − |a2|

2
cos(θ1 + θ) > 0.

By η2 > 0 and γ + ε < 1 we know that (3.27) is a contradiction.
Case 3. Assume that a1 < 0 and arg a1 6= arg a2, which is θ1 = π and θ2 6= π. By
Lemma 2.2, for the above ε, there is a ray arg z = θ such that θ ∈ (−π2 ,

π
2 )\(E1∪E4∪

E5) and δ(a2z, θ) > 0. Because cos θ > 0, δ(a1z, θ) = |a1| cos(θ1+θ) = −|a1| cos θ <
0. Using the same reasoning as in Case 1 (b), we can get a contradiction.
Case 4. Assume that (i) (1 − β)a2 − b < a1 < 0 and a2 <

b
1−β or (ii) a1 <

a2+b
1−α

and a2 < 0, which is θ1 = θ2 = π. By Lemma 2.2, for any given ε satisfying

0 < ε < min
{

1− γ, (1− α)|a1| − |a2|+ b

2[(1 + α)|a1|+ |a2|]
,

(1− β)|a2| − |a1|+ b

2[(1 + β)|a2|+ |a1|]
}
,

there is a ray arg z = θ such that θ ∈ (π2 ,
3π
2 ) \ (E1 ∪ E4 ∪ E5), then cos θ < 0,

δ(a1z, θ) = |a1| cos(θ1 + θ) = −|a1| cos θ > 0 and

δ(a2z, θ) = |a2| cos(θ2 + θ) = −|a2| cos θ > 0.

(i) (1 − β)a2 − b < a1 < 0 and a2 <
b

1−β . For sufficiently large r, we obtain (3.6),
(3.13), (3.16), (3.21) and (3.22) hold. For θ ∈ (π2 ,

3π
2 ), by (3.2) we have

|Bjebjz| = |Bj ||ebjz| ≤ exp{rγ+ε}ebjr cos θ ≤ exp{rγ+ε}ebr cos θ (3.28)

because b ≤ bj < 0 and cos θ < 0 (j = 1, . . . , k − 1). Substituting (3.3), (3.13),
(3.21), (3.22) and (3.28) in (3.18), we obtain

exp{(1− ε)δ(a2z, θ)r}
≤ |A2e

a2z|

≤M1r
M2ebr cos θ exp{rγ+ε} exp{(1 + ε)δ(a1z, θ)r} exp{(1 + ε)βδ(a2z, θ)r}.

(3.29)
From (3.29) we have

exp{η3r} ≤M1r
M2 exp{rγ+ε}, (3.30)
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where

η3 = (1− ε)δ(a2z, θ)− (1 + ε)δ(a1z, θ)− (1 + ε)βδ(a2z, θ)− b cos θ.

Since (1− β)a2 − b < a1, a2 = −|a2| and a1 = −|a1|, then we obtain (1− β)|a2| −
|a1| + b > 0. We can see that 0 < (1 − β)|a2| − |a1| + b < (1 − β)|a2| − |a1| <
2[(1 + β)|a2|+ |a1|]. Therefore,

0 <
(1− β)|a2| − |a1|+ b

2[(1 + β)|a2|+ |a1|]
< 1.

From 0 < ε < (1−β)|a2|−|a1|+b
2[(1+β)|a2|+|a1|] , θ1 = θ2 = π and cos θ < 0, we obtain

η3 = [1− β − ε(1 + β)]δ(a2z, θ)− (1 + ε)δ(a1z, θ)− b cos θ

= −[1− β − ε(1 + β)]|a2| cos θ + (1 + ε)|a1| cos θ − b cos θ

= (− cos θ){[1− β − ε(1 + β)]|a2| − (1 + ε)|a1|+ b}
= (− cos θ){(1− β)|a2| − |a1|+ b− ε[(1 + β)|a2|+ |a1|]}

>
−1
2

[(1− β)|a2| − |a1|+ b] cos θ > 0.

From η3 > 0 and γ + ε < 1 we know that (3.30) is a contradiction.
(ii) a1 <

a2+b
1−α and a2 < 0. For sufficiently large r, we obtain (3.4), (3.6), (3.16),

(3.22), and (3.25) hold. Substituting (3.3), (3.4), (3.22), (3.25) and (3.28) in (3.10),
we obtain

exp{(1− ε)δ(a1z, θ)r} ≤ |A1e
a1z|

≤M1r
M2ebr cos θ exp{rγ+ε} exp{(1 + ε)αδ(a1z, θ)r}

× exp{(1 + ε)δ(a2z, θ)r}.
(3.31)

From this inequality we have

exp{η4r} ≤M1r
M2 exp{rγ+ε}, (3.32)

where

η4 = (1− ε)δ(a1z, θ)− (1 + ε)αδ(a1z, θ)− (1 + ε)δ(a2z, θ)− b cos θ.

Since a1 <
a2+b
1−α , a2 = −|a2| and a1 = −|a1|, then we obtain (1−α)|a1|−|a2|+b > 0.

We can see that 0 < (1−α)|a1|− |a2|+ b < (1−α)|a1|− |a2| < 2[(1 +α)|a1|+ |a2|].
Therefore,

0 <
(1− α)|a1| − |a2|+ b

2[(1 + α)|a1|+ |a2|]
< 1.

From

0 < ε <
(1− α)|a1| − |a2|+ b

2[(1 + α)|a1|+ |a2|]
,

θ1 = θ2 = π and cos θ < 0, we obtain

η4 = (− cos θ){(1− α)|a1| − |a2|+ b− ε[(1 + α)|a1|+ |a2|]}

>
−1
2

[(1− α)|a1| − |a2|+ b] cos θ > 0.

By η4 > 0 and γ + ε < 1 we know that (3.32) is a contradiction. Concluding the
above proof, we obtain σ(f) = +∞.
Second step. We prove that σ2(f) = 1. By

max{σ(Bjebjz +Dje
djz) (j = 1, . . . , k − 1), σ(A1e

a1z +A2e
a2z)} = 1
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and Lemma 2.5, we obtain σ2(f) ≤ 1. By Lemma 2.6, we know that there exists a
set E6 ⊂ (1,+∞) with finite logarithmic measure and a constant C > 0, such that
for all z satisfying |z| = r /∈ [0, 1] ∪ E6, we obtain

|f
(j)(z)
f(z)

| ≤ C[T (2r, f)]j+1 (j = 1, . . . , k). (3.33)

Case 1. arg a1 6= π and arg a1 6= arg a2. In first step, we have proved that there is
a ray arg z = θ where θ ∈ (−π2 ,

π
2 ) \ (E1 ∪ E4 ∪ E5), satisfying

δ(a1z, θ) > 0, δ(a2z, θ) < 0 or δ(a1z, θ) < 0, δ(a2z, θ) > 0.

(a) When δ(a1z, θ) > 0, δ(a2z, θ) < 0, for sufficiently large r, we obtain (3.4)–(3.8)
hold. Substituting (3.4), (3.5), (3.8), (3.9) and (3.33) in (3.10), we obtain that for
all z = reiθ satisfying |z| = r /∈ [0, 1] ∪ E6, θ ∈ (−π2 ,

π
2 ) \ (E1 ∪ E4 ∪ E5),

exp{(1− ε)δ(a1z, θ)r} ≤ |A1e
a1z|

≤M exp{rγ+ε} exp{(1 + ε)αδ(a1z, θ)r}[T (2r, f)]k+1,

(3.34)
where M > 0 is a constant. From (3.34) and 0 < ε < 1−α

2(1+α) , we obtain

exp
{1− α

2
δ(a1z, θ)r

}
≤M exp{rγ+ε}[T (2r, f)]k+1. (3.35)

Since δ(a1z, θ) > 0 and γ + ε < 1, then by using Lemma 2.7 and (3.35), we obtain
σ2(f) ≥ 1. Hence σ2(f) = 1.

(b) When δ(a1z, θ) < 0, δ(a2z, θ) > 0, for sufficiently large r, we obtain (3.13)–
(3.17) hold. By using the a same reasoning as above, we can get σ2(f) = 1.
Case 2. arg a1 6= π, arg a1 = arg a2. In the first step, we have proved that there
is a ray arg z = θ where θ ∈ (−π2 ,

π
2 ) \ (E1 ∪ E4 ∪ E5), satisfying δ(a1z, θ) > 0 and

δ(a2z, θ) > 0.

(i) |a2| > |a1|
1−β . For sufficiently large r, we have (3.6), (3.13), (3.16), (3.21) and

(3.22) hold. Substituting (3.9), (3.13), (3.21), (3.22) and (3.33) in (3.18), we obtain
that for all z = reiθ satisfying |z| = r /∈ [0, 1] ∪ E6, θ ∈ (−π2 ,

π
2 ) \ (E1 ∪ E4 ∪ E5),

exp{(1− ε)δ(a2z, θ)r} ≤ |A2e
a2z|

≤M exp{rγ+ε} exp{(1 + ε)δ(a1z, θ)r}

× exp{(1 + ε)βδ(a2z, θ)r}[T (2r, f)]k+1.

(3.36)

From this inequality, we obtain

exp{η1r} ≤M exp{rγ+ε}[T (2r, f)]k+1, (3.37)

where
η1 = (1− ε)δ(a2z, θ)− (1 + ε)δ(a1z, θ)− (1 + ε)βδ(a2z, θ).

Since η1 > 0 and γ + ε < 1, then by using Lemma 2.7 and (3.37), we obtain
σ2(f) ≥ 1. Hence σ2(f) = 1.
(ii) |a2| < (1 − α)|a1|. For sufficiently large r, we have (3.4), (3.6), (3.16), (3.22)
and (3.25) hold. By using the same reasoning as above, we can get σ2(f) = 1.
Case 3. a1 < 0 and arg a1 6= arg a2. In the first step, we have proved that there
is a ray arg z = θ where θ ∈ (−π2 ,

π
2 ) \ (E1 ∪ E4 ∪ E5), satisfying δ(a2z, θ) > 0 and

δ(a1z, θ) < 0. Using the same reasoning as in second step (Case 1 (b)), we can get
σ2(f) = 1.
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Case 4. (i) (1 − β)a2 − b < a1 < 0 and a2 <
b

1−β or (ii) a1 <
a2+b
1−α and a2 < 0.

In the first step, we have proved that there is a ray arg z = θ, where θ ∈ (π2 ,
3π
2 ) \

(E1 ∪ E4 ∪ E5), satisfying δ(a2z, θ) > 0 and δ(a1z, θ) > 0.

(i) (1 − β)a2 − b < a1 < 0 and a2 <
b

1−β . For sufficiently large r, we obtain (3.6),
(3.13), (3.16), (3.21) and (3.22) hold. Substituting (3.13), (3.21), (3.22), (3.28) and
(3.33) in (3.18), we obtain that for all z = reiθ satisfying |z| = r /∈ [0, 1] ∪ E6,
θ ∈ (π2 ,

3π
2 ) \ (E1 ∪ E4 ∪ E5),

exp{(1− ε)δ(a2z, θ)r} ≤ |A2e
a2z|

≤Mebr cos θ exp{rγ+ε} exp{(1 + ε)δ(a1z, θ)r}

× exp{(1 + ε)βδ(a2z, θ)r}[T (2r, f)]k+1.

(3.38)

From this inequality we obtain

exp{η3r} ≤M exp{rγ+ε}[T (2r, f)]k+1, (3.39)

where

η3 = (1− ε)δ(a2z, θ)− (1 + ε)δ(a1z, θ)− (1 + ε)βδ(a2z, θ)− b cos θ.

Since η3 > 0 and γ + ε < 1, then by using Lemma 2.7 and (3.39), we obtain
σ2(f) ≥ 1. Hence σ2(f) = 1.

(ii) a1 <
a2+b
1−α and a2 < 0. For sufficiently large r, we obtain (3.4), (3.6), (3.16),

(3.22) and (3.25) hold. By using the same reasoning as above, we can get σ2(f) = 1.
Concluding the above proof, we obtain that every solution f( 6≡ 0) of (1.2) satisfies
σ2(f) = 1. The proof of Theorem 1.5 is complete.

4. Proof of Theorem 1.6

Set R0(z) = A1e
a1z + A2e

a2z and Ri(z) = Bie
biz + Die

diz (i = 1, . . . , k − 1).
Assume f( 6≡ 0) is a solution of (1.2). Then σ(f) = +∞ by Theorem 1.5. Set
g0(z) = f(z) − ϕ(z). Then we have σ(g0) = σ(f) = ∞. Substituting f = g0 + ϕ
into (1.2), we obtain

g
(k)
0 +Rk−1g

(k−1)
0 + · · ·+R2g

′′
0 +R1g

′
0 +R0g0

= −[ϕ(k) +Rk−1ϕ
(k−1) + · · ·+R2ϕ

′′ +R1ϕ
′ +R0ϕ].

(4.1)

We can rewrite (4.1) in the form

g
(k)
0 + h0,k−1g

(k−1)
0 + · · ·+ h0,2g

′′
0 + h0,1g

′
0 + h0,0g0 = h0, (4.2)

where
h0 = −[ϕ(k) +Rk−1ϕ

(k−1) + · · ·+R2ϕ
′′ +R1ϕ

′ +R0ϕ].

We prove that h0 6≡ 0. In fact, if h0 ≡ 0, then

ϕ(k) +Rk−1ϕ
(k−1) + · · ·+R2ϕ

′′ +R1ϕ
′ +R0ϕ = 0.

Hence, ϕ 6≡ 0 is a solution of (1.2) with σ(ϕ) = +∞ by Theorem 1.5, which is a
contradiction. Hence, h0 6≡ 0 is proved. By Lemma 2.8 and (4.2) we know that
λ(g0) = λ(f − ϕ) = σ(g0) = σ(f) =∞.
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Now we prove that λ(f ′ − ϕ) = ∞. Set g1(z) = f ′(z) − ϕ(z). Then we have
σ(g1) = σ(f ′) = σ(f) =∞. Differentiating both sides of equation (1.2), we obtain

f (k+1) +Rk−1f
(k) + (R′k−1 +Rk−2)f (k−1) + (R′k−2 +Rk−3)f (k−2)

+ · · ·+ (R′3 +R2)f ′′′ + (R′2 +R1)f ′′ + (R′1 +R0)f ′ +R′0f = 0.
(4.3)

By (1.2), we have

f = − 1
R0

[f (k) +Rk−1f
(k−1) + · · ·+R2f

′′ +R1f
′]. (4.4)

Substituting (4.4) into (4.3), we have

f (k+1) +
(
Rk−1 −

R′0
R0

)
f (k) +

(
R′k−1 +Rk−2 −Rk−1

R′0
R0

)
f (k−1)

+
(
R′k−2 +Rk−3 −Rk−2

R′0
R0

)
f (k−2) + · · ·+

(
R′3 +R2 −R3

R′0
R0

)
f ′′′

+
(
R′2 +R1 −R2

R′0
R0

)
f ′′ +

(
R′1 +R0 −R1

R′0
R0

)
f ′ = 0.

(4.5)

We can write equation (4.5) in the form

f (k+1) + h1,k−1f
(k) + h1,k−2f

(k−1) + · · ·+ h1,2f
′′′ + h1,1f

′′ + h1,0f
′ = 0, (4.6)

where

h1,i = R′i+1 +Ri −Ri+1
R′0
R0

(i = 0, 1, . . . , k − 2),

h1,k−1 = Rk−1 −
R′0
R0

.

Substituting f (j+1) = g
(j)
1 + ϕ(j) (j = 0, . . . , k) into (4.6), we obtain

g
(k)
1 + h1,k−1g

(k−1)
1 + h1,k−2g

(k−2)
1 + · · ·+ h1,2g

′′
1 + h1,1g

′
1 + h1,0g1 = h1, (4.7)

where

h1 = −[ϕ(k) + h1,k−1ϕ
(k−1) + h1,k−2ϕ

(k−2) + · · ·+ h1,2ϕ
′′ + h1,1ϕ

′ + h1,0ϕ].

We can get

h1,i(z) =
Ni(z)
R0(z)

(i = 0, 1, . . . , k − 1), (4.8)

where

N0 = R′1R0 +R2
0 −R1R

′
0, (4.9)

Ni = R′i+1R0 +RiR0 −Ri+1R
′
0 (i = 1, 2, . . . , k − 2), (4.10)

Nk−1 = Rk−1R0 −R′0. (4.11)

Now we prove that h1 6≡ 0. In fact, if h1 ≡ 0, then h1
ϕ ≡ 0. Hence, by (4.8) we

obtain

ϕ(k)

ϕ
R0 +

ϕ(k−1)

ϕ
Nk−1 +

ϕ(k−2)

ϕ
Nk−2 + · · ·+ ϕ′′

ϕ
N2 +

ϕ′

ϕ
N1 +N0 = 0. (4.12)
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Obviously, ϕ(j)

ϕ (j = 1, . . . , k) are meromorphic functions with σ(ϕ
(j)

ϕ ) < 1. By
(4.9)–(4.11) we can rewrite (4.12) in the form

A2
1e

2a1z +A2
2e

2a2z +
∑
λ∈I′1

fλe
λz = 0, (4.13)

where I ′1 = I1 \ {2a1, 2a2} and fλ (λ ∈ I ′1) are meromorphic functions with order
less than 1.
(1) If (2a1) /∈ I1 \ {2a1}, then we write (4.13) in the form

A2
1e

2a1z +
∑
λ∈Γ1

g1,λe
λz = 0,

where Γ1 ⊆ I1 \ {2a1}, g1,λ (λ ∈ Γ1) are meromorphic functions with order less
than 1 and 2a1, λ (λ ∈ Γ1) are distinct numbers. By Lemmas 2.9 and 2.10, we
obtain A1 ≡ 0, which is a contradiction.
(2) If (2a2) /∈ I1 \ {2a2}, then we write (4.13) in the form

A2
2e

2a2z +
∑
λ∈Γ2

g2,λe
λz = 0,

where Γ2 ⊆ I1 \ {2a2}, g2,λ (λ ∈ Γ2) are meromorphic functions with order less
than 1 and 2a2, λ (λ ∈ Γ2) are distinct numbers. By Lemmas 2.9 and 2.10, we
obtain A2 ≡ 0, which is a contradiction. Hence, h1 6≡ 0 is proved. By Lemma 2.8
and (4.7) we know that λ(g1) = λ(f ′ − ϕ) = σ(g1) = σ(f) =∞.

Now we prove that λ(f ′′ − ϕ) = ∞. Set g2(z) = f ′′(z) − ϕ(z). Then we have
σ(g2) = σ(f ′′) = σ(f) =∞. Differentiating both sides of equation (4.3), we have

f (k+2) +Rk−1f
(k+1) + (2R′k−1 +Rk−2)f (k) + (R′′k−1 + 2R′k−2 +Rk−3)f (k−1)

+ (R′′k−2 + 2R′k−3 +Rk−4)f (k−2) + · · ·+ (R′′3 + 2R′2 +R1)f ′′′

+ (R′′2 + 2R′1 +R0)f ′′ + (R′′1 + 2R′0)f ′ +R′′0f = 0.
(4.14)

By (4.4) and (4.14), we have

f (k+2) +Rk−1f
(k+1) +

(
2R′k−1 +Rk−2 −

R′′0
R0

)
f (k)

+
(
R′′k−1 + 2R′k−2 +Rk−3 −Rk−1

R′′0
R0

)
f (k−1) + . . .

+
(
R′′4 + 2R′3 +R2 −R4

R′′0
R0

)
f (4) +

(
R′′3 + 2R′2 +R1 −R3

R′′0
R0

)
f ′′′

+
(
R′′2 + 2R′1 +R0 −R2

R′′0
R0

)
f ′′ +

(
R′′1 + 2R′0 −R1

R′′0
R0

)
f ′ = 0.

(4.15)

Now we prove that R′1 +R0 −R1
R′0
R0
6≡ 0. Suppose that R′1 +R0 −R1

R′0
R0
≡ 0, then

we have
A2

1e
2a1z +A2

2e
2a2z +

∑
λ∈I′2

fλe
λz = 0, (4.16)

where I ′2 = I2 \ {2a1, 2a2} and fλ (λ ∈ I ′2) are meromorphic functions with order
less than 1. By using the same reasoning as above, we can get a contradiction.
Hence, R′1 +R0 −R1

R′0
R0
6≡ 0 is proved. Set

ψ(z) = R′1R0 +R2
0 −R1R

′
0 and φ(z) = R′′1R0 + 2R′0R0 −R1R

′′
0 . (4.17)
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By (4.5) and (4.17), we obtain

f ′ =
−R0

ψ(z)

{
f (k+1) +

(
Rk−1 −

R′0
R0

)
f (k) +

(
R′k−1 +Rk−2 −Rk−1

R′0
R0

)
f (k−1)

+
(
R′k−2 +Rk−3 −Rk−2

R′0
R0

)
f (k−2) + · · ·+

(
R′2 +R1 −R2

R′0
R0

)
f ′′
}
.

(4.18)
Substituting (4.17) and (4.18) into (4.15), we obtain

f (k+2) + [Rk−1 −
φ

ψ
]f (k+1) +

[
2R′k−1 +Rk−2 −

R′′0
R0
− φ

ψ

(
Rk−1 −

R′0
R0

)]
f (k)

+
[
R′′k−1 + 2R′k−2 +Rk−3 −Rk−1

R′′0
R0
− φ

ψ

(
R′k−1 +Rk−2 −Rk−1

R′0
R0

)]
f (k−1)

+ · · ·+
[
R′′3 + 2R′2 +R1 −R3

R′′0
R0
− φ

ψ

(
R′3 +R2 −R3

R′0
R0

)]
f ′′′

+
[
R′′2 + 2R′1 +R0 −R2

R′′0
R0
− φ

ψ

(
R′2 +R1 −R2

R′0
R0

)]
f ′′ = 0.

(4.19)
We can write (4.19) in the form

f (k+2) + h2,k−1f
(k+1) + h2,k−2f

(k) + · · ·+ h2,2f
(4) + h2,1f

′′′ + h2,0f
′′ = 0, (4.20)

where

h2,i = R′′i+2 + 2R′i+1 +Ri −Ri+2
R′′0
R0

− φ(z)
ψ(z)

(
R′i+2 +Ri+1 −Ri+2

R′0
R0

)
(i = 0, 1, . . . , k − 3),

h2,k−2 = 2R′k−1 +Rk−2 −
R′′0
R0
− φ(z)
ψ(z)

(
Rk−1 −

R′0
R0

)
,

h2,k−1 = Rk−1 −
φ(z)
ψ(z)

.

Substituting f (j+2) = g
(j)
2 + ϕ(j) (j = 0, . . . , k) in (4.20) we have

g
(k)
2 + h2,k−1g

(k−1)
2 + h2,k−2g

(k−2)
2 + · · ·+ h2,1g

′
2 + h2,0g2 = h2, (4.21)

where

h2 = −[ϕ(k) + h2,k−1ϕ
(k−1) + h2,k−2ϕ

(k−2) + · · ·+ h2,2ϕ
′′ + h2,1ϕ

′ + h2,0ϕ].

We obtain

h2,i =
Li(z)
ψ(z)

(i = 0, 1, . . . , k − 1), (4.22)

where

L0(z) = R′′2R
′
1R0 +R′′2R

2
0 −R′′2R1R

′
0 + 2R′1

2
R0 + 3R′1R

2
0 − 2R′1R1R

′
0 +R3

0

− 3R1R
′
0R0 −R2R

′
1R
′′
0 −R2R

′′
0R0 −R′2R′′1R0 − 2R′2R

′
0R0 +R′2R1R

′′
0

−R′′1R1R0 +R2
1R
′′
0 +R2R

′′
1R
′
0 + 2R2R

′
0
2
,

(4.23)
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Li = R′′i+2R
′
1R0 +R′′i+2R

2
0 −R′′i+2R1R

′
0 + 2R′i+1R

′
1R0 + 2R′i+1R

2
0 − 2R′i+1R1R

′
0

+RiR
′
1R0 +RiR

2
0 −RiR1R

′
0 −Ri+2R

′
1R
′′
0 −Ri+2R

′′
0R0 −R′i+2R

′′
1R0

− 2R′i+2R
′
0R0 +R′i+2R1R

′′
0 −Ri+1R

′′
1R0 − 2Ri+1R

′
0R0 +Ri+1R1R

′′
0

+Ri+2R
′′
1R
′
0 + 2Ri+2R

′
0
2 (i = 1, 2, . . . , k − 3),

(4.24)

Lk−2 = 2R′k−1R
′
1R0 + 2R′k−1R

2
0 − 2R′k−1R1R

′
0 +Rk−2R

′
1R0 +Rk−2R

2
0

−Rk−2R1R
′
0 −R′1R′′0 −R′′0R0 −Rk−1R

′′
1R0 − 2Rk−1R

′
0R0

+Rk−1R1R
′′
0 +R′′1R

′
0 + 2R′0

2
,

(4.25)

Lk−1 = Rk−1R
′
1R0 +Rk−1R

2
0 −Rk−1R1R

′
0 −R′′1R0 − 2R′0R0 +R1R

′′
0 . (4.26)

Therefore,

−h2

ϕ
=

1
ψ

[
ϕ(k)

ϕ
ψ +

ϕ(k−1)

ϕ
Lk−1 + · · ·+ ϕ′′

ϕ
L2 +

ϕ′

ϕ
L1 + L0]. (4.27)

Now we prove that h2 6≡ 0. In fact, if h2 ≡ 0, then −h2
ϕ ≡ 0. Hence, by (4.27) we

obtain
ϕ(k)

ϕ
ψ +

ϕ(k−1)

ϕ
Lk−1 + · · ·+ ϕ′′

ϕ
L2 +

ϕ′

ϕ
L1 + L0 = 0. (4.28)

Obviously, ϕ(j)

ϕ (j = 1, . . . , k) are meromorphic functions with σ(ϕ
(j)

ϕ ) < 1. By
(4.17) and (4.23)–(4.26), we can rewrite (4.28) in the form

A3
1e

3a1z +A3
2e

3a2z +
∑
λ∈I′3

fλe
λz = 0, (4.29)

where I ′3 = I3 \ {3a1, 3a2} and fλ (λ ∈ I ′3) are meromorphic functions with order
less than 1.

(1) If (3a1) /∈ I3 \ {3a1}, then we write (4.29) in the form

A3
1e

3a1z +
∑
λ∈Γ1

g1,λe
λz = 0,

where Γ1 ⊆ I3 \ {3a1}, g1,λ (λ ∈ Γ1) are meromorphic functions with order less
than 1 and 3a1, λ (λ ∈ Γ1) are distinct numbers. By Lemmas 2.9 and 2.10, we
obtain A1 ≡ 0, which is a contradiction.

(2) If (3a2) /∈ I3 \ {3a2}, then we write (4.29) in the form

A3
2e

3a2z +
∑
λ∈Γ2

g2,λe
λz = 0,

where Γ2 ⊆ I3 \ {3a2}, g2,λ (λ ∈ Γ2) are meromorphic functions with order less
than 1 and 3a2, λ (λ ∈ Γ2) are distinct numbers. By Lemmas 2.9 and 2.10, we
obtain A2 ≡ 0, which is a contradiction. Hence, h2 6≡ 0 is proved. By Lemma 2.8
and (4.21), we have λ(g2) = λ(f ′′−ϕ) = σ(g2) = σ(f) =∞. The proof of Theorem
1.6 is complete.

Proof of Corollary 1.7. Setting ϕ(z) = z and using the same reasoning as in the
proof of Theorem 1.6, we obtain Corollary 1.7. �
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