Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 112, pp. 1-9. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

PAIRS OF SIGN-CHANGING SOLUTIONS FOR SUBLINEAR ELLIPTIC EQUATIONS WITH NEUMANN BOUNDARY CONDITIONS

CHENGYUE LI, QI ZHANG, FENFEN CHEN

Abstract

We consider the Neumann problem for a sublinear elliptic equation in a convex bounded domain of \mathbb{R}^{N}. Using an variant of Clark Theorem, we obtain the existence and multiplicity of its pairs of sign-changing solutions.

1. Introduction

Consider the Neumann problem for a semilinear elliptic equation

$$
\begin{gather*}
-\Delta u(x)=f(u(x)), \quad x \in \Omega, \\
\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=0, \tag{1.1}
\end{gather*}
$$

where $\Omega \subset \mathbb{R}^{N}(N \geqslant 1)$ is a convex and bounded domain with the smooth boundary $\partial \Omega$ and the outward normal $n, f(u): \mathbb{R} \rightarrow \mathbb{R}$. Let $F(u)=\int_{0}^{u} f(s) d s$, the primitive of f, and assume it satisfies

$$
\begin{equation*}
\limsup _{|u| \rightarrow \infty} F(u) /|u|^{2} \leqslant a<\infty \tag{1.2}
\end{equation*}
$$

then we say that (1.1) is sublinear (or subquadratic). If

$$
\begin{equation*}
\lim _{|u| \rightarrow \infty} F(u) /|u|^{2}=\infty \tag{1.3}
\end{equation*}
$$

then (1.1) is superlinear (or superquadratic). For sublinear problem (1.1), there is a vast of literature. Under the assumptions of sign conditions [4, 5], or monotonicity conditions [10, or periodicity conditions 11, or Landesman-Lazer type conditions [6, 7], it has been showed that problem (1.1) possesses at least one solution. Tang [14, 15, 16] supposed that F satisfies the hypothesis

$$
\begin{equation*}
\lim _{u \in X_{0},\|u\|_{0} \rightarrow \infty}\|u\|_{0}^{-2 \alpha} \int_{\Omega} F(u(x)) d x \rightarrow \infty \tag{1.4}
\end{equation*}
$$

where $X_{0}=\left\{u \in H^{1}(\Omega): \int_{\Omega} u(x) d x=0\right\},\|u\|_{0}=\left(\int_{\Omega}|\nabla u(x)|^{2} d x\right)^{1 / 2}$ for $u \in X_{0}$, and $0<\alpha<1$. He proved the existence and multiplicity results of problem (1.1) by minimax methods. Costa [1] assumed that f satisfies

[^0](F1) $f \in \mathbb{C}^{1}(\mathbb{R}, \mathbb{R})$, strictly increasing and $f(0)=0$,
(F2') the limits $f^{\prime}(\pm \infty)=\lim _{u \rightarrow \pm \infty} f^{\prime}(u)$ exist, $0<f^{\prime}(\pm \infty)<\lambda_{1}<f^{\prime}(0)$, where λ_{1} is the first positive eigenvalue of the problem
\[

$$
\begin{gather*}
-\Delta u(x)=\lambda u(x), \quad x \in \Omega \\
\left.\frac{\partial u}{\partial n}\right|_{\partial \Omega}=0 \tag{1.5}
\end{gather*}
$$
\]

Then Costa [1] showed that (1.1) has one nontrivial solution in $H^{1}(\Omega)$, which minimizes the functional

$$
\begin{equation*}
\varphi_{\Omega}(u)=\frac{1}{2} \int_{\Omega}|\nabla u(x)|^{2} d x-\int_{\Omega} F(u(x)) d x \tag{1.6}
\end{equation*}
$$

over the manifold

$$
\begin{equation*}
\mathcal{M}=\left\{u \in H^{1}(\Omega): \int_{\Omega} f(u(x)) d x=0\right\} \tag{1.7}
\end{equation*}
$$

In [9], under the hypotheses that there are two sequences $\left\{a_{j}\right\},\left\{b_{j}\right\} \subset \mathbb{R}$, such that $f\left(a_{j}\right)=0=f\left(b_{j}\right), j=1,2, \ldots$, and $f^{\prime}\left(a_{j}\right) \geq \lambda_{2}, f^{\prime}\left(b_{j}\right) \geq \lambda_{2}, j=2,4, \ldots$, where λ_{2} is the second positive eigenvalue of problem (1.5), Li and Li [9] proved the existences of positive, negative and sign-changing solutions for problem (1.1).

In this article, motivated by [1], a multiplicity result of pairs of sign-changing solutions for (1.1) shall be obtained, which is a generalization of [1, Theorem 3.7].

Exactly, we have the following conclusion.
Theorem 1.1. Let d_{Ω} denote the diameter of Ω. Suppose that f satisfies (F1) and
(F2) the limits $f^{\prime}(\pm \infty)=\lim _{u \rightarrow \pm \infty} f^{\prime}(u)$ exist and $0<f^{\prime}(\pm \infty)<\left(\frac{\pi}{d_{\Omega}}\right)^{2}$;
(F3) $F(u)=F(-u)$, for all $u \in \mathbb{R}$;
(F4) there exist $p \in \mathbb{N}, M>0$ and $\rho>0$ such that $d_{\Omega}>\frac{2 p \pi}{\sqrt{M}}, M>4 p^{2} f^{\prime}(\pm \infty)$, and

$$
F(u) \geqslant \frac{1}{2} M|u|^{2}, \forall|u| \leqslant \rho ;
$$

(F4) for Ω there are continuous functions $e_{1}(x), e_{2}(x), \ldots, e_{p}(x) \in X_{0} \backslash\{0\}$, which are orthogonal in $H^{1}(\Omega)$ and $L^{2}(\Omega)$, such that

$$
\left.\int_{\Omega}\left|\nabla e_{j}(x)\right|^{2} d x \leqslant \frac{2(j+1) \pi)}{d_{\Omega}}\right]^{2} \int_{\Omega}\left|e_{j}(x)\right|^{2} d x, \quad \forall 1 \leqslant j \leqslant p
$$

Then (1.1) has p distinct pairs $(u(x),-u(x))$ of sign-changing classical solutions, and has no positive and negative solution, provided that $d_{\Omega} \in\left(\frac{2 p \pi}{\sqrt{M}}, \frac{\pi}{\sqrt{f^{\prime}(\pm \infty)}}\right)$.
Remark 1.2. If f satisfies $\lim _{|u| \rightarrow 0} F(u) /|u|^{2}=\infty$, then, for all $d_{\Omega}>0, p \geqslant 1$, we can find $M>0$ and $\rho>0$ such that (F4) holds.

Remark 1.3. Usually, in some applications, the role of $e_{1}(x), e_{2}(x), \ldots, e_{p}(x)$ is played by the eigenfunctions $\phi_{j} \in X_{0}(j \geqslant 1)$ of problem (1.5) (see 2.10 and 2.11) below).

This article is organized as follows. In Section 2, we give some Lemmas. In Section 3, we prove Theorem 1.1 by using a variant of Clark Theorem as stated next.

Theorem 1.4 (12, 13). Let \hat{X} be a Banach space, $\hat{\varphi} \in C^{1}(\hat{X}, \mathbb{R})$ be even, and $\hat{\mathcal{M}} \subset \hat{X}$ be $C^{1}-$ submanifold. Suppose that $\left.\hat{\varphi}\right|_{\hat{\mathcal{M}}}$ satisfies the Palais-Smale condition; $\hat{\varphi}$ is bounded from below on $\hat{\mathcal{M}}$; there exist a closed, symmetric subset $\hat{K} \subset \hat{\mathcal{M}}$ and $\hat{p} \in \mathbb{N}$ such that \hat{K} is homeomorphism to $S^{\hat{p}-1} \subset \mathbb{R}^{\hat{p}}$ by an odd map, and $\sup \{\hat{\varphi}(x): x \in \hat{K}\}<\hat{\varphi}(0)$. Then $\left.\hat{\varphi}\right|_{\hat{\mathcal{M}}}$ possesses at least \hat{p} distinct pairs $(u,-u)$ of critical point with corresponding critical values less than $\hat{\varphi}(0)$.

As an example, we apply Theorem 1.1 to $B_{\gamma}(0) \subset \mathbb{R}^{2}$ and yield an interesting result.

Theorem 1.5. Let f satisfy (F1)-(F4) with $\Omega=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2}<r^{2}\right\}$, then, for $r \in\left(\frac{2 p \pi}{\sqrt{M}}, \frac{\pi}{2 \sqrt{f^{\prime}(\pm \infty)}}\right)$, the problem

$$
\begin{gather*}
-\Delta u(x)=f(u(x)), \quad x_{1}^{2}+x_{2}^{2}<r^{2} \\
\left.\frac{\partial u}{\partial n}\right|_{x_{1}^{2}+x_{2}^{2}=r^{2}}=0 \tag{1.8}
\end{gather*}
$$

has p-distinct pairs $(u(x),-u(x))$ of sign-changing classical solutions.
In the proof of Theorem 1.5 , by some accurate analysis about the corresponding eigenvalue problem with zero points of Bessel functions, we find that condition (F5) is naturally satisfied.

2. Preliminaries

In this article, for simplicity, for $u \in L^{2}(\Omega)$, we denote by $\|u\|_{L^{2}}$ its L^{2}-norm. Clearly, problem (1.1) has the trivial solution $u(x)=0$. In order to find its nontrivial solutions, we consider the functional

$$
\begin{align*}
\varphi_{\Omega}(u) & =\frac{1}{2} \int_{\Omega}|\nabla u(x)|^{2} d x-\int_{\Omega} F(u(x)) d x \tag{2.1}\\
& =\frac{1}{2} \int_{\Omega}|\nabla u(x)|^{2} d x-\psi_{\Omega}(u), u \in X
\end{align*}
$$

where $\psi_{\Omega}(u)=\int_{\Omega} F(u(x)) d x, X=H^{1}(\Omega)$ is the usual Sobolev space with the inner product

$$
\begin{equation*}
(u, w)=\int_{\Omega}[\dot{u}(x) \dot{w}(x)+u(x) w(x)] d x \tag{2.2}
\end{equation*}
$$

and the corresponding norm

$$
\begin{equation*}
\|u\|=(u, u)^{1 / 2}=\left(\int_{\Omega}\left[|\nabla u(x)|^{2}+|u(x)|^{2}\right] d x\right)^{1 / 2} \tag{2.3}
\end{equation*}
$$

Under the assumptions (F1) and (F2), we know that $\varphi_{\Omega} \in \mathbb{C}^{2}(X, \mathbb{R}), \psi_{\Omega}(u)$ is weakly continuous in X, and $\psi_{\Omega}^{\prime}(u): X \rightarrow X^{*}$ is completely continuous. Moreover, critical points of φ_{Ω} in X are classical solutions of problem 1.1.

Next, we decompose the Sobolev space $X=H^{1}(\Omega)$ as

$$
\begin{equation*}
X=X_{0} \oplus X_{1}, \quad X_{0}=\left\{u \in X: \int_{\Omega} u(x) d x=0\right\}, \quad X_{1}=\mathbb{R} \tag{2.4}
\end{equation*}
$$

Let us recall the problem (1.5 has eigenvalues

$$
\begin{equation*}
0=\lambda_{0}<\lambda_{1}<\lambda_{2} \leqslant \lambda_{3} \leqslant \cdots \rightarrow \infty \tag{2.5}
\end{equation*}
$$

and the corresponding eigenfunctions

$$
\begin{equation*}
\phi_{0}(x) \equiv 1, \phi_{1}(x), \phi_{2}(x), \phi_{3}(x), \quad \ldots \tag{2.6}
\end{equation*}
$$

In particular, for the first positive eigenvalue λ_{1}, one has the Poincare type inequality

$$
\begin{equation*}
\int_{\Omega}|u(x)|^{2} d x \leqslant \frac{1}{\lambda_{1}} \int_{\Omega}|\nabla u(x)|^{2} d x, \forall u \in X_{0} \tag{2.7}
\end{equation*}
$$

Using the estimate of lower bound for λ_{1}, 8],

$$
\begin{equation*}
\lambda_{1} \geqslant\left(\frac{\pi}{d_{\Omega}}\right)^{2} \tag{2.8}
\end{equation*}
$$

we have

$$
\begin{equation*}
\int_{\Omega}|u(x)|^{2} d x \leqslant\left(\frac{d_{\Omega}}{\pi}\right)^{2} \int_{\Omega}|\nabla u(x)|^{2} d x, \forall u \in X_{0} \tag{2.9}
\end{equation*}
$$

In addition, it is a well-known that

$$
\begin{equation*}
\int_{\Omega} \phi_{j}(x) d x=0, \quad \forall j \geqslant 1 \tag{2.10}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\phi_{j} \in X_{0}, \quad \forall j \geqslant 1 \tag{2.11}
\end{equation*}
$$

Under assumptions of (F1) and (F2), Costa [1] proved that
(i) $\mathcal{M}=\left\{u \in X=H^{1}(\Omega): \int_{\Omega} f(u(x)) d x=0\right\} \subset X$ is a $\mathbb{C}^{1}-$ manifold of codimension 1 ;
(ii) $u \in X$ is a critical point of φ_{Ω} in X if and only if $u \in \mathcal{M}$ and it is a critical point of $\left.\varphi_{\Omega}\right|_{\mathcal{M}}$.
Also for $u \in X$, writing $u=\nu+c, \nu \in X_{0}, c \in \mathbb{R}$, he also obtained that
(iii) $\int_{\Omega} F(\nu+c) d x \leqslant \int_{\Omega} F(\nu) d x$;
(iv) $\left\|\nu_{n}\right\| \rightarrow \infty$ as $\left\|\nu_{n}+c_{n}\right\| \rightarrow \infty, \nu_{n}+c_{n} \in \mathcal{M}$.

Lemma 2.1. If f satisfies (F1) and (F2), then
(v) for each $\nu \in X_{0}$, there exists a unique $c(\nu) \in \mathbb{R}$ such that $\nu+c(\nu) \in \mathcal{M}$;
(vi) $c(-\nu)=-c(\nu)$ for all $\nu \in X_{0}$ if f is also odd.

Proof. (v) For any fixed $\nu \in X_{0}$, define

$$
\begin{equation*}
g_{\nu}(c)=\int_{\Omega} f(\nu+c) d x, \quad \forall c \in \mathbb{R} \tag{2.12}
\end{equation*}
$$

If $\nu \in \mathbb{C}^{1}(\bar{\Omega})$, we easily know that $f\left(\nu(x)+c_{1}\right)>0$ for all $x \in \bar{\Omega}$ and $c_{1}>$ $\max _{\bar{\Omega}}|\nu(x)|$, while $f\left(\nu(x)+c_{2}\right)<0$ for all $x \in \bar{\Omega}$ and $c_{2}<-\max _{\bar{\Omega}}|\nu(x)|$. Therefore, by the continuity of $g_{\nu}(\cdot)$, there exists $c=c(\nu) \in \mathbb{R}$ such that $\int_{\Omega} f(\nu+c(\nu)) d x=0$.

For the general case $\nu \in X_{0}$, one can take $\nu_{k} \in \mathbb{C}^{1}(\bar{\Omega}) \cap X_{0}, \nu_{k} \rightarrow \nu$ in X. There are $c\left(\nu_{k}\right) \in \mathbb{R}$ such that $\int_{\Omega} f\left(\nu_{k}+c\left(\nu_{k}\right)\right) d x=0$. We claim that $\left\{c\left(\nu_{k}\right)\right\}$ is bounded. Otherwise, $\left|c\left(\nu_{k}\right)\right| \rightarrow \infty$, then $\left\|\nu_{k}+c\left(\nu_{k}\right)\right\| \rightarrow \infty$. Since $\nu_{k}+c\left(\nu_{k}\right) \in \mathcal{M}$, by ($i v$), we have $\left\|\nu_{n}\right\| \rightarrow \infty$, a contraction. Therefore, we may assume that $c\left(\nu_{k}\right) \rightarrow c(\nu) \in \mathbb{R}$. By (F2), there are constants $\eta>0$ such that $0 \leqslant f^{\prime}(u) \leqslant \eta$, for all $u \in \mathbb{R}$. Thus, we have

$$
\begin{align*}
\left|\int_{\Omega} f(\nu+c(\nu)) d x\right| & =\left|\int_{\Omega} f(\nu+c(\nu)) d x-\int_{\Omega} f\left(\nu_{k}+c\left(\nu_{k}\right)\right) d x\right| \tag{2.13}\\
& \leqslant \eta \int_{\Omega}\left[\left|\nu-\nu_{k}\right|+\left|c\left(\nu_{k}\right)-c(\nu)\right|\right] d x \rightarrow 0
\end{align*}
$$

that is, $\nu+c(\nu) \in \mathcal{M}$. The uniqueness of $c(\nu)$ can be obtained from the monotonicity of $f(u)$.
(vi) for all $\nu \in X_{0}$ naturally $-\nu \in X_{0}$, by (v), there is $c(-\nu) \in \mathbb{R}$ such that

$$
\begin{equation*}
\int_{\Omega} f(-\nu+c(-\nu)) d x=0 \tag{2.14}
\end{equation*}
$$

Since $f(u)$ is odd, we have

$$
\begin{equation*}
\int_{\Omega} f(\nu-c(-\nu)) d x=0 \tag{2.15}
\end{equation*}
$$

By the uniqueness of $c(\nu)$, we obtain $c(\nu)=-c(-\nu)$, namely, $c(-\nu)=-c(\nu)$.
Lemma 2.2. Suppose f satisfies (F1) and (F2). Then the functional $\varphi_{\Omega}(u)$ is bounded from below on \mathcal{M} and satisfies the Palais-Smale condition on \mathcal{M}.

Proof. By (F2), there exist m and b,

$$
\begin{equation*}
0<m<\left(\frac{\pi}{d_{\Omega}}\right)^{2} \leqslant \lambda_{1}, \quad b>0 \tag{2.16}
\end{equation*}
$$

such that

$$
\begin{equation*}
F(s) \leqslant b+\frac{1}{2} m|s|^{2}, \quad \forall s \in \mathbb{R} \tag{2.17}
\end{equation*}
$$

For $u \in \mathcal{M}$, writing $u=\nu+c \in X_{0} \oplus X_{1}$, we have

$$
\begin{align*}
\varphi_{\Omega}(u) & =\frac{1}{2} \int_{\Omega}|\nabla \nu(x)|^{2} d x-\int_{\Omega} F(\nu+c) d x \\
& \geqslant \frac{1}{2} \int_{\Omega}|\nabla \nu(x)|^{2} d x-\int_{\Omega} F(\nu) d x \tag{2.18}\\
& \geqslant \frac{1}{2}\|\nabla \nu\|_{L^{2}}^{2}-\frac{1}{2} m\|\nu\|_{L^{2}}^{2}-b|\Omega|
\end{align*}
$$

This inequality and 2.9 implies

$$
\begin{equation*}
\varphi_{\Omega}(u) \geqslant \frac{1}{2}\left[1-m\left(\frac{d_{\Omega}}{\pi}\right)^{2}\right]\|\nabla \nu\|_{L^{2}}^{2}-b|\Omega|=\frac{1}{2} D\|\nabla \nu\|_{L^{2}}^{2}-b|\Omega| \geqslant-b|\Omega| \tag{2.19}
\end{equation*}
$$

with $D=1-m\left(\frac{d_{\Omega}}{\pi}\right)^{2}>0$. Thus, $\varphi_{\Omega}(u)$ is bounded from below on \mathcal{M}.
Let $\left\{u_{j}\right\} \subset \mathcal{M}$ be such that $\left\{\varphi_{\Omega}\left(u_{j}\right)\right\}$ is bounded and $\left(\left.\varphi_{\Omega}\right|_{\mathcal{M}}\right)^{\prime}\left(u_{j}\right) \rightarrow 0$. Let $u_{j}=\nu_{j}+c_{j} \in X_{0} \bigoplus X_{1}$. Then 2.19) implies $\left\|\nabla \nu_{j}\right\|_{L^{2}}^{2} \leqslant \frac{2}{D}\left(\varphi_{\Omega}\left(u_{j}\right)+b|\Omega|\right)$, thus $\left\{\nu_{j}\right\}$ is bounded in X. The fact $u_{j}=\nu_{j}+c_{j} \in \mathcal{M}$ and (iv) derives $\left\{u_{j}\right\}$ is also bounded in X, so we may assume that, by passing to a subsequence if necessary,

$$
\begin{gather*}
u_{j} \rightharpoonup u \in X \quad \text { weakly in } X . \tag{2.20}\\
u_{j} \rightarrow u \in X \quad \text { strongly in } L^{1}(\Omega) \text { and in } L^{2}(\Omega) . \tag{2.21}
\end{gather*}
$$

Thus, for $j \geqslant 1$, noticing

$$
\begin{equation*}
\int_{\Omega} f(u(x)) d x=\int_{\Omega}\left[f(u(x))-f\left(u_{j}(x)\right)\right] d x=\int_{\Omega} f^{\prime}(\zeta)\left(u(x)-u_{j}(x)\right) d x \tag{2.22}
\end{equation*}
$$

with ζ between $u(x)$ and $u_{j}(x)$, it follows that

$$
\left|\int_{\Omega} f(u(x)) d x\right| \leqslant \int_{\Omega}\left|f^{\prime}(\zeta)\right|\left|u(x)-u_{j}(x)\right| d x \leqslant \eta \int_{\Omega}\left|u(x)-u_{j}(x)\right| d x \rightarrow 0
$$

consequently, $u \in \mathcal{M}$.

Let us denote by $\nabla \varphi_{\Omega}, \nabla J_{\Omega}: X \rightarrow X$ the gradient of $\varphi_{\Omega}, J_{\Omega}$, respectively, which are defined by the Riesz-Frechet representation theorem, namely, $\nabla \varphi_{\Omega}, \nabla J_{\Omega} \in X$ are unique elements such that

$$
\begin{equation*}
\varphi_{\Omega}^{\prime}(w) h=\left\langle\nabla \varphi_{\Omega}(w), h\right\rangle, J_{\Omega}^{\prime}(w) h=\left\langle\nabla J_{\Omega}(w), h\right\rangle, \forall w, h \in X \tag{2.23}
\end{equation*}
$$

Then, from the boundness of $\left\{u_{j}\right\}$, we easily know that $\nabla \varphi_{\Omega}\left(u_{j}\right), \nabla J_{\Omega}\left(u_{j}\right)$ are bounded. Moreover,

$$
\begin{align*}
& {\left[\left(\left.\varphi_{\Omega}\right|_{\mathcal{M}}\right)^{\prime}\left(u_{j}\right)-\left(\left.\varphi_{\Omega}\right|_{\mathcal{M}}\right)^{\prime}(u)\right]\left(u_{j}-u\right)} \\
& =\left(\varphi_{\Omega}^{\prime}\left(u_{j}\right)-\varphi_{\Omega}^{\prime}(u)\right)\left(u_{j}-u\right)-\frac{\left\langle\nabla \varphi_{\Omega}\left(u_{j}\right), \nabla J_{\Omega}\left(u_{j}\right)\right\rangle}{\left\|\nabla J_{\Omega}\left(u_{j}\right)\right\|^{2}} J_{\Omega}^{\prime}\left(u_{j}\right)\left(u_{j}-u\right) \\
& \quad+\frac{\left\langle\nabla \varphi_{\Omega}(u), \nabla J_{\Omega}(u)\right\rangle}{\left\|\nabla J_{\Omega}(u)\right\|^{2}} J_{\Omega}^{\prime}(u)\left(u_{j}-u\right) \tag{2.24}\\
& =\left\|\nabla u_{j}-\nabla u\right\|_{L^{2}}^{2}-\int_{\Omega}\left(f\left(u_{j}\right)-f(u)\right)\left(u_{j}-u\right) d x-C_{j} J_{\Omega}^{\prime}\left(u_{j}\right)\left(u_{j}-u\right) \\
& \quad+C_{0} J_{\Omega}^{\prime}(u)\left(u_{j}-u\right)
\end{align*}
$$

where $C_{0}=\frac{\left\langle\nabla \varphi_{\Omega}(u), \nabla J_{\Omega}(u)\right\rangle}{\left\|\nabla J_{\Omega}(u)\right\|^{2}}$ is a constant, $C_{j}=\frac{\left\langle\nabla \varphi_{\Omega}\left(u_{j}\right), \nabla J_{\Omega}\left(u_{j}\right)\right\rangle}{\left\|\nabla J_{\Omega}\left(u_{j}\right)\right\|^{2}}$ is bounded since $\nabla J_{\Omega}\left(u_{j}\right) \rightarrow \nabla J_{\Omega}(u) \neq 0$.

So $\left\|\nabla u_{j}-\nabla u\right\|_{L^{2}} \rightarrow 0$. Thus, with the aid of 2.21, we conclude that $u_{j} \rightarrow u \in$ \mathcal{M} in X.

3. Proof of Theorem 1.1

For $p \in \mathbb{N}, \rho>0$, and $e_{1}(x), e_{2}(x), \ldots, e_{p}(x)$ in (F4) and (F5), we define the subset $K \subset \mathcal{M}$ as follows

$$
\begin{equation*}
K=\left\{\nu+c(\nu) \in \mathcal{M}: \nu=\sum_{j=1}^{p} \mu_{j} e_{j}(x), \mu_{j} \in \mathbb{R}(1 \leqslant j \leqslant p), \sum_{j=1}^{p} \mu_{j}^{2}=\hat{\rho}^{2}\right\} \tag{3.1}
\end{equation*}
$$

where $\hat{\rho}=\rho /(2 \sqrt{p})$. Then, by Lemma 2.1, the map

$$
\begin{equation*}
\nu+c(\nu) \mapsto\left(-\frac{\mu_{1}}{\hat{\rho}},-\frac{\mu_{2}}{\hat{\rho}}, \ldots,-\frac{\mu_{p}}{\hat{\rho}}\right) \tag{3.2}
\end{equation*}
$$

is an odd homeomorphism from K to $S^{p-1} \subset \mathbb{R}^{p}$.
Proof of Theorem 1.1. We consider the subset $K \subset \mathcal{M}$ in (31). Without loss of generality, we may assume that $\left|e_{j}(x)\right| \leqslant 1$, for all $1 \leqslant j \leqslant p, x \in \Omega$. Thus, for any $u(x)=\nu(x)+c(\nu)=\sum_{j=1}^{p} \mu_{j} e_{j}(x)+c(\nu) \in K$, we have

$$
\begin{equation*}
|\nu(x)|^{2} \leqslant \sum_{j=1}^{p} \mu_{j}^{2} \sum_{j=1}^{p}\left|e_{j}(x)\right|^{2} \leqslant p \hat{\rho}^{2}, \quad \forall x \in \Omega \tag{3.3}
\end{equation*}
$$

From $\int_{\Omega} f(\nu(x)+c(\nu)) d x=0$, we know that there exists $\hat{x} \in \Omega$ such that $f(\nu(\hat{x})+$ $c(\nu))=0$. By $\left(f_{1}\right)$, we obtain $\nu(\hat{x})+c(\nu)=0$, namely, $c(\nu)=-\nu(\hat{x})$. Thus

$$
\begin{gather*}
|c(\nu)|=|\nu(\hat{x})| \leqslant \sqrt{p} \hat{\rho} \tag{3.4}\\
|u(x)| \leqslant|\nu(x)|+|c(\nu)| \leqslant 2 \sqrt{p} \hat{\rho}=\rho, \quad \forall x \in \Omega \tag{3.5}
\end{gather*}
$$

so, combining 3.5 with (F4)-(F5) shows that

$$
\varphi_{\Omega}(u)=\frac{1}{2} \int_{\Omega}|\nabla u(x)|^{2} d x-\int_{\Omega} F(u(x)) d x
$$

$$
\begin{aligned}
= & \frac{1}{2} \int_{\Omega}|\nabla \nu(x)|^{2} d x-\int_{\Omega} F(\nu(x)+c(\nu)) d x \\
\leqslant & \frac{1}{2} \int_{\Omega}|\nabla \nu(x)|^{2} d x-\frac{M}{2} \int_{\Omega}(\nu(x)+c(\nu))^{2} d x \\
= & \frac{1}{2} \sum_{j=1}^{p} \mu_{j}^{2}\left\|\nabla e_{j}(x)\right\|_{L^{2}}^{2}-\frac{1}{2} M \sum_{j=1}^{p} \mu_{j}^{2}\left\|e_{j}(x)\right\|_{L^{2}}^{2}-M c(\nu) \sum_{j=1}^{p} \mu_{j} \int_{\Omega} e_{j}(x) d x \\
& -\frac{1}{2} M c^{2}(\nu)|\Omega| \\
\leqslant & \frac{1}{2} \sum_{j=1}^{p} \mu_{j}^{2}\left\|\nabla e_{j}(x)\right\|_{L^{2}}^{2}-\frac{1}{2} M \sum_{j=1}^{p} \mu_{j}^{2}\left\|e_{j}(x)\right\|_{L^{2}}^{2} \\
\leqslant & \frac{1}{2} \sum_{j=1}^{p} \mu_{j}^{2}\left[\left(\frac{2(j+1) \pi}{d_{\Omega}}\right)^{2}-M\right]\left\|e_{j}(x)\right\|_{L^{2}}^{2}<0
\end{aligned}
$$

using $\int_{\Omega} e_{j}(x) d x=0$. Thus $\sup \left\{\varphi_{\Omega}(u): u \in K\right\}<0=\varphi_{\Omega}(0)$. Hence, by Lemma 2.2 and Theorem $1.4,\left.\varphi_{\Omega}\right|_{\mathcal{M}}$ possesses at least p distinct pairs $\left(u_{j},-u_{j}\right)$ of critical points on \mathcal{M} such that $\varphi_{\Omega}\left(u_{j}\right)<0$ with $u_{j} \neq 0(1 \leqslant j \leqslant p)$. Since $u_{j} \in \mathcal{M} \backslash\{0\}$; that is, $\int_{\Omega} f\left(u_{j}(x)\right) d x=0$, however, the continuous function $f(s)$ satisfies $f(s)>0$ if $s>0$, and $f(s)<0$ if $s<0$, thus, we conclude that u_{j} must change its sign. In addition, from (ii), we also know that there is no positive and negative critical point of φ_{Ω}. In other words, problem (1.1) possesses p distinct pairs $\left(u_{j}(x),-u_{j}(x)\right)$ of sign-changing classical solutions $(1 \leqslant j \leqslant p)$, and has no positive and negative solution.

Remark 3.1. Costa [1, Theorem 3.7], by minimizing method, shows that there exists $u_{0}=u_{0}(x) \in \mathcal{M} \backslash\{0\}$ such that

$$
\begin{equation*}
\varphi_{\Omega}\left(u_{0}\right)=\inf _{u \in \mathcal{M}} \varphi_{\Omega}(u)<0 \tag{3.6}
\end{equation*}
$$

In fact, by our previous arguments in Theorem 1.1 , we know that $u_{0}(x)$ is a signchanging classical solution of 1.1 .

As an application and illustration of Theorem 1.1, Theorem 1.5 is applied to the Neumann problem:

$$
\begin{gather*}
-\Delta u(x)=f(u(x)), \quad x_{1}^{2}+x_{2}^{2}<r^{2} \\
\left.\frac{\partial u}{\partial n}\right|_{x_{1}^{2}+x_{2}^{2}=r^{2}}=0 \tag{3.7}
\end{gather*}
$$

where $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}, r>0$. To prove Theorem 1.5 , we shall use some properties of Bessel functions.

Proof of Theorem 1.5. First consider the eigenvalue problem

$$
\begin{gather*}
-\Delta u(x)=\lambda u(x), \quad x_{1}^{2}+x_{2}^{2}<r^{2} \\
\left.\frac{\partial u}{\partial n}\right|_{x_{1}^{2}+x_{2}^{2}=r^{2}}=0 . \tag{3.8}
\end{gather*}
$$

By [3, Chpater 5,Section 5], positive eigenvalues λ_{k}^{j} of (3.8) satisfy

$$
\begin{equation*}
J_{j}^{\prime}\left(r \sqrt{\lambda_{k}^{j}}\right)=0, \quad j=0,1,2 \ldots, k=1,2 \ldots \tag{3.9}
\end{equation*}
$$

where $J_{j}(\cdot)$ is the j-order Bessel function, and the corresponding eigenfunctions are

$$
u_{k}^{j}(x)=u_{k}^{j}\left(x_{1}, x_{2}\right)=J_{j}\left(\sqrt{\lambda_{k}^{j}} \tau\right)(\cos j \theta+\sin j \theta)
$$

with $x_{1}=\tau \cos \theta, x_{2}=\tau \sin \theta, 0 \leqslant \tau \leqslant r, 0 \leqslant \theta \leqslant 2 \pi$. Now we choose

$$
\begin{equation*}
e_{j}(x)=u_{j}^{0}(x)=J_{0}\left(\sqrt{\lambda_{j}^{0}} \tau\right), \quad j=1,2, \ldots p \tag{3.10}
\end{equation*}
$$

From the integral expression

$$
\begin{equation*}
J_{0}(t)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \cos (t \sin \theta) d \theta \tag{3.11}
\end{equation*}
$$

we know that $\left|e_{j}(x)\right| \leqslant 1$. And since $-\triangle e_{j}(x)=\lambda_{j}^{0} e_{j}(x)$, by Green's formula, we obtain

$$
\begin{equation*}
\int_{\Omega}\left|\nabla e_{j}(x)\right|^{2} d x=\lambda_{j}^{0} \int_{\Omega}\left|e_{j}(x)\right|^{2} d x . \tag{3.12}
\end{equation*}
$$

Since $J_{0}^{\prime}(t)=-J_{1}(t)$ for all $t \in \mathbb{R}$, by 3.9 , we have

$$
\begin{equation*}
J_{1}\left(r \sqrt{\lambda_{j}^{0}}\right)=0, \quad j=1,2, \ldots \tag{3.13}
\end{equation*}
$$

Let a_{j}^{0} be the j th positive zero point of $J_{0}(t)$. Then according to Schafheitlin's investigation of the zero points of $J_{0}(t)$ [17, Section 15.32, P.489], a_{j}^{0} satisfies the estimate

$$
\begin{equation*}
(j-1) \pi+\frac{3}{4} \pi<a_{j}^{0}<(j-1) \pi+\frac{7}{8} \pi, \quad j=1,2, \ldots, \tag{3.14}
\end{equation*}
$$

thus by 3.14 and the property of positive zero points of $J_{1}(t)$, we obtain

$$
\begin{equation*}
(j-1) \pi+\frac{3}{4} \pi<r \sqrt{\lambda_{j}^{0}}<j \pi+\frac{7}{8} \pi, \quad j=1,2, \ldots \tag{3.15}
\end{equation*}
$$

therefore,

$$
\begin{equation*}
\lambda_{j}^{0}<\frac{(j+1)^{2} \pi^{2}}{r^{2}}, \quad j=1,2, \ldots p \tag{3.16}
\end{equation*}
$$

From 3.12 and 3.16 , for $1 \leqslant j \leqslant p$, we derive that

$$
\begin{equation*}
\int_{\Omega}\left|\nabla e_{j}(x)\right|^{2} d x=\lambda_{j}^{0} \int_{\Omega}\left|e_{j}(x)\right|^{2} d x \leqslant \frac{(j+1)^{2} \pi^{2}}{r^{2}} \int_{\Omega}\left|e_{j}(x)\right|^{2} d x \tag{3.17}
\end{equation*}
$$

So, by Theorem 1.1 with $d_{\Omega}=2 r, \varphi_{\Omega}$ possesses at least p distinct pairs $\left(u_{j},-u_{j}\right)$ of critical points such that $\varphi_{\Omega}\left(u_{j}\right)<0$, which are p distinct sign-changing classical solutions of 1.8).

Theorem 3.2. Suppose f satisfies (F1)-(F3) and $\lim _{|u| \rightarrow 0} F(u) /|u|^{2}=\infty$. Then, for all $r \in\left(0, \frac{\pi}{2 \sqrt{f^{\prime}(\pm \infty)}}\right)$, 1.8 has infinitely many distinct pairs $(u(x),-u(x))$ of sign-changing classical solutions.

The above theorem is a corollary of Theorem 1.5 with Remark 1.2 .
Acknowledgments. The authors would like to thank the anonymous referees for their valuable suggestions.

References

[1] D. G. Costa; An invitation to variational methods in differential equations, Birkhauser, 2007.
[2] D. C. Clark; A variant of the Lusternic-Schnirelmann theory, Indiana Univ. Math. J. 22 (1972), 65-74.
[3] R. Courant, D. Hilbert; Methods of mathematical physics (Vol. I), Interscience Publishers, Inc., New York, 1953.
[4] C. P. Gupta; Perturbations of second order linear elliptic problems by unbounded nonlinearities, Nonlinear Analysis: TMA, 6 (1982), 919-933.
[5] R. Iannacci, M. N. Nkashama; Nonlinear two point boundary value problem at resonance without Landesman-Lazer condition, Proc. AMS, 106(1989), 943-952.
[6] R. Iannacci, M. Nkashama; Nonlinear boundary value problems at resonance, Nonlinear Analysis: TMA, 11(1987), 455-473.
[7] Chung-cheng Kuo; On the solvability of a nonlinear second order elliptic equations at resonance, Proc. AMS, 124(1996), 83-87.
[8] P. Li; Poincare inequality on Reimann manifolds, Seminar on Differential Geometry (Yau edited), Princeton Press (1982), 73-83.
[9] C. Li, S. J. Li; Multiple solutions and sign-changing solutions of a class of nonlinear elliptic equations with Neumann boundary condition, J. Math. Anal. Appl. 298(2004), 14-32.
[10] J. Mawhin; Semi-coercive monotone variational problems, Acad Roy Belg Bull Cl Sciences, 73(1987), 118-130.
[11] P. H. Rabinowitz; On a class of functionals invariant under a Zn action, Trans Amer Math Soc, 310(1988), 303-311.
[12] P. H. Rabinowitz; Minimax methods in critical point theory with applications to differential equations, CBMS, Regional Conf. Ser. in Math., Vol.65. AMS, Providence, Rhode Island (1986).
[13] A. Szulkin; Ljusternik-Schnirelmann theory on c1-manifolds, Ann. Inst. H. Poincare, Analyse non lineaire 5(1988), 119-139.
[14] Chun-Lei Tang; some existence theorems for sublinear Neumann boundary value problem, Nonlinear Analysis:TMA, 48(2002), 1003-1011.
[15] Chun-Lei Tang, Xing-Ping Wu; Existence and multiplicity for solutions of Neumann problem for semilinear elliptic equations, J. Math. Anal. Appl, 288 (2003), 660-670.
[16] Chun-Lei Tang, Xing-Ping Wu; Multiple solutions of a class of Neumann problem for semilinear elliptic equations, Nonlinear Analysis: TMA, 62(2005), 455-465.
[17] G. N. Watson; A treatise on the theory of Bessel functions, Cambridge, The University Press, 1922.

Chengyue Li
Department of Mathematics, Minzu University of China, Beijing 100081, China
E-mail address: cunlcy@163.com
Qi Zhang
Department of Mathematics, Minzu University of China, Beijing 100081, China
E-mail address: 709341427@qq.com
Fenfen Chen
Department of Mathematics, Minzu University of China, Beijing 100081, China
E-mail address: chenfenfen359@163.com

[^0]: 2000 Mathematics Subject Classification. 58E05, 34C37, 70H05.
 Key words and phrases. Elliptic equation; sublinear potential; Neumann problem; Clark Theorem; critical point.
 © 2014 Texas State University - San Marcos.
 Submitted November 5, 2013. Published April 16, 2014.

