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EXISTENCE OF MULTIPLE SOLUTIONS TO ELLIPTIC
PROBLEMS OF KIRCHHOFF TYPE WITH CRITICAL

EXPONENTIAL GROWTH

SAMI AOUAOUI

Abstract. In this article, we study elliptic problems of Kirchhoff type in
dimension N ≥ 2, whose nonlinear term has a critical exponential growth.

Using variational tools, we establish the existence of at least two nontrivial

and nonnegative solutions.

1. Introduction and statement of main results

In article, we establish some multiplicity results for the equation

−A′
(∫

RN

|∇u|N + |u|N

N
dx
)(

div(|∇u|N−2∇u)− |u|N−2u
)

= B′
(∫

RN
F (x, u) dx

)
f(x, u) + h, in RN , N ≥ 2,

(1.1)

where A′(·), B′(·) denote the derivatives of two C1-functions A(·) and B(·); f(·, ·) :
RN × R → [0,+∞[ is a Carathéodory function such that f is radially symmetric
with respect to x, i.e if x, y ∈ RN satisfy |x| = |y|, then f(x, s) = f(y, s), for all
s ∈ R. Moreover, we assume that f(x, t) = 0 for all t ≤ 0 and all x ∈ RN ;

F (x, u) =
∫ u

0

f(x, t)dt;

h : RN → [0,+∞[ is some radial function such that h 6= 0 and h ∈ LN ′(RN ) with
N ′ = N

N−1 .
Kirchhoff-type problems have become a very interesting topic of research in re-

cent years and many papers dealing with such kind of equations were published.
We can, for instance; see [4, 9, 10, 11, 12, 13, 14, 37] and references therein. The
interest for these problems with various proposed nonlocal terms could be explained
by their contributions to modeling many physical and biological phenomena. First,
let us mention that quasilinear equations of the model

−M
(∫

Ω

|∇u|p dx
)

div
(
|∇u|p−2∇u

)
= f(x, u) in Ω,
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where Ω is a domain of RN , is essentially related to the stationary analog of the
Kirchhoff equation

utt −M
(∫

Ω

|∇u|2
)

∆u = f(x, t),

where M(s) = as+ b, a, b > 0. This last equation was proposed by Kirchhoff [20] as
an extension of the classical D’Alembert wave equation for free vibrations of elastic
strings. The Kirchhoff model takes into account the length changes of the string
produced by transverse vibrations. Later, Lions [26] gave an abstract functional
analysis framework to the Kirchhoff model. Next, equations of the model

−M
(∫

Ω

|u|p dx
)

div
(
|∇u|p−2∇u

)
= f(x, u) in Ω,

arise in many physical phenomena such as systems of particles in thermodynami-
cal equilibrium via gravitational potential, thermal runaway in ohmic heating, and
shear bands in metal deformed under high strain rates. On the other hand, equa-
tions of Kirchhoff-type appear in some biological studies; more precisely, such kind
of equations could describe the evolution of the density of a population living in
some domain Ω. The reader interested in the physical and biological aspects of the
Kirchhoff-type problems could be referred to [11, 37]. In the present work, we are
interested in the case when the nonlinearity term f(x, s) has maximal growth on s
which allows us to treat the problem (1.1) variationally. Explicitly, in view of the
Trudinger-Moser inequality, we will assume that f satisfies critical growth of ex-
ponential type such as f(x, s) behaves like exp(α(x)|s|

N
N−1 ) as |s| → +∞. Elliptic

equations involving nonlinearities of exponential growth have been studied by many
authors; see, for example [1, 2, 3, 5, 7, 8, 17, 18, 21, 22, 23, 24, 25, 28, 29, 30, 31, 33,
34, 36] and references therein. Studying problems of Kirchhoff-type and involving
nonlinearities having a critical exponential growth is a new research subject. Up to
our best knowledge, only Figueiredo and Severo [19] studied a problem involving
nonlocal terms and a nonlinear term with a critical exponential growth. In [19],
the authors studied the problem

−m
(∫

Ω

|∇u|2 dx
)

∆u = f(x, u) in Ω,

u = 0 on ∂Ω

where Ω is a smooth bounded domain in R2,m : [0,+∞[→ [0,+∞[ is some con-
tinuous function satisfying that inft≥0m(t) > 0, m(t)

t is nonincreasing for t > 0,
m(t) ≤ a1 + a2t

σ for all t ≥ t0 for some positive constants, a1, a2, t0 and σ, and∫ t+s

0

m(u)du ≥
∫ t

0

m(u)du+
∫ s

0

m(u)du, ∀s, t ≥ 0.

Concerning the nonlinear term, the authors assume that f has a critical exponential
growth and satisfies that

∫ s
0
f(x, t)dt ≤ K0f(x, s) for all (x, s) ∈ Ω × [s0,+∞[ for

some positive constants s0 and K0. Furthermore, it was assumed that for each
x ∈ Ω, f(x,s)

s3 is increasing for s > 0. This article is a contribution in this new
direction. In our paper, we treat a more general problem which is defined in all
the space RN , N ≥ 2 and presenting a nonlocal term in the right-hand side of the
equation. We will try to adapt some arguments developed in [16].

Now, we state our main hypotheses in this work.
(H1) A : [0,+∞[→ R is a C1-function satisfying that A(0) = 0 and
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• if s > 0, then A′(s) > 0,
• there exist C0 > 0, α0 > 0 and s0 > 0 such that

A(s) ≥ C0 s
α0 , ∀0 ≤ s ≤ s0.

(H2) B : R→ R is a C1-function satisfying that there exist C1 > 0, α1 > 0 and
s1 > 0 such that

B(s) ≤ C1 s
α1 , ∀0 ≤ s ≤ s1.

(H3) There exist C2 > 0, α > N − 1, β > 0 and a bounded radial function
γ : RN → [0,+∞[ such that for all s ≥ 0 and all x ∈ RN ,

|f(x, s)| ≤ C2

(
|s|α + |s|β

(
exp

(
γ(x)|s|

N
N−1

)
− SN−2(γ(x), s)

))
,

where

SN−2(γ(x), s) =
N−2∑
k=0

(γ(x))k

k!
|s|

kN
N−1 .

(H4) There exist λ0 > 0, a0 > 0, k0 > 0 and M0 > 0 such that
• λ0A(s) ≥ A′(s)s for all s ≥M0,
• A(s) ≥ k0 s

a0 for all s ≥M0.
(H5) The function B satisfies that

• there exist λ1 > 0 and M1 > 0 such that

λ1B(s) ≤ B′(s)s, ∀ s ≥M1,

• if s ≥ 0, then B′(s) ≥ 0.
(H6) There exist a bounded nonempty open set Ω of RN , M2 > 0, θ > 0, and

K ∈ L1(RN ) such that

0 < θF (x, s) ≤ f(x, s)s, ∀s ≥M2, ∀x ∈ Ω,

θF (x, s) ≤ f(x, s)s+K(x), ∀s ≥ 0, ∀x ∈ RN .

Definition 1.1. A function u ∈ W 1,N (RN ) is said to be a weak solution of the
problem (1.1) if it satisfies

A′
(‖u‖N
N

)( ∫
RN
|∇u|N−2∇u · ∇v dx+

∫
RN
|u|N−2uv dx

)
= B′

(∫
RN

F (x, u) dx
)∫

RN
f(x, u)v dx+

∫
RN

hvdx, ∀v ∈W 1,N (RN ).

The main result of the present work is given by the following two theorems.

Theorem 1.2. Assume that (H1)–(H3) hold true. If α0N < α1 inf(α + 1, β + 1),
then there exists η > 0 such that the problem (1.1) admits at least one nontrivial
and nonnegative weak solution provided that |h|LN′ (RN ) < η.

Theorem 1.3. Assume that (H1)–(H6) hold true. In addition, we assume
(H7) there exists R0 > 0 such that γ(x) = 0 for |x| ≤ R0.

If α0N < α1 inf(α + 1, β + 1), a0N > 1 and λ1θ > λ0N , then there exists η > 0
such that the problem (1.1) admits at least two nontrivial and nonnegative weak
solutions provided that |h|LN′ (RN ) < η.
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2. Preliminaries

Here, we state some interesting properties of the space W 1,N (RN ) that will be
useful throughout this paper. Let Ω be a bounded domain of RN , N ≥ 2. First, we
recall that the important Trudinger-Moser inequality (see [27, 35]) asserts that

exp
(
α|u|

N
N−1

)
∈ L1(Ω) for u ∈W 1,N

0 (Ω) and α > 0.

Then, there exists a positive constant C > 0 depending only on N such that

sup
|∇u|LN (Ω)≤1

∫
Ω

exp
(
α|u|

N
N−1 ) dx ≤ C|Ω| if α ≤ αN , ∀u ∈W 1,N

0 (Ω),

where αN = NW
1

N−1
N−1 and WN−1 is the measure of the unit sphere in RN . In the

case of RN , N ≥ 2, we have the following result (for N = 2, see [7, 33], and for
N ≥ 2, see [1, 30])∫

RN
[exp(α|u|

N
N−1 )− SN−2(α, u)] dx < +∞ for u ∈W 1,N (RN ) and α > 0,

where

SN−2(α, u) =
N−2∑
k=0

αk

k!
|u|

kN
N−1 .

Moreover, if |∇u|LN (RN ) ≤ 1, |u|LN (RN ) ≤M < +∞ and α < αN , then there exists
a constant C = C(N,M,α) > 0, which depends only on N,M and α such that∫

RN

[
exp(α|u|

N
N−1 )− SN−2(α, u)

]
dx ≤ C.

Furthermore, using above results together with Hölder’s inequality, if α > 0 and
q > 0, then∫

RN
|u|q
[

exp(α|u|
N
N−1 )− SN−2(α, u)

]
dx < +∞, ∀u ∈W 1,N (RN ). (2.1)

More precisely, if ‖u‖W 1,N (RN ) ≤ M with αM
N
N−1 < αN , then there exists C =

C(α,M, q,N) > 0 such that∫
RN
|u|q
[

exp(α|u|
N
N−1 )− SN−2(α, u)

]
dx ≤ C‖u‖q

W 1,N (RN )
. (2.2)

3. Proof of Theorem 1.2

First, observe that the appropriate space in which the problem (1.1) will be
studied is W 1,N

r (RN ) which consists of all the functions in W 1,N (RN ) which are
radial. The space W 1,N

r (RN ) will be equipped with the classical norm

‖u‖ =
(∫

RN
(|∇u|N + |u|N ) dx

)1/N

.

It should be useful to remind that the continuous embedding W 1,N (RN ) ↪→ Lq(RN )
holds for all q ∈ [N,+∞[.

We start by introducing the energy functional corresponding to the problem
(1.1): J : W 1,N

r (RN )→ R,

J(u) = A
(‖u‖N
N

)
−B

(∫
RN

F (x, u) dx
)
−
∫

RN
hu dx.
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By (H1) and (H2), it is clear that there exist c1 > 0 and c2 > 0 such that for all
(x, s) ∈ RN × R, we have

|F (x, s)| ≤ c1|s|α+1 + c2|s|β+1
(

exp(γ∞|s|
N
N−1 )− SN−2(γ∞, s)

)
, (3.1)

where γ∞ = supx∈RN γ(x). Taking (2.1) into account, it yields

F (x, u) ∈ L1(RN ), for all (x, u) ∈ RN ×W 1,N
r (RN ).

Hence, the functional J is well defined on W 1,N
r (RN ). Moreover, by standard

arguments (see [6]), we could easily establish that J is of class C1 in W 1,N
r (RN )

and that we have

〈J ′(u), v〉

= A′
(‖u‖N
N

)( ∫
RN
|∇u|N−2∇u · ∇v dx+

∫
RN
|u|N−2uv dx

)
−B′

(∫
RN

F (x, u) dx
)∫

RN
f(x, u)v dx−

∫
RN

hv dx, ∀ u, v ∈W 1,N
r (RN ).

Here, according to Definition 1.1 and by the virtue of the known so-called principle
of symmetric criticality (see [32]), every critical point of the functional J is in fact
a weak solution of the problem (1.1).

Lemma 3.1. Assume that (H1)–(H3) hold. Then, there exist µ > 0, ρ > 0 and
η > 0 such that

J(u) ≥ µ, for all u ∈W 1,N
r (RN ) such that ‖u‖ = ρ,

provided that |h|LN′ (RN ) < η.

Proof. For 0 < M < 1 small enough, by (3.1) and (2.2), we have∫
RN
|F (x, u)| dx ≤ c3‖u‖inf(α+1,β+1), for ‖u‖ ≤M.

Now, consider 0 < ρ < M be such that c3ρinf(α+1,β+1) < s1. Then, we obtain

B(
∫

RN
F (x, u) dx) ≤ C1(

∫
RN

F (x, u) dx)α1 ≤ C1(c3ρinf(α+1,β+1))α1

≤ c4 ρα1 inf(α+1,β+1).

(3.2)

On the other hand, if we assume that ρN

N < s0, for ‖u‖ = ρ, we have

A(
‖u‖N

N
) = A(

ρN

N
) ≥ C0

ρα0N

Nα0
. (3.3)

Using (3.2) and (3.3), we obtain

J(u) ≥ c5ρα0N − c4ρα1 inf(α+1,β+1) − |h|LN′ (RN )ρ, for ‖u‖ = ρ.

Now, since α0N < α1 inf(α + 1, β + 1), then we can choose ρ small enough such
that η = c5 ρ

α0N−1−c4 ρα1 inf(α+1,β+1)−1 is positive. Hence, Lemma 3.1 holds with
µ = ρ(η − |h|LN′ (RN )). �

Proof of Theorem 1.2 completed. Let ϕ ∈ C∞0 (RN ) be a radial function such that
ϕ ≥ 0, ϕ 6= 0 and

∫
RN hϕdx > 0. For 0 < t < 1, we have

J(tϕ) = A
( tN‖ϕ‖N

N

)
−B

(∫
RN

F (x, tϕ) dx
)
− t
∫

RN
hϕdx.
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Then
d

dt
J(tϕ) = tN−1‖ϕ‖NA′

( tN‖ϕ‖N
N

)
−B′

(∫
RN

F (x, tϕ) dx
)∫

RN
f(x, tϕ)ϕdx−

∫
RN

hϕdx.

Obviously, we have

lim
t→0+

∫
RN

f(x, tϕ)ϕdx = 0.

Since N − 1 > 0, then one can easily find δ > 0 small enough such that
d

dt
J(tϕ) < 0 ∀ 0 < t < δ.

Having in mind that J(0) = 0, then there exists 0 < t0 < inf(δ, ρ
‖ϕ‖ ) such that

J(t0ϕ) < 0. Set

dρ = inf
{
J(u), u ∈ B(0, ρ)

}
,

where B(0, ρ) = {u ∈W 1,N
r (RN ), ‖u‖ ≤ ρ}. By Ekeland’s variational principle (see

[15]), there exists a sequence (un) ⊂ B(0, ρ) such that J ′(un)→ 0 and J(un)→ dρ
as n→ +∞. Since (un) is bounded in W 1,N

r (RN ), then there exists u ∈W 1,N
r (RN )

such that un ⇀ u weakly in W 1,N
r (RN ). We claim that, up to a subsequence, (un)

is strongly convergent to u. We start by proving that

sup
n∈N

(
∫

RN
|f(x, un)|

N
N−1 dx) < +∞.

By (H3), there exists c6 > 0 such that∫
RN
|f(x, un)|

N
N−1 dx

≤ c6
∫

RN
|un|

αN
N−1 dx+ c6

∫
RN
|un|

βN
N−1

(
exp

( γ∞N
N − 1

|un|
N
N−1

)
− SN−2

( γ∞N
N − 1

, un

))
dx.

(3.4)

Since αN
N−1 > N , we have

sup
n∈N

(∫
RN
|un|

αN
N−1 dx

)
< +∞.

On the other hand, notice that we can assume ρ defined in Lemma 3.1 is such that
γ∞N
N−1 ρ

N
N−1 < αN . Consequently, by (2.2), it follows that there exists a positive

constant c7 such that∫
RN
|un|

βN
N−1

(
exp

( γ∞N
N − 1

|un|
N
N−1

)
− SN−2

( γ∞N
N − 1

, un

))
dx ≤ c7, ∀ n ∈ N.

By (3.4), we immediately deduce that

sup
n∈N

(
∫

RN
|f(x, un)|

N
N−1 dx) < +∞.

Let R > 0 and consider BR = {x ∈ RN , |x| < R}. By Hölder’s inequality, we have∫
BR

|f(x, un)(un − u)| dx ≤
(∫

RN
|f(x, un)|

N
N−1 dx

)N−1
N
(∫

BR

|un − u|N dx
)1/N

.



EJDE-2014/107 EXISTENCE OF MULTIPLE SOLUTIONS 7

Taking into account that the embedding W 1,N (RN ) into LN (BR) is compact, it
follows

lim
n→+∞

∫
BR

f(x, un)(un − u) dx = 0. (3.5)

By the radial lemma (see [6]), there exists a positive constant CN > 0 depending
only on N such that

|un(x)| ≤ CN
|x|
|un|LN (RN ), ∀x 6= 0.

We have ∫
|x|≥R

|un|
βN
N−1

(
exp

( γ∞N
N − 1

|un|
N
N−1

)
− SN−2

( γ∞N
N − 1

, un

))
dx

=
+∞∑

j=N−1

(γ∞NN−1 )j

j!

∫
|x|≥R

|un|
(β+j)N
N−1 dx

≤ c8
+∞∑

j=N−1

(γ∞NN−1 )j

j!

∫ +∞

R

rN−1

r
(β+j)N
N−1

dr

≤ c9
+∞∑

j=N−1

(γ∞NN−1 )j

j!

∫ +∞

R

dr

r
βN
N−1 +1

≤ c10

R
βN
N−1

.

(3.6)

Let ε > 0. By (3.6), there exists R1(ε) > 1 large enough such that, for all n ∈ N,∫
|x|≥R1(ε)

|un|
βN
N−1

(
exp

( γ∞N
N − 1

|un|
N
N−1

)
− SN−2

( γ∞N
N − 1

, un

))
dx ≤ ε. (3.7)

Next, we have∫
|x|≥R

|un|
αN
N−1 dx ≤ c11

∫ +∞

R

dr

r
αN
N−1−N+1

≤ c12

R
αN
N−1−N

.

Since αN
N−1 > N , then one can find R2(ε) > 1 large enough such that∫

|x|≥R2(ε)

|un|
αN
N−1 dx ≤ ε, ∀n ∈ N. (3.8)

Put R(ε) = sup(R1(ε), R2(ε)). By (3.7) and (3.8), it yields∫
|x|≥R(ε)

|f(x, un)|
N
N−1 dx ≤ 2ε, ∀n ∈ N. (3.9)

By Hölder’s inequality and (3.9), we obtain∫
|x|≥R(ε)

|f(x, un)(un − u)| dx

≤
(∫
|x|≥R(ε)

|f(x, un)|
N
N−1 dx

)N−1
N |un − u|LN (RN )

≤ c13ε
N−1
N , ∀n ∈ N.

(3.10)
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Now, (3.10) together with (3.5) imply

lim
n→+∞

∫
RN

f(x, un)(un − u) dx = 0. (3.11)

Next, arguing as in the establishment of the boundedness of the sequence(∫
RN
|f(x, un)|

N
N−1 dx

)
,

we can show that

sup
n∈N

(∫
RN
|F (x, un)| dx

)
< +∞.

That fact together with (3.11) leads to

B′(
∫

RN
F (x, un) dx)

∫
RN

f(x, un)(un − u) dx→ 0 as n→ +∞.

Using the weak convergence of (un) to u in W 1,N
r (RN ), it immediately follows∫

RN
h(un − u) dx→ 0 as n→ +∞.

Taking these results into account and having in mind that J ′(un)(un − u)→ 0, we
deduce that

A′(
‖un‖N

N
)(
∫

RN
|∇un|N−2∇un∇(un − u) dx+

∫
RN
|un|N−2un(un − u) dx)→ 0,

as n→ +∞. If ‖un‖ → 0, then un → 0 strongly in W 1,N
r (RN ) and there is nothing

to prove. Otherwise, ‖un‖ → t > 0 and A′(‖un‖
N

N )→ A′( t
N

N ) > 0. In that case, we
obtain

lim
n→+∞

(∫
RN
|∇un|N−2∇un∇(un − u) dx+

∫
RN
|un|N−2un(un − u) dx

)
= 0,

which implies that (un) is strongly convergent to u in W 1,N
r (RN ). Finally, we

conclude that J(u) = dρ ≤ J(t0ϕ) < 0 and that J ′(u) = 0. Hence, u is a non-
trivial weak solution of (1.1) with negative energy. Set u− = min(u, 0). We have
〈J ′(u), u−〉 = 0. Thus,

A′(
‖u‖N

N
)‖u−‖N −B′(

∫
RN

F (x, u) dx)
∫

RN
f(x, u)u− dx =

∫
RN

hu− dx ≤ 0.

Having in mind that f(x, u)u− = 0, we deduce that ‖u−‖ = 0 and therefore u ≥
0. �

4. Proof of Theorem 1.3

A first solution with negative energy is given by Theorem 1.2. The existence of a
second weak solution will be proved using the well known Mountain Pass Theorem.
We start by the following lemma.

Lemma 4.1. Assume that the hypotheses of Theorem 1.3 hold. Then, the func-
tional J satisfies the Palais-Smale condition.
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Proof. Let (un) ⊂ W 1,N (RN ) be such that (J(un)) is bounded and J ′(un) → 0.
We claim that, up to a subsequence, (un) is strongly convergent. By (H4), we have

λ0NA
(‖u‖N

N

)
≥ A′

(‖u‖N
N

)
‖un‖N − c14, ∀n ∈ N. (4.1)

On the other hand, by (H6), we have

0 ≤ θ
∫

RN
F (x, un) dx ≤

∫
RN

f(x, un)un dx+ c15.

Let 0 < ε < inf(θ, c15
M1

). If ∫
RN

F (x, un) dx ≥ c15

ε
,

then we obtain

0 ≤ (θ − ε)
∫

RN
F (x, un) dx ≤

∫
RN

f(x, un)un dx.

This inequality together with (H5) imply

B′
(∫

RN
F (x, un) dx

)∫
RN

f(x, un)un dx− λ1(θ − ε)B
(∫

RN
F (x, un) dx

)
≥ B′

(∫
RN

F (x, un) dx
)∫

RN
f(x, un)un dx

− (θ − ε)B′
(∫

RN
F (x, un) dx

)∫
RN

F (x, un) dx ≥ 0.

If
∫

RN F (x, un) dx ≤ c15/ε, it is clear that there exists a positive constant cε > 0
such that

B′
(∫

RN
F (x, un) dx

)∫
RN

f(x, un)un dx− λ1(θ − ε)B
(∫

RN
F (x, un) dx

)
≥ −cε.

Hence, we deduce that

B′(
∫

RN
F (x, un) dx)

∫
RN

f(x, un)un dx− λ1(θ − ε)B(
∫

RN
F (x, un) dx)

≥ −cε, ∀n ∈ N.
(4.2)

Now, choose 0 < ε < inf(θ, c15/M1) small enough such that λ1(θ− ε) > λ0N . Since
(un) is a (PS) sequence of J , then there exists a positive constant c16 > 0 such that

λ1(θ − ε)J(un)− 〈J ′(un), un〉 ≤ c16(1 + ‖un‖), ∀n ∈ N.

Thus,(
λ1(θ − ε)A

(‖un‖N
N

)
−A′

(‖un‖N
N

)
‖un‖N

)
+B′

(∫
RN

f(x, un) dx
)∫

RN
f(x, un)un dx− λ1(θ − ε)B

(∫
RN

F (x, un) dx
)

≤ c17(1 + ‖un‖), ∀n ∈ N.

By (4.2), we have

λ1(θ − ε)A
(‖un‖N

N

)
−A′

(‖un‖N
N

)
‖un‖N ≤ cε + c17(1 + ‖un‖), ∀n ∈ N.
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By (4.1), we have

(λ1(θ − ε)− λ0N)A
(‖un‖N

N

)
≤ cε + c14 + c17(1 + ‖un‖), ∀n ∈ N.

Finally, using again (H4), we obtain

c18‖un‖a0N ≤ c19(1 + ‖un‖), ∀n ∈ N.

Taking into account that a0N > 1, we conclude that (un) is bounded in W 1,N
r (RN ).

Denote by u the weak limit of (un) in W 1,N
r (RN ). Here, in order to prove that (un)

is strongly convergent to u in W 1,N
r (RN ), we can follow the arguments used to es-

tablish the same result in the proof of Theorem 1.2 with some suitable modification.
In fact, the arguments used in the proof of Theorem 1.2 to establish that

sup
n∈N

(∫
RN
|f(x, un)|

N
N−1 dx

)
< +∞

are no longer valid. It is clear, that always we have

sup
n∈N

(∫
RN
|un|

αN
N−1 dx

)
< +∞.

On the other hand, by (H7) we have∫
RN
|un|

βN
N−1

(
exp

(γ(x)N
N − 1

|un|
N
N−1

)
− SN−2

(γ(x)N
N − 1

, un

))
dx

=
∫
|x|≥R0

|un|
βN
N−1

(
exp

(γ(x)N
N − 1

|un|
N
N−1

)
− SN−2

(γ(x)N
N − 1

, un)
)
dx

≤
∫
|x|≥R0

|un|
βN
N−1

(
exp

( γ∞N
N − 1

|un|
N
N−1

)
− SN−2

( γ∞N
N − 1

, un

))
dx.

Using (3.6), we obtain

sup
n∈N

(
∫

RN
|un|

βN
N−1

(
exp

(γ(x)N
N − 1

|un|
N
N−1

)
− SN−2

(γ(x)N
N − 1

, un

))
dx) < +∞.

Consequently,

sup
n∈N

(∫
RN
|f(x, un)|

N
N−1 dx

)
< +∞.

This completes the proof of Lemma 4.1. �

Proof of Theorem 1.3 completed. Let w ∈ C∞0 (RN ) be a radial function such that
w ≥ 0 and infx∈Ω w(x) > 0. By (H6), there exists t1 > 0 large enough and a positive
constant c20 such that

F (x, tw(x)) ≥ c20 t
θ,∀t ≥ t1, x ∈ Ω.

Thus, ∫
RN

F (x, tw) dx ≥
∫

Ω

F (x, tw) dx ≥ c21t
θ, ∀t ≥ t1. (4.3)

On the other hand, by (H4) and (H5), one can easily find t2 > 0 large enough such
that

B(t) ≥ c22t
λ1 , ∀t ≥ t2,

A(t) ≤ c23t
λ0 , ∀t ≥ t2.

(4.4)
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Combining (4.3) and (4.4), for t large enough it follows

J(tw) = A
( tN‖w‖N

N

)
−B

(∫
RN

F (x, tw) dx
)
− t
∫

RN
hw dx ≤ c24t

λ0N − c25t
λ1θ.

Since λ1θ > λ0N , we deduce that J(tw)→ −∞ as t→ +∞. Finally, taking Lemma
3.1 and Lemma 4.1 into account and according to the Mountain Pass Theorem, the
functional J has a critical point with positive energy. Therefore, we conclude that
the problem (1.1) admits at least two nontrivial weak solutions. This completes
the proof of Theorem 1.3. �
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