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SOLUTIONS TO KIRCHHOFF EQUATIONS WITH COMBINED
NONLINEARITIES

LING DING, LIN LI, JING-LING ZHANG

Abstract. We prove the existence of multiple positive solutions for the Kirch-

hoff equation

−
“
a + b

Z
Ω
|∇u|2dx

”
∆u = h(x)uq + f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,

Here Ω is an open bounded domain in RN (N = 1, 2, 3), h(x) ∈ L∞(Ω),
f(x, s) is a continuous function which is asymptotically linear at zero and is

asymptotically 3-linear at infinity. Our main tools are the Ekeland’s variational

principle and the mountain pass lemma.

1. Introduction and main results

In this article, we study the existence of positive solutions for the Kirchhoff
equation

−
(
a+ b

∫
Ω

|∇u|2dx
)

∆u = h(x)uq + f(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.1)

where Ω is a bounded smooth domain in RN (N = 1, 2, 3), a > 0, b > 0, 0 < q < 1.
To state the assumptions, we recall some results about the following two eigen-

value problems:
−∆u = λu in Ω, u = 0 on Ω, (1.2)

and

−
(∫

Ω

|∇u|2dx
)

∆u = µu3 in Ω, u = 0 on Ω. (1.3)

Let λ1 be the principal eigenvalue of (1.2) and let φ1 > 0 be its associated eigen-
function. It is known that λ1 can be characterized by

λ1 = inf
{∫

Ω

|∇u|2dx : u ∈ H1
0 (Ω),

∫
Ω

|u|2dx = 1
}
,
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where H1
0 (Ω) is the usual Sobolev space defined as the completion of C∞0 (Ω) with

respect to the norm ‖u‖ =
( ∫

Ω
|∇u|2dx

)1/2. Moreover, define

µ1 = inf
{
‖u‖4 : u ∈ H1

0 (Ω),
∫

Ω

|u|4dx = 1
}
.

As shown in [13], there exists µ1 > 0 which is the principle eigenvalue of (1.3) and
there is a corresponding eigenfunction of ϕ1 > 0 in Ω.

In this article, we assume that h, f satisfy the following conditions:
(H1) h ∈ L∞(Ω) and h(x) 6≡ 0;
(F1) f ∈ C(Ω×R), f(x, 0) = 0 for all x ∈ Ω, f(x, s) ≥ 0 for all x ∈ Ω and s ≥ 0;
(F2)

lim
s→0+

f(x, s)
aλ1s+ bµ1s3

= α ∈ [0, 1), lim
s→+∞

f(x, s)
aλ1s+ bµ1s3

= β ∈ (1,+∞)

uniformly for a.e. x ∈ Ω.
It is obvious that the values of f(x, s) for s < 0 are irrelevant for us to seek for
positive solutions of (1.1), and we may define

f(x, s) = 0 for x ∈ Ω, s ≤ 0.

The problem

−(a+ b

∫
Ω

|∇u|2dx)∆u = g(x, u), x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1.4)

is related to the stationary analogue of the Kirchhoff equation which was proposed
by Kirchhoff in 1883 [9] as an generalization of the well-known d’Alembert’s equa-
tion

ρ
∂2u

∂t2
−
(P0

h
+

E

2L

∫ L

0

|∂u
∂x
|2dx

)∂2u

∂x2
= g(x, u)

for free vibrations of elastic strings. Kirchhoffs model takes into account the changes
in length of the string produced by transverse vibrations. Here, L is the length of
the string, h is the area of the cross section, E is the Young modulus of the material,
ρ is the mass density and P0 is the initial tension. In [1], it was pointed out that
the problem (1.4) models several physical systems, where u describes a process
which depends on the average of itself. Nonlocal effect also finds its applications in
biological systems. After [2] and [14], there are abundant results about Kirchhoff’s
equations.

Some interesting studies by variational methods can be found in [4, 12, 13, 19, 18,
17, 3, 16, 15] references therein and for Kirchhoff-type problem (1.4), they consider
it in a bounded domain Ω. For example, Perera and Zhang [13] obtain nontrivial
solutions of (1.4) with asymptotically 4-linear terms by using Yang index. In [19],
they revisit problem (1.4) and establish the existence of a positive, a negative and
a sign-changing solution by means of invariant sets of descent flow. Similar results
can also be found in Mao and Zhang [12] and in Yang and Zhang [18]. Yang and
Zhang in [17] obtain the existence of nontrivial solutions for (1.4) by using the local
linking theory. Sun and Tang [16] prove the existence of a mountain pass type
positive solution for problem (1.4) with the nonlinearity which is asymptotically
linear near zero and superlinear at infinity. Sun and Liu [15] obtain a nontrivial
solution via Morse theory by computing the relevant critical groups for problem
(1.4) with the nonlinearity which is superlinear near zero but asymptotically 4-linear
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at infinity and asymptotically near zero but 4-linear at infinity. In [11], the authors
obtain the existence of positive solutions for (1.1) with h ≡ 0 and f(x, t) = νh(x, t)
by using the topological degree argument and variational method, where h is a
continuous function which is asymptotically linear at zero and is asymptotically 3-
linear at infinity. Inspired by [11], we shall study the existence of positive solutions
for problem (1.1) with h 6≡ 0 and f which is asymptotically linear at zero and
asymptotically 3-linear infinity by using the Ekeland’s variational principle and
Mountain Pass Lemma different from [11]. In [11], when N = 1, 2, 3, the authors
studied equation (1.1) with h ≡ 0 and obtain the existence results of positive
solution for equation (1.1) under the conditions: a, b > 0, and f satisfies (F1) and
(F2) with α > 1 and β < 1; a ≥ 0, b > 0, and f satisfies (F1) and (F2) with α < 1
and β > 1, respectively. But equation (1.1) with h 6≡ 0 has not been studied. We
shall obtain the existence of two positive solution for equation (1.1) because of the
nonlinearity term h(x)tq(0 < q < 1). By the way, recently, Cheng, Wu and Liu [5]
apply variant mountain pass theorem and Ekeland variational principle to study
the existence of multiple nontrivial solutions for a class of Kirchhoff type problems
with concave nonlinearity similar to our problem. But in their article, the nonlinear
term is superlinear at infinity.

In this article, we denote by ‖ · ‖p the Lp(Ω)-normal (1 ≤ p ≤ ∞). We say
that u ∈ H1

0 (Ω) is a positive (nonnegative) weak solution to problem (1.1) if u > 0
(u ≥ 0) a.e. Ω and satisfies(

a+ b

∫
Ω

|∇u|2dx
)∫

Ω

∇u · ∇vdx =
∫

Ω

h(x)uqvdx+
∫

Ω

f(x, u)vdx

for all v ∈ H1
0 (Ω). By assumption (F1), we know that to seek a nonnegative weak

solution of (1.1) is equivalent to finding a nonzero critical point of the following
functional on H1

0 (Ω):

I(u) =
1
2

∫
Ω

|∇u|2dx+
b

4

(∫
Ω

|∇u|2dx
)2

− 1
q + 1

∫
Ω

h(x)(u+)q+1dx−
∫

Ω

F (x, u+)dx,

where u+ = max{0, u}, F (x, s) =
∫ s

0
f(x, σ)dσ. By (F1) and (F2), I is a C1

functional. By the strong maximum principle, the nonzero critical points of I are
positive solutions to problem (1.1) if h(x) ≥ 0.

Our results are as follows.

Theorem 1.1. Suppose that N = 1, 2, 3, a > 0, b > 0, 0 < q < 1, h and f satisfy
(H1), (F1), (F2). Assume further that exists v ∈ H1

0 (Ω) such that

(H2)
∫

Ω
h(x)(v+)q+1dx > 0.

Then there exists a constant m > 0 such that if ‖h‖∞ < m, problem (1.1) has a
solution u1 ∈ H1

0 (Ω), u1 ≥ 0 and I(u1) < 0. Moreover, if h(x) ≥ 0, then u1 > 0 a.
e. in Ω.

Theorem 1.2. Suppose that N = 1, 2, 3, a > 0, b > 0, 0 < q < 1, h and f satisfy
(H1), (F1), (F2). Assume further βµ1 is not an eigenvalue of (1.3). Then there
exists a constant m > 0 such that if ‖h‖∞ < m, problem (1.1) has a nonnegative
solution u2 ∈ H1

0 (Ω) with u2 > 0 and I(u2) > 0 if h(x) ≥ 0.

Remark 1.3. Theorem 1.1 for problem (1.1) with a, b > 0 generalizes [10, Theorem
1.1] where (1.1) with a = 1 and b = 0.
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Corollary 1.4. Suppose that N = 1, 2, 3, a > 0, b > 0, 0 < q < 1, h and f
satisfy (H1), (F1), (F2). Assume further that βµ1 is not an eigenvalue of (1.3) and
h(x) ≥ (6≡)0. Then there exists a constant m > 0 such that for all h ∈ L∞(Ω) with
‖h‖∞ < m, problem (1.1) has at least two positive solutions u1, u2 ∈ H1

0 (Ω) such
that I(u1) < 0 < I(u2).

Remark 1.5. If h(x) ≥ (6≡)0, it is easy to see that (H2) is always satisfied. There-
fore, Corollary 1.1 is a straightforward conclusion of Theorems 1.1 and 1.2 by
applying the strong maximum principle [8].

This paper is organized as follows. In Section 1, we obtain the existence of a local
minimum solution by the Ekeland’s variational principle. In Section 2, by using the
Mountain Pass Lemma, we obtain the existence of a mountain pass solution. In the
following discussion, we denote various positive constants as C or Ci, i = 1, 2, 3, . . . .

2. Existence of a local minimum

In this section, we prove Theorem 1.1 by Ekeland’s variational principle. We
need the following Lemmas.

Lemma 2.1. Suppose that N = 1, 2, 3, a > 0, b > 0, 0 < q < 1, h and f satisfy
(H1), (F1), (F2). Then there exists a constant m > 0 such that if ‖h‖∞ < m, we
have

(a) There exist ρ, γ > 0 such that I(u)|‖u‖=ρ ≥ γ > 0.
(b) There exists an e ∈ R \Bρ(0) such that I(e) < 0.

Proof. (a) By (F2), β ∈ (1,+∞) and noticing that f(x, s)/sp−1 → 0 as s → +∞
uniformly in x ∈ Ω for any fixed p ∈ (4, 6) if N = 3; p ∈ (4,+∞) if N = 1, 2. Given
ε ∈ (0, 1), there exist δ,Mε > 0 satisfying 0 < δ < +∞ such that

f(x, s) <
(
α+ ε

)
(aλ1s+ bµ1s

3), 0 < s < δ,

and
f(x, s) < Mεs

p−1, δ < s,

where p ∈ (4, 6) if N = 3; p ∈ (4,+∞) if N = 1, 2. Together with (F1) and
f(x, s) = 0 for x ∈ Ω, s ≤ 0, we obtain

f(x, s) < aλ1(α+ ε)|s|+ bµ1(α+ ε)|s|3 +Mεs
p−1, s ∈ R.

This yields

F (x, s) ≤ aλ1

2
(α+ ε)|s|2 +

bµ1

4
(α+ ε)|s|4 +A|s|p, s ∈ R, (2.1)

where A = Mε/p. Furthermore, by (F2), for the above ε, we have

f(x, s) > (β − ε)(aλ1s+ bµ1s
3), s > δ∞.

Thus, we obtain

F (x, s) > (β − ε)
(aλ1

2
s2 +

bµ1

4
s4
)
, s > δ∞.

Together with (F1) and f(x, s) = 0 for x ∈ Ω, s ≤ 0, there exists a constant B > 0
such that

F (x, s) ≥ a

2
(β − ε)λ1|s|2 +

b

4
(β − ε)µ1|s|4 −B, s ∈ R. (2.2)
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Since α < 1, we can choose ε > 0 such that ε < 1 − α. By (H1), (2.1), λ1‖u‖22 ≤
‖u‖2, µ1‖u‖44 ≤ ‖u‖2, the Sobolev’s embedding theorem: ‖u‖q+1

q+1 ≤ K‖u‖q+1,
‖u‖p+1

p+1 ≤M‖u‖p+1 and the Young inequality, we have

I(u)

=
a

2

∫
Ω

|∇u|2dx+
b

4

(∫
Ω

|∇u|2dx
)2

− 1
q + 1

∫
Ω

h(x)(u+)q+1dx−
∫

Ω

F (x, u+)dx

≥ a

2
‖u‖2 +

b

4
‖u‖4 − ‖h‖∞

q + 1
‖u+‖q+1

q+1 −
a

2
(α+ ε)λ1‖u+‖22

− b

4
(α+ ε)µ1‖u+‖44 −A‖u+‖pp

≥ a

2
‖u‖2 +

b

4
‖u‖4 − ‖h‖∞

q + 1
‖u‖q+1

q+1 −
a

2
(α+ ε)‖u‖2 − b

4
(α+ ε)‖u‖4 −A‖u‖pp

≥ a[1− (α+ ε)]
2

‖u‖2 +
b[1− (α+ ε)]

4
‖u‖4 − ‖h‖∞K

q + 1
‖u‖q+1 −AM‖u‖p

≥ ‖u‖2
(
C1 − C2‖h‖∞‖u‖q−1 − C3‖u‖p−2

)
,

(2.3)
where C1 = a[1−(α+ε)]

2 , C2 = K
q+1 and C3 = AM . Let

g(t) = C2‖h‖∞tq−1 + C3t
p−2 for t ≥ 0.

Clearly,
g′(t) = C2(q − 1)‖h‖∞tq−2 + (p− 2)C3t

p−3.

From g′(t0) = 0, we have

t0 = (C4‖h‖∞)
1

p−q−1 , 0 < q < 1 < 4 < p,

where C4 = C2(1−q)
(p−2)C3

. Then

g(t0) = C2‖h‖∞(C4‖h‖∞)
q−1
p−q−1 + C3(C4‖h‖∞)

p−2
p−q−1 = C5‖h‖

p−2
p−q−1
∞ ,

where C5 = C2C
q−1
p−q−1
4 + C3C

p−2
p−q−1
4 and p−2

p−q−1 > 0 because 0 < q < 1 < 4 < p.
Thus, for any p > 4, there exists m > 0 such that g(t0) < C1 if ‖h‖∞ < m. Then,
if ‖h‖∞ < m and taking ρ = t0, from (2.3), (a) is proved.

(b) For t > 0 large enough, by (2.2) and 0 < q < 1, taking ε > 0 such that
ε < min{β − 1, 1− α}, we have

I(tϕ1) =
at2

2

∫
Ω

|∇ϕ1|2dx+
bt4

4

(∫
Ω

|∇ϕ1|2dx
)2

− tq+1

q + 1

∫
Ω

h(x)ϕq+1
1 dx

−
∫

Ω

F (x, tϕ1)dx

≤ at2

2
‖ϕ1‖2 +

bt4

4
‖ϕ1‖4 −

tq+1

q + 1

∫
Ω

h(x)ϕq+1
1 dx− at2

2
(β − ε)λ1‖ϕ1‖22

− bt4

4
(β − ε)µ1‖ϕ1‖44 +B|Ω|

≤ at2

2
‖ϕ1‖2 +

bt4

4
‖ϕ1‖4 −

tq+1

q + 1

∫
Ω

h(x)ϕq+1
1 dx− bt4

4
(β − ε)‖ϕ1‖4 +B|Ω|
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=
at2

2
‖ϕ1‖2 −

bt4

4
(β − ε− 1)‖ϕ1‖4 −

tq+1

q + 1

∫
Ω

h(x)ϕq+1
1 dx+B|Ω|

→ −∞

as t→∞. So we can choose t0 > 0 large enough and e = tϕ1 so that I(e) < 0 and
‖e‖ > ρ. �

Proof of Theorem 1.1. Set ρ as in Lemma 2.1(a), define

Bρ = {u ∈ H1
0 (Ω) : ‖u‖ ≤ ρ}, ∂Bρ = {u ∈ H1

0 (Ω) : ‖u‖ = ρ}
and Bρ is a complete metric space with the distance

dist(u, v) = ‖u− v‖ for u, v ∈ Bρ.
By Lemma 2.1,

I(u)|∂Bρ ≥ γ > 0. (2.4)

Clearly, I ∈ C1(Bρ,R), hence I is lower semicontinuous and bounded from below
on Bρ. Let

c1 = inf{I(u) : u ∈ Bρ}. (2.5)
We claim that

c1 < 0. (2.6)
Indeed, let v ∈ H1

0 (Ω) be given by (H2), that is,
∫

Ω
h(x)(v+)q+1dx > 0, then for

t > 0 small enough such that for any ε > 0, we have |tv| < ε. Therefore, together
(F2) and α > 1 imply

I(tv) =
at2

2

∫
Ω

|∇v|2dx+
bt4

4

(∫
Ω

|∇v|2dx
)2

− tq+1

q + 1

∫
Ω

h(x)(v+)q+1dx

−
∫

Ω

F (x, tv+)dx

≤ at2

2
‖v‖2 +

bt4

4
‖v‖4 − tq+1

q + 1

∫
Ω

h(x)(v+)q+1dx

− at2

2
(α+ ε)λ1‖v‖22 −

bt4

4
(α+ ε)µ1‖v‖44 < 0,

if t > 0 small enough, because 0 < q < 1. So (2.6) is proved.
By the Ekeland’s variational principle [6, Theorem 1.1] in Bρ and (2.5), there is

a minimizing sequence {un} ⊂ Bρ such that
(i) c1 < I(un) < c1 + 1

n ,
(ii) I(w) ≥ I(un)− 1

n‖w − un‖ for all w ∈ Bρ.
So, I ′(un) → 0 in H−1

0 (Ω) as n → ∞. Moreover, by (i) and (ii), we obtain
I(un)→ c1 < 0 as n→∞.

From the above discussion, we know that {un} is a bounded (PS) sequence,
there exist a subsequence (still denoted by {un}) and u1 ∈ H1

0 (Ω) such that

un ⇀ u1 weakly in H1
0 (Ω),

un → u1 a.e. in Ω,

un → u1 strongly in Lr(Ω)
(2.7)

as n → ∞, where r ∈ [1, 6] if N = 3 and r ∈ (1,+∞) if N = 1, 2. Thus, we have
limn→∞〈I ′(un), v〉 = 〈I ′(u1), v〉 = 0 for all v ∈ H1

0 (Ω) and limn→∞ I(un) = c1 < 0.
Moreover, it follows from 〈I ′(u1), u−1 〉 = (a + b‖u1‖2)‖u−1 ‖2 = 0 that u1 = u+

1 ≥
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0, where u−1 = max{−u1, 0}. Therefore, u1 is a nonnegative critical point of I.
Furthermore, if h(x) ≥ 0, the strong maximum principle [8] implies that u1 is a
positive solution of problem (1.1). �

3. Existence of a mountain pass solution

In this section, we use a variant version of mountain pass theorem to obtain a
nonzero critical point of functional I; this theorem is used also in [10] and its proof
can be found in [7], let us recall first this theorem.

Lemma 3.1 (Mountain Pass Theorem). Let E be a real Banach space with its dual
space E∗ and suppose that I ∈ C1(E,R) satisfy the condition

max{I(0), I(e)} ≤ κ < γ ≤ inf
‖u‖=ρ

{I(u)}

for some κ < γ, ρ > 0 and e ∈ E with ‖e‖ > ρ. Let c ≥ γ be characterized by

c = inf
h∈Γ

max
t∈[0,1]

I(h(t)),

where Γ = {h ∈ ([0, 1], E)|h(0) = 0, h(1) = e} is the set of continuous paths joining
0 and e. Then, there exists a sequence {un} ⊂ E such that

I(un)→ c ≥ γ and (1 + ‖un‖)‖I ′(un)‖E−1 → 0

as n→∞.

Proof of Theorem 1.2. Let ρ, γ and e be given in Lemma 2.1, applying Lemma 3.1
with κ = 0, E = H1

0 (Ω), and for c defined as in Lemma 3.1, then there exists a
sequence {un} ⊂ H1

0 (Ω) such that

I(un)→ c ≥ γ and (1 + ‖un‖)‖I ′(un)‖E−1 → 0

as n→∞. This implies that
a

2

∫
Ω

|∇un|2dx+
b

4

(∫
Ω

|∇un|2dx
)2

− 1
q + 1

∫
Ω

h(x)(u+
n )q+1dx

−
∫

Ω

F (x, u+
n )dx = c+ o(1),

(3.1)

a

∫
Ω

∇un · ∇ϕdx+ b

∫
Ω

|∇un|2dx
∫

Ω

∇un · ∇ϕdx−
1

q + 1

∫
Ω

h(x)(u+
n )qϕ

−
∫

Ω

f(x, u+
n )ϕdx = o(1), for ϕ ∈ H1

0 (Ω),
(3.2)

a

∫
Ω

|∇un|2dx+ b
(∫

Ω

|∇un|2dx
)2

−
∫

Ω

h(x)(u+
n )q+1dx−

∫
Ω

f(x, u+
n )u+

n dx = o(1).

(3.3)

By the compactness of Sobolev embedding and the standard procedures, we know
that, if {un} is bounded in H1

0 (Ω), there exists u2 ∈ H1
0 (Ω) such that I ′(u2) = 0

and I(u2) = c > 0 and u2 is a nonnegative weak solution of problem (1.1), which
is positive if h(x) ≥ 0 by the strong maximum principle. Moreover, u2 is different
from the solution u1 obtained in Theorem 1.1 since I(u1) = c1 < 0. So, to prove
Theorem 1.2, we only need to prove that {un} given by (3.1)−(3.3) is bounded in
H1

0 (Ω).
Next, we shall show that {un} is bounded in H1

0 (Ω). By contradiction, we
suppose that ‖un‖ → ∞ as n→∞, and set wn = un

‖un‖ . Clearly, {wn} is bounded
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in H1
0 (Ω). Thus, there exist a subsequence, still denoted by {wn}, and w ∈ H1

0 (Ω),
such that

wn ⇀ w weakly in H1
0 (Ω),

wn → w a.e. in Ω,

wn → w strongly in Lr(Ω)

as n→∞, where r ∈ [1, 6] if N = 3 and r ∈ (1,+∞) if N = 1, 2.
Similarly, w+

n = u+
n

‖un‖ also satisfies

w+
n ⇀ w+ weakly in H1

0 (Ω),

w+
n → w+ a.e. in Ω,

w+
n → w+ strongly in Lr(Ω)

as n→∞. We first claim that w 6≡ 0. Indeed, if w ≡ 0, then by (H1), we have

lim
n→∞

∫
Ω

h(x)(w+
n )q+1dx = 0. (3.4)

Moreover, by (F1)-(F2), for any ε > 0, if s > 0 large enough, we obtain

(β − ε)aλ1s+ (β − ε)bµ1s
3 < f(x, s) < (β + ε)aλ1s+ (β + ε)bµ1s

3.

Therefore, we deduce

(β − ε)aλ1s− εbµ1s
3 < f(x, s)− βbµ1s

3 < (β + ε)aλ1s+ εbµ1s
3.

It implies that

(β − ε)λ1

‖un‖2

∫
Ω

w+
n ϕdx− εbµ1

∫
Ω

(w+
n )3ϕdx

<

∫
Ω

f(x, u+
n )− bβµ1(u+

n )3

‖un‖3
ϕdx

<
(β + ε)λ1

‖un‖2

∫
Ω

w+
n ϕdx− εbµ1

∫
Ω

(w+
n )3ϕdx

for any ϕ ∈ H1
0 (Ω). By the arbitrariness of ε, we obtain

lim
n→+∞

∫
Ω

f(x, u+
n )− bβµ1(u+

n )3

‖un‖3
ϕdx = 0. (3.5)

Multiplying (3.2) by 1
‖un‖3 , we have

a

‖un‖2

∫
Ω

∇wn · ∇ϕdx+ b

∫
Ω

∇wn · ∇ϕdx−
1

‖un‖3−q

∫
Ω

h(x)(w+
n )qϕdx

− bβµ1

∫
Ω

(w+
n )3ϕdx−

∫
Ω

f(x, u+
n )− bβµ1(u+

n )3

‖un‖3
ϕdx = o(1).

(3.6)

Letting n→∞ in (3.6), according to ‖un‖ → ∞ as n→∞, (3.4), (3.5) and b 6= 0,
we have ∫

Ω

∇w · ∇ϕdx = βµ1

∫
Ω

(w+)3ϕdx

and w 6= 0. Hence, βµ1 is an eigenvalue of (1.3), which contradicts with the
assumption. The proof is complete. �
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