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BIFURCATION FROM INTERVALS FOR STURM-LIOUVILLE
PROBLEMS AND ITS APPLICATIONS

GUOWEI DAI, RUYUN MA

Abstract. We study the unilateral global bifurcation for the nonlinear Sturm-

Liouville problem

−(pu′)′ + qu = λau+ af(x, u, u′, λ) + g(x, u, u′, λ) x ∈ (0, 1),

b0u(0) + c0u
′(0) = 0, b1u(1) + c1u

′(1) = 0,

where a ∈ C([0, 1], [0,+∞)) and a(x) 6≡ 0 on any subinterval of [0, 1], f, g ∈
C([0, 1]×R3,R) and f is not necessarily differentiable at the origin or infinity
with respect to u. Some applications are given to nonlinear second-order two-

point boundary-value problems. This article is a continuation of [8].

1. Introduction

Berestycki [1] considered a class of problems involving a non-differentiable non-
linearity. More precisely, he considered the nonlinear Sturm-Liouville problem

−(pu′)′ + qu = λau+ F̃ (x, u, u′, λ) x ∈ (0, 1),

b0u(0) + c0u
′(0) = 0, b1u(1) + c1u

′(1) = 0,
(1.1)

where p is a positive, continuously differentiable function on [0, 1], q is a continuous
function on [0, 1], a is a positive continuous function on [0, 1] and bi, ci are real
numbers such that |bi| + |ci| 6= 0, i = 0, 1. Moreover, the nonlinear term has the
form F̃ = f̃ + g̃, where f̃ and g̃ are continuous functions on [0, 1] × R3, satisfying
the following conditions:

(C1) | ef(x,u,s,λ)
u | ≤M , for all x ∈ [0, 1], 0 < |u| ≤ 1, |s| ≤ 1 and all λ ∈ R, where

M is a positive constant;
(C2) g̃(x, u, s, λ) = o(|u|+ |s|), near (u, s) = (0, 0), uniformly in x ∈ [0, 1] and λ

on bounded sets.
He obtained a global bifurcation result for (1.1). His result has been extended by
Rynne [13] under the assumption that

|F̃ (x, ξ, η, λ)| ≤M0|ξ|+M1|η|, (x, ξ, η, λ) ∈ [0, 1]× R3,

as either |(ξ, η)| → 0 or |(ξ, η)| → +∞, for some constants M0 and M1. Recently,
Ma and Dai [8]] improved Berestycki’s result to show a unilateral global bifurcation
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result for (1.1). We refer the reader to [3, 4, 5, 7, 11, 14] and their references for
information on unilateral global bifurcation.

Of course, the natural question is that what would happen if a(x) is not strictly
positive on [0, 1]? The aim of this article is to consider this case. For this aim, we
study the nonlinear Sturm-Liouville problem

−(pu′)′ + qu = λau+ af(x, u, u′, λ) + g(x, u, u′, λ) x ∈ (0, 1),

b0u(0) + c0u
′(0) = 0, b1u(1) + c1u

′(1) = 0,
(1.2)

where p, q, bi and ci, i = 0, 1, are defined as above, g ∈ C([0, 1] × R3,R) satisfies
(C2), a and f satisfy the following assumptions:

(C3) a ∈ C([0, 1], [0,+∞)) and a(x) 6≡ 0 on any subinterval of [0, 1];
(C4) f ∈ C([0, 1]× R3,R) is continuous and satisfies f

0
, f0 ∈ R, where

f
0

= lim inf
|s|→0

f(x, s, y, λ)
s

, f0 = lim sup
|s|→0

f(x, s, y, λ)
s

uniformly in x ∈ [0, 1], |y| ≤ 1 and for all λ ∈ R.

Under the above assumptions, we shall establish a result involving unilateral global
bifurcation of (1.2). Moreover, in line with the global bifurcation from infinity
of Rabinowitz [12]], we shall also establish two results involving unilateral global
bifurcation of (1.2) from infinity.

Let Lu := −(pu′)′ + qu. It is well known (see [2, 6, 15]) that the linear Sturm-
Liouville problem

Lu = λau, x ∈ (0, 1),

b0u(0) + c0u
′(0) = 0, b1u(1) + c1u

′(1) = 0

possesses infinitely many eigenvalues λ1 < λ2 < · · · < λk → +∞, all of which are
simple. The eigenfunction ϕk corresponding to λk has exactly k − 1 simple zeros
in (0, 1). In particular, if b0, c0, b1 and c1 satisfy

(C5) b0, −c0, b1, c1 ∈ [0,+∞) and b0c1 − b1c0 + b0b1 > 0,

then λ1 > 0 (see [10, 15]).
On the basis of the unilateral global bifurcation results (Theorem 2.1–2.7), we

investigate the existence of nodal solutions for the nonlinear second-order two-point
boundary-value problem

Lu = ra(x)F (u), x ∈ (0, 1),

b0u(0) + c0u
′(0) = 0, b1u(1) + c1u

′(1) = 0,
(1.3)

where a satisfies (C3), r ∈ (0,+∞), F ∈ C(R,R), bi and ci, i = 0, 1, satisfy (C5).
In this article, we assume that the nonlinear term has the form F = f+g, where

f and g are continuous functions on R, satisfying the following conditions:

(C6) f
0
, f0, f∞, f∞ ∈ R with f

0
6= f0 and f∞ 6= f∞, where

f
0

= lim inf
|s|→0

f(s)
s
, f0 = lim sup

|s|→0

f(s)
s
,

f∞ = lim inf
|s|→+∞

f(s)
s
, f∞ = lim sup

|s|→+∞

f(s)
s
.
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(C7) g satisfies g(s)s > 0 for any s 6= 0 and there exist g0, g∞ ∈ (0,+∞) such
that

g0 = lim
|s|→0

g(s)
s
, g∞ = lim

|s|→+∞

g(s)
s
.

In particular, we consider the special case of g ≡ 0 in (1.3); i.e., consider the
problem

Lu = ra(x)f(u), x ∈ (0, 1),

b0u(0) + c0u
′(0) = 0, b1u(1) + c1u

′(1) = 0.
(1.4)

We shall establish the same results as those in [10]] and some new results for (1.4).
Note that the assumption (C6) is weaker than the condition (A2) in [10]] because
we do not require f

0
, f0, f∞, f∞ ∈ [0,+∞) and f(s)s > 0 for s 6= 0 which are

essential in [10]].
The rest of this article is arranged as follows. In Section 2, we establish the

unilateral global bifurcation which bifurcates from the trivial solutions axis or from
infinity of (1.2), respectively. In Section 3, we determine the interval of r, in which
there exist nodal solutions for (1.3) or (1.4).

2. Global bifurcation from an interval

Set

E :=
{
u ∈ C1[0, 1]

∣∣b0u(0) + c0u
′(0) = 0, b1u(1) + c1u

′(1) = 0
}

with the norm ‖u‖ = maxx∈[0,1] |u(x)|+maxx∈[0,1] |u′(x)|. Let S+
k denote the set of

functions in E which have exactly k − 1 interior nodal (i.e., non-degenerate) zeros
in (0, 1) and are positive near x = 0, and set S−k = −S+

k , and Sk = S+
k ∪ S

−
k . It is

clear that S+
k and S−k are disjoint and open in E. We also let Φ±k = R × S±k and

Φk = R× Sk under the product topology. Finally, we use S to denote the closure
in R×E of the set of nontrivial solutions of (1.2), and S ±k to denote the subset of
S with u ∈ S±k and Sk = S +

k ∪S −k .

Theorem 2.1. Let Ik = [λk − f0, λk − f0
] for every k ∈ N. The component D+

k

of S +
k ∪ (Ik × {0}), containing Ik × {0} is unbounded and lies in Φ+

k ∪ (Ik × {0})
and the component D−k of S −k ∪ (Ik × {0}), containing Ik × {0} is unbounded and
lies in Φ−k ∪ (Ik × {0}).
Remark 2.2. It is easy to verify that [8, Lemma 2.2] is also valid for (1.2). So
if (λ, u) is a nontrivial solution of (1.2) under the assumptions of (C2)–(C4), then
u ∈ ∪∞k=1Sk.

Remark 2.3. It is not difficult to see that condition (C4) is equivalent to (C1)
with M ≥ max{|f

0
|, |f0|}. If a(x) > 0 on [0, 1], applying [1, Theorem 1]] to

problem (1.2) with f̃ = af , we can obtain that Ĩk = [λk − M̃/a0, λk + M̃/a0],
where a0 = minx∈[0,1] a(x) and M̃ = a0M with a0 = maxx∈[0,1] a(x). It is easy
to verify that Ik ⊆ Ĩk. So even in the case of a(x) > 0 on [0, 1], the conclusion
of Theorem 2.1 is better than the corresponding ones in [1, Theorem 1], and [8,
Theorem 2.1].

Consider the approximate problem
−(pu′)′ + qu = λau+ af(x, u|u|ε, u′, λ) + g(x, u, u′, λ) x ∈ (0, 1),

b0u(0) + c0u
′(0) = 0, b1u(1) + c1u

′(1) = 0.
(2.1)
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To prove Theorem 2.1, we need the following lemma.

Lemma 2.4. Let εn, 0 ≤ εn ≤ 1, be a sequence converging to 0. If there exists a
sequence (λn, un) ∈ R× Sνk such that (λn, un) is a solution of (2.1) corresponding
to ε = εn, and (λn, un) converges to (λ, 0) in R× E, then λ ∈ Ik.

Proof. By an argument similar to that of [1, Lemma 1], we can show that there are
two intervals (ζ1, η1) and (ζ2, η2) in (0, 1) such that∫ η2

ζ2

(λ− λk)awϕνk dx+ lim inf
n→+∞

∫ η2

ζ2

a(x)fn(x)ϕνk dx ≤ 0, (2.2)∫ η1

ζ1

(λ− λk)awϕνk dx+ lim sup
n→+∞

∫ η1

ζ1

a(x)fn(x)ϕνk dx ≥ 0, (2.3)

where

fn(x) =
f(x, un(x)|un(x)|ε, u′n(x), λ)

‖un‖
.

Similar to that of [1, Lemma 1], if w and ϕνk have the same sign in (ζ, η), we can
easily show that

f
0

∫ η

ζ

awϕνk dx ≤
∫ η

ζ

afn(x)ϕνk dx ≤ f0

∫ η

ζ

awϕνk dx (2.4)

for n large enough.
It follows from (2.2) and (2.4) that∫ η2

ζ2

(λ− λk + f
0
)awϕνk dx ≤ 0,

hence λ ≤ λk − f0
. Similarly, we from (2.3) and (2.4) we obtain λ ≥ λk − f0. �

Remark 2.5. Note that we do not need a(x) is strictly positive on [0, 1] in the
proof of Lemma 2.4 because our nonlinearity is different from that in [1]]. We put
the same weight function a(x) before f while this weight function is 1 in [1, 8].

Proof of Theorem 2.1. In view of Remark 2.2 and Lemma 2.4, by an argument
similar to that in [8, Theorem 2.1], we can obtain easily the desired conclusions. �

Instead of (C2) and (C4), we assume that f and g satisfy the following conditions:

(C8) g(x, u, s, λ) = o(|u|+ |s|), near (u, s) = (∞,∞), uniformly in x ∈ [0, 1] and
on bounded λ intervals;

(C9) f ∈ C([0, 1]× R3,R) is continuous and satisfies f∞, f∞ ∈ R, where

f∞ = lim inf
|s|→+∞

f(x, s, y, λ)
s

, f∞ = lim sup
|s|→+∞

f(x, s, y, λ)
s

uniformly in x ∈ [0, 1], |y| ≥ C for some positive constant C large enough
and ∀λ ∈ R.

We use T to denote the closure in R × E of the set of nontrivial solutions of
(1.2) under conditions (C3), (C8) and (C9). Applying similar methods to those in
[8, Theorem 2.2 and 2.3], with obvious modifications, we obtain the following two
results:
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Theorem 2.6. Let Ik = [λk − f∞, λk − f∞] for every k ∈ N. There exists a
component Dk of T ∪ (Ik × {∞}), containing Ik × {∞}. Moreover if Λ ⊂ R is an
interval such that Λ ∩ (∪∞k=1Ik) = Ik and M is a neighborhood of Ik × {∞} whose
projection on R lies in Λ and whose projection on E is bounded away from 0, then
either

(1) Dk−M is bounded in R×E in which case Dk−M meets R = {(λ, 0)
∣∣λ ∈

R}, or
(2) Dk −M is unbounded.

If (2) occurs and Dk −M has a bounded projection on R, then Dk −M meets
Ij × {∞} for some j 6= k.

Theorem 2.7. There are two subcontinua D+
k and D−k , consisting of the bifurcation

branch Dk, which satisfy the alternatives of Theorem 2.6. Moreover, there exists a
neighborhood N ⊂M of Ik × {∞} such that (Dν

k ∩N ) ⊂ (Φνk ∪ (Ik × {∞})) for
ν = + and ν = −.

3. Applications

In this section, we shall use Theorems 2.1–2.7 to prove the existence of nodal
solutions for problem (1.3) under the assumptions of (C3), (C6) and (C7).

The main results of this section are the following theorems.

Theorem 3.1. For some k ∈ N, if g0 > −f0
and g∞ > −f∞, either

λk
g0 + f

0

< r <
λk

g∞ + f∞
(3.1)

or
λk

g∞ + f∞
< r <

λk

g0 + f0

, (3.2)

then problem (1.3) possesses two solutions u+
k and u−k such that u+

k has exactly k−1
zeros in (0,1) and is positive near 0, and u−k has exactly k− 1 zeros in (0,1) and is
negative near 0.

Theorem 3.2. For some k ∈ N, if g0 > −f0
and −f∞ < g∞ ≤ −f∞, for

λk
g0 + f

0

< r <
λk

g∞ + f∞
,

then the conclusion of Theorem 3.1 is valid.

Theorem 3.3. For some k ∈ N, if g0 > −f0
and g∞ ≤ −f∞, for

r >
λk

g0 + f
0

,

then the conclusion of Theorem 3.1 is valid.

Theorem 3.4. For some k ∈ N, if −f0 < g0 ≤ −f0
and g∞ > −f∞, for

λk
g∞ + f∞

< r <
λk

g0 + f0

,

then the conclusion of Theorem 3.1 is valid.
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Theorem 3.5. For some k ∈ N, if g0 ≤ −f0 and g∞ > −f∞, for

r >
λk

g∞ + f∞
,

then the conclusion of Theorem 3.1 is valid.

Proof of Theorem 3.1. Firstly, we study the bifurcation phenomena for the follow-
ing eigenvalue problem

Lu = λra(x)g(u) + ra(x)f(u) x ∈ (0, 1),

b0u(0) + c0u
′(0) = 0, b1u(1) + c1u

′(1) = 0,
(3.3)

where λ ∈ R is a parameter. Let ζ ∈ C(R,R) be such that

g(s) = g0s+ ζ(s) (3.4)

with lim|s|→0 ζ(s)/s = 0. Let ζ̃(u) = max0≤|s|≤u |ζ(s)|, then ζ̃ is nondecreasing and

lim
u→0+

ζ̃(u)
u

= 0. (3.5)

Further it follows from (3.5) that

ζ(u)
‖u‖

≤ ζ̃(|u|)
‖u‖

≤ ζ̃(‖u‖∞)
‖u‖

≤ ζ̃(‖u‖)
‖u‖

→ 0 as ‖u‖ → 0. (3.6)

Hence, (3.3), (3.4) and (3.6) imply that conditions (C2) and (C4) hold. Moreover,
we have that

Ik = [
λk
rg0
− f0

g0
,
λk
rg0
−
f

0

g0
] := I0

k .

Using Theorem 2.1, there exist two distinct unbounded components D+
k,0 of S +

k ∪
(I0
k × {0}), containing I0

k × {0} and lying in Φ+
k ∪ (I0

k × {0}), and D−k,0 of S −k ∪
(I0
k × {0}), containing I0

k × {0} and lying in Φ−k ∪ (I0
k × {0}).

Next we study the unilateral global bifurcation of (3.3) which bifurcates from
infinity. Let ξ ∈ C(R,R) be such that

g(s) = g∞s+ ξ(s) (3.7)

with lim|s|→+∞ ξ(s)/s = 0. Let ξ̃(u) = max0≤|s|≤u |ξ(s)|, then ξ̃ is nondecreasing.
Define

ξ(u) = max
u/2≤|s|≤u

|ξ(s)|.

Then we can see that

lim
u→+∞

ξ(u)
u

= 0 and ξ̃(u) ≤ ξ̃(u
2

) + ξ(u). (3.8)

It is not difficult to verify that ξ̃(s)/s is bounded in R+. This fact and (3.8) follows
that

lim sup
u→+∞

ξ̃(u)
u
≤ lim sup

u→+∞

ξ̃(u/2)
u

= lim sup
t→+∞

ξ̃(t)
2t

,

where t = u/2. So we have

lim
u→+∞

ξ̃(u)
u

= 0. (3.9)
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Further from (3.9) it follows that

ξ(u)
‖u‖

≤ ξ̃(|u|)
‖u‖

≤ ξ̃(‖u‖∞)
‖u‖

≤ ξ̃(‖u‖)
‖u‖

→ 0 as ‖u‖ → +∞. (3.10)

Hence, (3.3), (3.7) and (3.10) imply that conditions (C8) and (C9) hold. Moreover,
we have that

Ik = [
λk
rg∞

− f∞
g∞

,
λk
rg∞

−
f∞
g∞

] := I∞k .

Using Theorem 2.7, we have that there are two components D+
k,∞ and D−k,∞ of

S ∪ (I∞k × {∞}), containing I∞k × {∞}, which satisfy the alternates of Theorem
2.6. Moreover, there exists a neighborhood N ⊂ M of I∞k × {∞} such that
(Dν

k,∞ ∩N ) ⊂ (Φνk ∪ (I∞k × {∞})) for ν = + and ν = −.
We claim that D+

k,0 = D+
k,∞ and D−k,0 = D−k,∞. We only prove D+

k,0 = D+
k,∞ since

the proof of D−k,0 = D−k,∞ is similar. As in [8]], it suffices to show that D+
k,∞ meets

some point (λ∗, 0) of R; i.e., (1) of Theorem 2.6 occurs.
Suppose on the contrary that (2) of Theorem 2.6 occurs. Firstly, we shall show

that D+
k,∞ −M has a bounded projection on R. By the same method as that of

[8]], we can show that D+
k,∞ ⊂ Φ+

k . On the contrary, we suppose that (µn, yn) ∈
D+
k,∞ −M such that

lim
n→+∞

µn = ±∞.

It follows that
Lyn = µnrag(yn) + raf(yn).

Let
0 < τ(1, n) < τ(2, n) < · · · < τ(k − 1, n) < 1

denote the zeros of yn in (0, 1). Let τ(0, n = 0 and τ(k, n) = 1. Then, after taking
a subsequence if necessary,

lim
n→+∞

τ(l, n) = τ(l,∞), l ∈ {0, 1, . . . , k}.

We claim that there exists l0 ∈ {0, 1, . . . , k} such that

τ(l0,∞) < τ(l0 + 1,∞).

Otherwise, we have

1 = Σk−1
l=0 (τ(l + 1, n)− τ(l, n))→ Σk−1

l=0 (τ(l + 1,∞)− τ(l,∞)) = 0.

This is a contradiction. Let (α, β) ⊂ (τ(l0,∞), τ(l0 + 1,∞)) with α < β. For all
n sufficiently large, we have (α, β) ⊂ (τ(l0, n), τ(l0 + 1, n)). So yn does not change
its sign in (α, β). In view of (C6) and (C7), we have that lim

n→+∞
r(µn

g(yn(x))
yn(x) +

f(yn(x))
yn(x) ) = ±∞ for any x ∈ (α, β). If lim

n→+∞
r(µn

g(yn(x))
yn(x) + f(yn(x))

yn(x) ) = −∞ for

any x ∈ (α, β), applying Sturm Comparison Theorem [6, 15] to yn and ϕ1 on
[α, β], we can get that ϕ1 must change its sign in (α, β) for n large enough. While,
this is impossible. So we have that lim

n→+∞
(µnr

g(yn(x))
yn(x) + r f(yn(x))

yn(x) ) = +∞ for any

x ∈ (α, β). Applying Sturm Comparison Theorem [6, 15]] to ϕ1 and yn, we get
that yn has at least one zero in (α, β) for n large enough, and this contradicts the
fact that yn does not change its sign in (α, β). By an argument similar to that of
[8, Theorem 3.1], we can show that the case of D+

k,∞ −M meeting I∞j × {∞} for
some j 6= k is impossible. This is a contradiction.
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For simplicity, we write D+
k := D+

k,0 = D+
k,∞ and D−k := D−k,0 = D−k,∞. It is clear

that any solution of (3.3) of the form (1, u) yields a solution u of (1.3). While, by
some simple computations, we can show that assumption (3.1) or (3.2) implies that
D+
k and D−k cross the hyperplane {1} × E in R× E. �

Geometric meaning. The meaning of λk

rg0
− f

0
g0
< 1 < λk

rg∞
− f∞

g∞
is that subsets

I0
k × E and I∞k × E of R × E can be separated by the hyperplane {1} × E, and
I0
k ×E on the left of {1} ×E while I∞k ×E on the right of {1} ×E. Similarly, the

meaning of λk

rg∞
− f

∞
g∞

< 1 < λk

rg0
− f0

g0
is that I0

k × E on the right of {1} × E and
I∞k × E on the left of {1} × E.

Proof of Theorems 3.2 and 3.3. The proof is similar to that of Theorem 3.1, we
note only that the assumptions of theorems imply λk

rg0
− f

0
g0
< 1 < λk

rg∞
− f∞

g∞
. �

Proof of Theorem 3.4 and 3.5. We note that the assumptions of these theorems
imply λk

rg∞
− f

∞
g∞

< 1 < λk

rg0
− f0

g0
. �

Remark 3.6. By some simple computations, we can show that if g0 and g∞ satisfy
one of the following two cases

• −f0 < g0 ≤ −f0
and g∞ ≤ −f∞, or

• g0 ≤ −f0 and g∞ ≤ −f∞,

then subsets I0
k × E and I∞k × E of R× E cannot be separated by the hyperplane

{1} × E. So we cannot give a suitable interval of r in which there exist nodal
solutions for (1.3) in the above two cases. It would be interesting to have more
information about these two cases.

By arguments similar to those of Theorem 3.1–3.5, we can obtain the following
more general results.

Theorem 3.7. For some k, n ∈ N with k ≤ n, if g0 > −f0
and g∞ > −f∞, either

λn
g0 + f

0

< r <
λk

g∞ + f∞
or

λn
g∞ + f∞

< r <
λk

g0 + f0

,

then problem (1.3) possesses two solutions u+
k and u−k such that u+

k has exactly k−1
zeros in (0,1) and is positive near 0, and u−k has exactly k− 1 zeros in (0,1) and is
negative near 0

Theorem 3.8. For some k, n ∈ N with k ≤ n, if g0 > −f0
and −f∞ < g∞ ≤ −f∞,

for
λn

g0 + f
0

< r <
λk

g∞ + f∞
,

then the conclusion of Theorem 3.4 is valid.

Theorem 3.9. For some k ∈ N, if −f0 < g0 ≤ −f0
and g∞ > −f∞, for

λn
g∞ + f∞

< r <
λk

g0 + f0

,

then the conclusion of Theorem 3.1 is valid.
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Remark 3.10. In view of Remark 2.3, the intervals obtained in Theorem 3.1, 3.2,
3.4, 3.7, 3.8 and 3.9 contain the corresponding intervals in [8, Theorem 3.1–3.6]] in
the case of p ≡ 1, q ≡ 0, b0 = b1 = 1 and c0 = c1 = 0. So the results of Theorems
3.1–3.9 are more general than the corresponding ones of [8].

Next, we study problem (1.4). For any function g ∈ C(R,R) such that it satisfies
(C7), we construct the new problem

Lu = ra(x)(f̂(u) + g(u)), x ∈ (0, 1),

b0u(0) + c0u
′(0) = 0, b1u(1) + c1u

′(1) = 0,
(3.11)

where f̂ = f−g. Clearly, problem (1.4) is equivalent to problem (3.11). In addition,

it is easy to see that f̂
0

= f
0
−g0, f̂0 = f0−g0, f̂∞ = f∞−g∞ and f̂∞ = f∞−g∞.

Applying Theorems 3.7–3.9 to problem (3.11), we obtain the following corollaries.

Corollary 3.11. For some k, n ∈ N with k ≤ n, if f
0
> 0 and f∞ > 0, either

λn
f

0

< r <
λk

f∞

or
λn
f∞

< r <
λk

f0

,

then problem (1.4) possesses two solutions u+
k and u−k such that u+

k has exactly k−1
zeros in (0,1) and is positive near 0, and u−k has exactly k− 1 zeros in (0,1) and is
negative near 0.

Corollary 3.12. For some k, n ∈ N with k ≤ n, if f
0
> 0 and f∞ > 0 ≥ f∞, for

λn
f

0

< r <
λk

f∞
,

then the conclusion of Corollary 3.11 is valid.

Corollary 3.13. For some k, n ∈ N with k ≤ n, if f
0
> 0 and f∞ ≤ 0, for

r >
λn
f

0

,

then the conclusion of Corollary 3.11 is valid.

Corollary 3.14. For some k, n ∈ N with k ≤ n, if f0 > 0 ≥ f
0

and f∞ > 0, for

λn
f∞

< r <
λk

f0

,

the conclusion of Corollary 3.11 is valid.

Corollary 3.15. For some k, n ∈ N with k ≤ n, if f0 ≤ 0 and f∞ > 0, for

r >
λn
f∞

,

then the conclusion of Corollary 3.11 is valid.
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Remark 3.16. If r = 1 and n = k + j for any j ∈ {0} ∪ N, then Corollary 3.11
reduces to [10, Theorem 2]. If n = k, then Corollary 3.11 becomes [10, Corollary
1]. If n = k, f

0
= f0, f∞ = f∞, p ≡ 1, q ≡ 0, b0 = b1 = 1 and c0 = c1 = 0, then

Corollary 3.11 reduces to [9, Theorem 1.1]. Note that signum condition is removed
in this paper while it is essential in [9, 10]].
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