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POSITIVE SOLUTIONS AND GLOBAL BIFURCATION OF
STRONGLY COUPLED ELLIPTIC SYSTEMS

JAGMOHAN TYAGI

Abstract. In this article, we study the existence of positive solutions for the

coupled elliptic system

−∆u = λ(f(u, v) + h1(x)) in Ω,

−∆v = λ(g(u, v) + h2(x)) in Ω,

u = v = 0 on ∂Ω,

under certain conditions on f, g and allowing h1, h2 to be singular. We also

consider the system

−∆u = λ(a(x)u+ b(x)v + f1(v) + f2(u)) in Ω,

−∆v = λ(b(x)u+ c(x)v + g1(u) + g2(v)) in Ω,

u = v = 0 on ∂Ω,

and prove a Rabinowitz global bifurcation type theorem to this system.

1. Introduction

The investigation on the existence questions of positive solutions to semilin-
ear elliptic equations and systems has been of great interest to many researchers.
Many problems in mathematical physics, for example, wave phenomena [22], non-
linear field equations [4], combustion theory [3, 13], fluid dynamics [2] etc. lead to
nonlinear eigenvalue problem of the type

−∆u = λf(u),

where a positive solution is meaningful, see for example [4, 5]. In the recent years,
a good amount of research is established for reaction–diffusion systems. Reaction–
diffusion systems model many phenomena in biology, ecology, combustion theory,
chemical reactions, population dynamics etc. A typical example of these models is

−∆u = f(v) in Ω,

−∆v = g(u) in Ω,
u = v = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in RN with a smooth boundary ∂Ω.

2000 Mathematics Subject Classification. 35J57, 35B32, 35B09.

Key words and phrases. Elliptic system; bifurcation; positive solutions.
c©2013 Texas State University - San Marcos.

Submitted April 18, 2012. Published March 31, 2013.

1



2 J. TYAGI EJDE-2013/82

Using Schauder’s fixed point theorem and degree theoretic arguments, Dalmasso
[10] obtain the existence and uniqueness of positive solution to (1.1). de Figueiredo
et al [11] obtain the existence of positive solution to (1.1) by an Orlicz space setting
forN ≥ 3. Hulshof and Van der Vorst [17] establish the existence of positive solution
to (1.1). For the existence and non–existence of positive solutions to (1.1) in a ball,
we refer the reader to [14] for N ≥ 4. By the method of sub and supersolutions
and Schauder’s fixed point theorem, Hai and Shivaji [16] establish the existence of
a positive solution to the system

−∆u = λf(v) in Ω,

−∆v = λg(u) in Ω,
u = v = 0 on ∂Ω,

(1.2)

for λ large. Using the monotonicity of f and g and degree theory and L∞ priori
estimates, Clément et al [9] obtain the existence of at least one positive solution
to (1.2) in bounded, convex domains. The existence of a nonnegative solutions to
(1.2) with indefinite weights can be seen in [23, 24]. Hai and Shivaji [16] point out
that, using the similar arguments as in [16], the existence of a positive solution can
be obtained to the following coupled system

−∆u = λf(u, v) in Ω.

−∆v = λg(u, v) in Ω.
u = v = 0 on ∂Ω,

(1.3)

for λ sufficiently large. So it is natural to ask that under what conditions on the
nonlinearities, we have the existence of positive solutions to (1.3) for λ sufficiently
small. Recently, Chern et al [8] establish the existence of positive solutions to (1.3)
by the method of monotone iteration. In this paper, we show the existence of
positive solutions to the nonhomogeneous elliptic system

−∆u = λ(f(u, v) + h1(x)) in Ω,

−∆v = λ(g(u, v) + h2(x)) in Ω,
u = v = 0 on ∂Ω,

(1.4)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, λ is a positive
parameter and h1, h2 ∈ L∞(Ω). We allow the sign changing nature of h1 and h2.

We will also consider the following coupled system for the existence of a positive
solution

−∆u = λ(a(x)u+ b(x)v + f1(v) + f2(u) + h1(x)) in Ω,

−∆v = λ(b(x)u+ c(x)v + g1(u) + g2(v) + h2(x)) in Ω,
u = v = 0 on ∂Ω,

(1.5)

where the conditions on a, b, c, f1, f2, g1, g2, h1, h2 will be specified later. By an
application of implicit function theorem in a functional framework, Anoop and the
present author [1] obtain the existence of a positive solution of scalar equation in
RN . Chern et al [8] also obtain the existence and uniqueness of a solution to (1.5),
where a = b = c = h1 = h2 = 0, by implicit function theorem. Mitidieri and Sweers
[20] study the n × n weakly coupled system of type (1.5), where fi, gi, hi = 0, for
i = 1, 2. They show the preservance of the positive cone under the weakly coupled
system. We also use the similar arguments as in [1, 8] to obtain the existence of a
unique positive solution to (1.5).
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We make the following hypotheses on the nonlinearity and weights:
(H1) Suppose f, g : R2 → R are continuous and there exist L > 0 and k > 0 such

that f(x, y) ≥ L, g(x, y) ≥ L, for all x ≥ k and for all y ≥ k.
(H2) The boundary value problems

−∆z = h1 in Ω,
z = 0 on ∂Ω,

and

−∆z = h2 in Ω,
z = 0 on ∂Ω,

have positive solutions zh1 and zh2 , respectively.
(H3) Let f1, f2, g1, g2 ∈ C1(R,R) be such that f1(0)+f2(0) > 0, g1(0)+g2(0) > 0.
(H4) Let a, b, c ∈ C(Ω,R).
(H5) Let |f1(s) + f2(s′)| ≤ |f1(s+ s′) + f2(s+ s′)|, |g1(s) + g2(s′)| ≤ |g1(s+ s′) +

g2(s+s′)| for s and s′ near 0, and |f1(S)+f2(S′)| ≤ |f1(S+S′)+f2(S+S′)|,
|g1(S) + g2(S′)| ≤ |g1(S + S′) + g2(S + S′)| for S and S′ near ∞.

(H6) lims→0
f1(s)
s = lims→0

f2(s)
s = lims→0

g1(s)
s = lims→0

g2(s)
s = 0.

(H7) There is a 1 < q < 2∗, such that lim|s|→∞
f1(s)
|s|q−1 = lim|s|→∞

f2(s)
|s|q−1 =

lim|s|→∞
g1(s)
|s|q−1 = lim|s|→∞

g2(s)
|s|q−1 = 0.

We organize this paper as follows: Section 2 deals with the proof of Theorems
1.1, 1.2. While Section 3 shows the bifurcation results. We state now the main
results.

Theorem 1.1. Let (H1) and (H2) hold. Then there exists a positive solution (u, v)
to (1.4) for λ sufficiently small.

Theorem 1.2. Let a, b, c ∈ L∞(Ω). Let (H2) and (H3) hold. Then there exists a
unique positive solution (u, v) to (1.5) for λ sufficiently small.

2. Proof of main results

Proof of Theorem 1.1. Let f(x) = f(0) and g(x) = g(0) for x < 0. Let ξ0 be the
solution of

−∆ξ0 = 1 in Ω.
ξ0 = 0 on ∂Ω.

(2.1)

Now using strong maximum principle and boundary point lemma [18, p.34], we
have ξ0(x) ≥ cd(x, ∂Ω) for some c > 0. Let X = C(Ω) and A : X ×X → X ×X
be defined by

A(u, v)(x) =
(
λ

∫
Ω

G(x, y)(f(v(y)) + h1(y))dy, λ
∫

Ω

G(x, y)(g(u(y)) + h2(y))dy
)
,

where G(x, y) is the Green’s function of −∆ associated to Dirichlet boundary con-
dition. It is easy to see that A is a completely continuous operator and fixed points
of A are solutions to the problem (1.4). Let ψ = (ξλ, ξλ), where ξλ = λLξ0

2 and let
there exist w0 > 0, w1 > 0 and let φ = (w0, w1). We note that ψ ≤ φ for λ > 0
sufficiently small. Let K be a cone in X ×X defined as:

K = {(u, v) ∈ X ×X : ψ ≤ (u, v) ≤ φ}.
Now we claim that K is invariant under A.
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To prove the claim, we will verify the following:

(i) If (u, v) ≥ ψ, then A(u, v) ≥ ψ.
(ii) If (u, v) ≤ φ, then A(u, v) ≤ φ.

Claim (i). Let (u, v) ≥ ψ. We show that∫
Ω

G(x, y)(f(u(y), v(y)) + h1(y)) dy ≥ 1
2
L

∫
Ω

G(x, y) dy. (2.2)

Let C be a positive upper bound of L− f(x, y) and let D be a subregion of Ω such
that D ⊂ Ω and

1
2
Lξ0 − C

∫
Ω/D

G(x, y)dy ≥ 0 on Ω.

To see such a choice of D exists, let

z(x) =
∫

Ω/D

G(x, y)dy.

Then z satisfies −∆z = χΩ/D in Ω, z = 0 on ∂Ω. By Sobolev’s embedding theorem,
there exists a positive constant C1 such that

‖z‖W 2,p ≤ C1

(∫
Ω/D

dx
)1/p

for p > N, (2.3)

and hence z(x) ≤ εd(x, ∂Ω), where ε→ 0 as d(D, ∂Ω)→ 0. But ξ0 ≥ cd(x, ∂Ω) for
some positive constant c. Hence

1
2
Lξ0 − C

∫
Ω/D

G(x, y) dy ≥ 1
2
Lcd(x, ∂Ω)− Cεd(x, ∂Ω) ≥ 0 (2.4)

for ε small enough. Now since u, v ≥ ξλ, we have u, v ≥ 0 in D and hence f(v) ≥ L
in D. Consequently,∫

Ω

G(x, y)(f(u(y), v(y)) + h1(y))dy − 1
2
L

∫
Ω

G(x, y)dy

=
∫

Ω

G(x, y)h1(y)dy +
∫

Ω

G(x, y)f(u(y), v(y))dy − 1
2
L

∫
Ω

G(x, y)dy

= zh1(x) +
∫
D

G(x, y)(f(u(y), v(y))− 1
2
L)dy

+
∫

Ω/D

G(x, y)(f(u(y), v(y))− 1
2
L)dy

≥ 1
2
L

∫
D

G(x, y)dy +
∫

Ω/D

G(x, y)(f(u(y), v(y))− 1
2
L)dy

≥ 1
2
Lξ0 −

∫
Ω/D

G(x, y)(L− f(u(y), v(y)))dy

≥ 1
2
Lξ0 − C

∫
Ω/D

G(x, y)dy ≥ 0.

(2.5)

Using the same arguments, we obtain∫
Ω

G(x, y)(g(u(y), v(y)) + h2(y))dy ≥ 1
2
L

∫
Ω

G(x, y)dy.
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Claim (ii). Let us define

f̃(x1, x2) = sup
0≤y1≤x1

sup
0≤y2≤x2

f(y1, y2), g̃(x1, x2) = sup
0≤y1≤x1

sup
0≤y2≤x2

g(y1, y2).

It is easy to see that f̃ and g̃ are nondecreasing functions. Let (u, v) ≤ φ = (w0, w1).
We show that A(u, v) ≤ φ; i.e.,

λ

∫
Ω

G(x, y)(f(u(y), v(y)) + h1(y))dy ≤ w0,

λ

∫
Ω

G(x, y)(g(u(y), v(y)) + h2(y))dy ≤ w1.

For this,

λ

∫
Ω

G(x, y)(f(u(y), v(y)) + h1(y))dy

≤ λ
∫

Ω

G(x, y)h1(y)dy + λ

∫
Ω

G(x, y)f̃(u(y), v(y))dy, (by definition of f̃)

≤ λzh1(x) + λ

∫
Ω

G(x, y)f̃(w0, w1)dy

= λ
[
zh1(x) + f̃(w0, w1)ξ0

]
≤ λ[‖zh1‖L∞(Ω) +M‖ξ0‖L∞(Ω)] (where f̃(w0, w1) ≤M for some M > 0)
≤ w0, for λ > 0 sufficiently small,

(2.6)

which proves the claim. Next, again using the same arguments, we obtain

λ

∫
Ω

G(x, y)(g(u(y)) + h2(y))dy ≤ w1, (2.7)

which proves the second claim. This completes the proof of this theorem. �

Proof of Theorem 1.2. We extend fi and gi to be defined on R for u, v < 0 in the
following manner. Let fi(x) = f(0) and gi(x) = g(0) for x < 0, i = 1, 2. Let
F : R× [H1

0 (Ω)]2 → H−1(Ω)]2 defined by

F (λ, u, v) =
(

∆u+ λ(a(x)u+ b(x)v + f1(v) + f2(u) + h1(x))
∆v + λ(b(x)u+ c(x)v + g1(u) + g2(u) + h1(x))

)
.

It is clear that (λ, u, v) = (0, 0, 0) is a solution of (1.5). To obtain the solution
of (1.5) in a small neighborhood of λ = 0, we apply implicit function theorem at
(λ, u, v) = (0, 0, 0). The Fréchet derivative of F is given by

F(u,v)(λ, u, v)(φ, ψ)T =
(

∆φ+ λ(a(x)φ+ b(x)ψ + f ′1(v)ψ + f ′2(u)φ)
∆ψ + λ(b(x)φ+ c(x)ψ + g′1(u)φ+ g′2(v)ψ)

)
.

Thus F(u,v)(0, 0, 0)(φ, ψ)T = (∆φ,∆ψ)T , which is an isomorphism from [H1
0 (Ω)]2

to [H−1(Ω)]2. Also, one can see that F is a C1 map. By an application of implicit
function theorem, see [25, Theorem 4B, pp. 150],

F (λ, u, v) = 0 (2.8)

has a unique solution (λ, u(λ), v(λ)) for λ ∈ (0, λ0) for some small λ0 > 0 and
u(0) = v(0) = 0. Furthermore, u and v are C1 maps and satisfy (2.8) in the weak
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sense. Now we differentiate (2.8) with respect to λ and evaluate at (0, 0, 0), which
yields that (u′(0), v′(0)) is the unique solution of

−∆u′(0) = f1(0) + f2(0) + h1(x) in Ω,

−∆v′(0) = g1(0) + g2(0) + h2(x) in Ω,

u′(0) = v′(0) = 0 on ∂Ω.

(2.9)

Now by (H3), using f1(0) + f2(0) > 0, g1(0) + g2(0) > 0 and an application of (H2)
implies that u′(0) > 0, v′(0) > 0 in Ω and using the fact that u(0) = v(0) = 0, we
get u(λ) > 0, v(λ) > 0 for λ ∈ (0, δ), δ ≤ λ0. Since h1, h2 ∈ L∞(Ω), by the classical
regularity theory, u′(0), v′(0) ∈ C1(Ω) and one can see that u(λ)(x), v(λ)(x) >
0, ∀x ∈ Ω, which completes the proof. �

3. Bifurcation

Let us consider the coupled system

−∆u = λ(a(x)u+ b(x)v + f1(v) + f2(u)) in Ω,

−∆v = λ(b(x)u+ c(x)v + g1(u) + g2(v)) in Ω,
u = v = 0 on ∂Ω,

(3.1)

where a, b, c, f1, f2, g1, g2 are defined earlier. Let F : R × X = [H1
0 (Ω)]2 → Y =

[H−1(Ω)]2 defined by

F (λ, u, v) =
(

∆u+ λ(a(x)u+ b(x)v + f1(v) + f2(u))
∆v + λ(b(x)u+ c(x)v + g1(u) + g2(u))

)
.

Let f1, f2, g1, g2 ∈ C1(R,R) such that f1(0) = 0 = f2(0) = g1(0) = g2(0). Then
we observe that F (λ, u, v) = 0, for all λ ∈ R; i.e., (λ, 0, 0) is a solution of (3.1) for
every λ ∈ R. These kind of pairs are called trivial solutions. The set

Σ = {(λ, u, v) ∈ R×X : F (λ, u, v) = 0, u 6= 0, v 6= 0}

is called a set of nontrivial solutions of (3.1). We say that (λ, 0, 0) is a bifurcation
point of (3.1) if in any neighborhood of (λ, 0, 0) in R×X, there exists a nontrivial
solution of (3.1). We recall some qualitative results from [6, 7, 12, 15]. Let us
denote S2(Ω) be the set of all symmetric matrices of the form

A(x) =
(
a(x) b(x)
b(x) c(x)

)
,

where a, b, c ∈ C(Ω,R) satisfy
(i) A is cooperative, i.e., b(x) ≥ 0, for all x ∈ Ω.

(ii) maxx∈Ω max{a(x), c(x)} > 0.
Given A ∈ S2(Ω), let us consider the weighted eigenvalue problem

−∆u = λ(a(x)u+ b(x)v) in Ω,

−∆v = λ(b(x)u+ c(x)v) in Ω,
u = v = 0 on ∂Ω.

(3.2)

In view of (i) and (ii) above, we can use spectral theory for compact operators [12]
to obtain a sequence of eigenvalues

0 < λ1(A) < λ2(A) ≤ λ3(A) ≤ · · · ≤ λk(A) . . .
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such that λk(A)→∞ as k →∞. From [6, 7, 12, 15], we know that λ1 = λ1(A) is
positive, simple and isolated.

The next proposition deals with a connection between the eigenvalue of (3.2)
and the bifurcation point of (3.1) and is adapted from [19] to the coupled system.

Proposition 3.1. Let (H4)–(H7) be satisfied. If (λ, 0, 0) is a bifurcation point of
(3.1), then λ is an eigenvalue of (3.2).

Proof. Let U =
(
u
v

)
and H =

(
h1

h2

)
. It is well-known that the auxiliary problem

−∆U = H in Ω; u = v = 0 on ∂Ω (3.3)

has a unique solution U for each H ∈ [H−1(Ω)]2; i.e., U ∈ [H1
0 (Ω)]2 such that∫

Ω

∇u.∇v1 = 〈h1, v1〉, ∀v1 ∈ H−1(Ω),∫
Ω

∇v.∇v2 = 〈h2, v2〉, ∀v2 ∈ H−1(Ω),
(3.4)

and (u, v) is unique. In the above equations 〈·, ·〉 denotes the duality pairing between
H1

0 (Ω) andH−1(Ω). Let us denote by (−∆)−1(H) the unique weak solution of (3.3).
Then

(−∆)−1 : [H−1(Ω)]2 → [H1
0 (Ω)]2

is a continuous operator. Also, since [H1
0 (Ω)]2 embeds compactly into [Lr]2 for

each r ∈ (1, 2∗) so it follows that the restriction of (−∆)−1 to [Lr
′
]2 is a completely

continuous operator. It is easy to observe that (λ, u, v) is a solution of (3.1) if and
only if (λ, u, v) satisfies(

u
v

)
= (−∆)−1

(
λA(x)

(
u
v

)
+
(
F1(v) + F2(u)
G1(u) +G2(v)

))
, (3.5)

where F1, F2, G1, G2 denote the usual Nemitsky operator associated with f1, f2,
g1, g2, respectively. From (H8), the right-hand side of (3.5) defines a completely
continuous operator from [H1

0 (Ω)]2 to itself. Let us assume that (λ, 0, 0) is a bifur-
cation point of (3.1). We show that λ is an eigenvalue of (3.2). Since (λ, 0, 0) is a
bifurcation point so there exists a sequence {λn, un, vn}∞n=1 of nontrivial solutions
of (3.1) such that λn → λ in R and un → 0, vn → 0 in H1

0 (Ω). Since (λn, un, vn)
satisfies (3.5), we have(

ûn
v̂n

)
= (−∆)−1

(
λA(x)

(
ûn
v̂n

)
+

(
F1(vn)+F2(un)

‖un‖
G1(un)+G2(vn)

‖vn‖

))
, (3.6)

where ûn = un

‖un‖ , v̂n = vn

‖vn‖ , ‖un‖ = ‖un‖1,2 = (
∫

Ω
|∇un|2dx)1/2. Since ‖ûn‖ = 1

and ‖v̂n‖ = 1, for all n ∈ N , so we can assume that

ûn → û, v̂n → v̂ in H1
0 (Ω),

up to a subsequence as n→∞. We claim that

F1(vn) + F2(un)
‖un‖

→ 0 in Lq
′
,

G1(un) +G2(vn)
‖vn‖

→ 0 in Lq
′
, (3.7)
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where q is chosen in (H8) and without any loss of generality 2 < q. We note that

F1(vn) + F2(un)
‖un‖

=
(F1(vn) + F2(un))

(vn + un)
(un + vn)
‖un‖

,

G1(un) +G2(vn)
‖vn‖

=
(G1(un) +G2(vn))

(un + vn)
(un + vn)
‖vn‖

.

(3.8)

Thus from (3.8) and Hölder inequality, to prove the claim it is sufficient to find a
real number r > 1 and a constant C > 0 so that∣∣∣F1(vn) + F2(un)

(vn + un)

∣∣∣q′ → 0,
∣∣∣G1(un) +G2(vn)

(un + vn)

∣∣∣q′ → 0, in Lr (3.9)

and ∥∥∣∣ (un + vn)
‖un‖

∣∣q′∥∥
Lr′ ≤ C,

∥∥∣∣ (un + vn)
‖vn‖

∣∣q′∥∥
Lr′ ≤ C, ∀n ∈ N . (3.10)

In view of (H7) and (H8), let us fix ε > 0 and choose positive numbers δ = δ(ε), δ
and M = M(δ, δ) such that for every x ∈ Ω and n ∈ N , the following inequalities
hold:

|f1(s)| ≤ ε|s|, |f2(s)| ≤ ε|s|, |g1(s)| ≤ ε|s|, |g2(s)| ≤ ε|s| for |s| ≤ δ (3.11)

and
|f1(s)| ≤M |s|q−1, |f2(s)| ≤M |s|q−1,

|g1(s)| ≤M |s|q−1, |g2(s)| ≤M |s|q−1 for |s| > δ.
(3.12)

Let r be a real number greater than 1. Then from (3.11), we get∥∥∣∣ (F1(vn) + F2(un))
(vn + un)

∣∣q′∥∥r
r

=
∫

Ω

∣∣f1(vn) + f2(un)
vn + un

∣∣q′rdx
=
∫
{x∈Ω||un+vn|<δ}

∣∣f1(vn) + f2(un)
vn + un

∣∣q′rdx
+
∫
{x∈Ω|δ≤|un+vn|≤δ}

∣∣f1(vn) + f2(un)
vn + un

∣∣q′rdx
+
∫
{x∈Ω||un+vn|>δ}

∣∣f1(vn) + f2(un)
vn + un

∣∣q′rdx
≤
∫
{x∈Ω||un+vn|<δ}

∣∣f1(un + vn) + f2(un + vn)
vn + un

∣∣q′rdx
+
∫
{x∈Ω|δ≤|un+vn|≤δ}

∣∣f1(vn) + f2(un)
vn + un

∣∣q′rdx
+
∫
{x∈Ω||un+vn|>δ}

∣∣f1(un + vn) + f2(un + vn)
vn + un

∣∣q′rdx
≤ ε|Ω|+Mq′r

∫
Ω

|un + vn|q
′r(q−2)dx (by (3.11), (3.12))

≤ ε|Ω|+ 2(q−2)q′r−1Mq′r

∫
Ω

(|un|q
′r(q−2) + |vn|q

′r(q−2))dx.
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From the above inequality and using the fact that un → 0 and vn → 0 in H1
0 (Ω),

we find that
F1(vn) + F2(un)

‖un‖
→ 0 in Lq

′
, if q′r(q − 2) < 2∗. (3.13)

Using the same arguments as above, one can also see that

G1(un) +G2(vn)
‖vn‖

→ 0 in Lq
′
, if q′r(q − 2) < 2∗ (3.14)

and therefore, (3.9) is satisfied if

q′r(q − 2) < 2∗. (3.15)

Also, using the boundedness of ûn in L2∗ , we see that (3.10) is satisfied if

q′r′ < 2∗. (3.16)

To obtain an r satisfying (3.15) and (3.16) is equivalent to obtain an r such that

q′(q − 2)
2∗

<
1
r
<

2∗ − q′

2∗
(3.17)

and the above inequality always holds because of q < 2∗ and this choice of r
satisfying (3.17), proves (3.9) and (3.10).

Now from (3.6), (3.7), and the compactness of (−∆)−1, we can assume that
(passing a subsequence if necessary) ûn → û, v̂n → v̂ in H1

0 (Ω). Now we pass the
limit in (3.6) and find that(

û
v̂

)
= (−∆)−1

(
λA(x)

(
û
v̂

))
. (3.18)

Since ‖ûn‖ = 1, so û 6= 0, which implies that λ is an eigenvalue of (3.2), which
proves the claim. �

From [6, 7, 12, 15], we know that λ1(A) is an isolated eigenvalue of (3.2) so if
we let

λ2(A) = inf{λ > λ1(A)|λ is an eigenvalue of (3.2)}, (3.19)
then λ1(A) < λ2(A). By definition, there is no eigenvalue of (3.2) less than λ1(A),
therefore for λ < λ1(A) or λ1(A) < λ < λ2(A), the system(

u
v

)
= (−∆)−1

(
λA(x)

(
u
v

))
(3.20)

admits only the trivial solution u ≡ v ≡ 0. Let us define the completely continuous
operator Sλ : [H1

0 (Ω)]2 → [H1
0 (Ω)]2 by

Sλ

(
u
v

)
= (−∆)−1

(
λA(x)

(
u
v

))
. (3.21)

It is clear that when λ < λ1(A) or λ1(A) < λ < λ2(A), the Leray–Schauder degree

deg[H1
0 (Ω)]2(I − Sλ, B(0, r),0)

is well defined for any r > 0. The next lemma is well-known for a scalar equation,
see [21] and the same proof works for a system also and it is given in [19] for any
p > 1. We omit the proof of this lemma.
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Proposition 3.2. Let r > 0 and λ ∈ R. Then

deg[H1
0 (Ω)]2(I − Sλ, B(0, r),0) =

{
1 if λ < λ1(A)
−1 if λ1(A) < λ < λ2(A).

Our main result on bifurcation is the following theorem.

Theorem 3.3. Let (H4)–(H7) and (i)–(ii) be satisfied. Then (λ1, 0, 0) is a bifurca-
tion point of (3.1). Moreover, there is a component of the set of nontrivial solutions
of (3.1) in R × [H1

0 (Ω)]2 whose closure contains (λ1, 0, 0) and is either unbounded
or contains a pair (λ, 0, 0) for some eigenvalue λ of (3.2) with λ 6= λ1.

Proof. Let us set

Tλ

(
u
v

)
= (−∆)−1

(
λA(x)

(
u
v

)
+
(
F1(v) + F2(u)
G1(u) +G2(v)

))
. (3.22)

Suppose that (λ1, 0, 0) is not a bifurcation point of (3.1). Then there exist ε >
0, δ0 > 0 such that there is no nontrivial solution of the system(

u
v

)
− Tλ

(
u
v

)
=
(

0
0

)
(3.23)

for |λ1| < ε and δ < δ0 with ‖u‖ = δ = ‖v‖. Since degree is invariant under compact
homotopy so we obtain that

deg[H1
0 (Ω)]2(I − Sλ, B(0, r),0) = constant, for λ ∈ [λ1 − ε, λ1 + ε]. (3.24)

With the choice of ε small enough, there is no eigenvalue of (3.2) in (λ1, λ1 + ε].
We fix λ ∈ (λ1, λ1 + ε]. It is easy to see that if we choose δ sufficiently small then
the system(

u
v

)
− (−∆)−1

(
λA(x)

(
u
v

)
+ s

(
F1(v) + F2(u)
G1(u) +G2(v)

))
=
(

0
0

)
(3.25)

has no solution (u, v) with ‖u‖ = δ = ‖v‖ for every s ∈ [0, 1]. In fact, assuming
the contrary and by the similar lines of the proof as Proposition 3.1, we find that λ
is an eigenvalue of (3.2). From the invariance of the degree under homotopies and
Proposition 3.2, we then obtain

deg[H1
0 (Ω)]2(I − Tλ, B(0, r),0) = deg[H1

0 (Ω)]2(I − Sλ, B(0, r),0) = −1. (3.26)

Similarly, for λ ∈ [λ1 − ε, λ1), we find that

deg[H1
0 (Ω)]2(I − Tλ, B(0, r),0) = 1. (3.27)

(3.26) and (3.27) lead a contradiction to (3.24) and hence (λ1, 0, 0) is a bifurcation
point of (3.1). The rest of the proof of this theorem is completely similar to the
classical Rabinowitz global bifurcation theorem, see [21]. For the sake of brevity
we omit the details. �
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