
Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 74, pp. 1–19.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

GENERALIZED RIEMANN DERIVATIVE

SORIN RĂDULESCU, PETRUŞ ALEXANDRESCU, DIANA-OLIMPIA ALEXANDRESCU

Abstract. Initiated by Marshall Ash in 1966, the study of generalized Rie-

mann derivative draw significant attention of the mathematical community
and numerous studies where carried out since then. One of the major areas

that benefits from these developments is the numerical analysis, as the use of
generalized Riemann derivatives leads to solving a wider class of problems that

are not solvable with the classical tools. This article studies the generalized

Riemann derivative and its properties and establishes relationships between
Riemann generalized derivative and the classical one. The existence of classi-

cal derivative implies the existence of the Riemann generalized derivative, and

we study conditions necessary for the generalized Riemann derivative to imply
the existence of the classical derivative. Furthermore, we provide conditions

on the generalized Riemann derivative that are sufficient for the existence of

the classical derivative.

1. Introduction

Marshall Ash initiated the study of generalized Riemann derivative in his thesis
[2] in In 1966. Urged by Zygmund and starting from his papers [18, 19, 27], Ash
begun his studies with symmetric derivative and Schwarz derivative of second order:
Given an interval I of real numbers, x ∈ Int(I) and f : I → R a function, then for
all h ∈ R \ {0} such that x− h ∈ I and x+ h ∈ I we define the following ratios:

R1f(x, h) =
f
(
x+ h

2

)
− f

(
x− h

2

)
h

, R2f(x, h) =
f(x+ h)− 2f(x) + f(x− h)

h2
.

If the limit limh→0R1f(x, h) = R1f(x) exists and is finite, then R1f(x) is known
as the symmetric derivative of f at x, cf. [7, 10]. If the limit limh→0R2f(x, h) =
R2f(x) exists and is finite, then R2f(x) is known as the Schwarz derivative of f at x,
cf. [20, 22]. Both derivatives have important applications in trigonometrical series
theory and in numerical analysis, see [17, 23, 24, 23, 26]. A natural generalization of
these two derivatives is the generalized Riemann derivative of order r of a function
f at a point x. We consider ai, bi, i = 1, 2, . . . , n real numbers and suppose that
the following conditions of consistency are satisfied:

n∑
i=1

aib
k
i =

{
0, k = 0, 1, . . . , r − 1
1, k = r.

(1.1)
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If we have k = 0 and bi = 0 in relation (1.1), then we denote by bki = 1. Further
we consider the ratio

Ra,br f(x, h) =
∑n
i=1 aif(x+ bih)

hr
.

In the case when

lim
h→0

Ra,br f(x, h) = Ra,br f(x)

exists and is finite, we say that the function f is generalized Riemann differentiable
of order r at x.

We denote by Da,b
r f(x) = r!·Ra,br f(x) and we say that Da,b

r f(x) is the generalized
Riemann derivative of order r of function f at x. One can easily observe that if f is
a function differentiable of order r in classical sense then f is generalized Riemann
differentiable of order r and the two derivatives are equal. The converse does not
hold. More generally if f is Peano differentiable of order r, then f is generalized
Riemann differentiable of order r. The converse does not hold.

Among the most important contributions to the generalized Riemann deriva-
tive are those of Humke, Laczkovich and Mukhopadhyay in [14, 15, 21]. In [2]–[6]
and [8], Ash gives a number of problems linked to generalized Riemann derivative.
These papers deals with the applications of generalized Riemann derivative to some
uniqueness theorems in trigonometric series theory. It can be noted that by replac-
ing the classical derivative with the generalized Riemann derivative in the process
of solving ordinary differential equations, the resulting solutions are no longer dif-
ferentiable in the classical sense. Such solutions are known in ordinary differential
equations theory as weak solutions. Therefore, it is necessary to study the system
of parameters ai, bi, i = 1, . . . , n that satisfy conditions of consistency and for which
the generalized Riemann derivative coincides with the classical derivative.

It can also be noticed that the speed of convergence of numerical scheme associ-
ated to differential equation depends essentially on the type of generalized Riemann
derivative and consequently on the parameters ai, bi, i = 1, . . . , n. In the following
section we study the links between generalized Riemann derivative and classical
derivative. We give conditions in which the existence of generalized Riemann de-
rivative implies the existence of classical derivative. We give sufficient conditions on
the system of vectors (a, b) that define generalized Riemann derivative, such that
any function which is generalized Riemann differentiable is also classical differen-
tiable.

2. (σ, τ)-Riemann differentiable functions

We study further a new class of generalized differentiable functions - the functions
(σ, τ)-Riemann differentiable. The motivation for this definition is that we mark
out the system (σ, τ) in Kn×Kn (where K = R or C), on which we give conditions
such that a function f is generalized Riemann differentiable and such that a series
of theorems hold.

Denote by K = R or C. Let G ⊂ K an open subset and the function f : G→ K.
For p, n ∈ N∗, p ≤ n, define the set:

L(p, n,K) :=
{

(σ, τ) ∈ K∗n ×Kn :
n∑
k=1

σkτ
j
k = 0, for j ∈ {0, 1, . . . , p− 1},
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n∑
k=1

σkτ
p
k = p! and τ has all the components distinct

}
.

Definition 2.1. The function f is (σ, τ)-differentiable of order p at x (x in G) if
(σ, τ) ∈ L(p, n,K) and if the following limit exists and belongs to K:

lim
h→0

1
hp

n∑
k=1

σkf(x+ τkh).

If the limit above exists, we denote it by Dp(σ, τ)f(x).

Remark 2.2. If G ⊂ K is an open set, (σ, τ) ∈ L(p, n,K), f : G → K is (σ, τ)-
differentiable at x, (x ∈ G), then for all λ ∈ K the function λf is (σ, τ)-differentiable
at x and the following relation holds:

Dp(σ, τ)(λf)(x) = λDp(σ, τ)f(x).

Remark 2.3. If f , g : G→ K are two functions (σ, τ) differentiable at x, then the
function f + g is (σ, τ) differentiable at x and the following relation holds:

Dp(σ, τ)(f + g)(x) = Dp(σ, τ)f(x) +Dp(σ, τ)g(x).

The proof is straightforward and we let the reader to complete it, if needed.

Remark 2.4. Let G ⊂ R with IntG 6= ∅ and x ∈ IntG, f : G → R and (σ, τ) ∈
L(p, n,R). If f is differentiable of order p at x in the classic sense, then Dp(σ, τ)f(x)
exists and these two derivatives are equal:

Dp(σ, τ)f(x) = f (p)(x).

Theorem 2.5. Let G ⊂ K such that IntG 6= ∅, x ∈ IntG, f : G → K and
(σ′, τ ′) ∈ L(p,m,K), (σ′′, τ ′′) ∈ L(p, n,K). If Dp(σ′, τ ′)f(x) and Dp(σ′′, τ ′′)f(x)
exist and belong to K, then they are equal.

Proof. Using Definition 2.1, we obtain

Dp(σ′, τ ′)f(x) =
1
p!
p!Dp(σ′, τ ′)f(x)

=
1
p!

n∑
j=1

σ′′j τ
′′p
j Dp(σ′, τ ′)f(x)

=
1
p!

n∑
j=1

σ′′j τ
′′p
j lim

j→0

1
hp

m∑
k=1

σ′kf(x+ τ ′kh)

=
1
p!

n∑
j=1

σ′′j τ
′′p
j lim

h→0

1
(τ ′′j h)p

m∑
k=1

σ′kf(x+ τ ′kτ
′′
k h)

=
1
p!

lim
h→0

1
hp

n∑
j=1

m∑
k=1

σ′′j τ
′′p
j σ′k

1
τ ′′pj

f(x+ τ ′kτ
′′
j h)

=
1
p!

lim
h→0

1
hp

n∑
j=1

m∑
k=1

σ′′j σ
′
kf(x+ τ ′kτ

′′
j h)

=
1
p!

lim
h→0

m∑
k=1

σ′k

n∑
j=1

σ′′j f(x+ τ ′kτ
′′
j h)
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=
1
p!

m∑
k=1

σ′kτ
′p
k lim
h→0

1
(hτ ′k)p

n∑
j=1

σ′′j f(x+ τ ′′j (τ ′kh))

=
1
p!

m∑
k=1

σ′kτ
′p
k Dp(σ′′, τ ′′)f(x)

=
1
p!
p!Dp(σ′′, τ ′′)f(x) = Dp(σ′′, τ ′′)f(x).

�

This theorem shows that if a function is differentiable in the generalized sense of
order p in relation with two systems (σ′, τ ′) and (σ′′, τ ′′), then these two generalized
derivatives of order p are equal. We can formulate with the aid of notion of divided
difference, the (σ, τ) derivative.

Remark 2.6. Let f : G→ K, G ⊂ K open set.
1. Then f is (σ, τ) differentiable if and only if the following limit exists:

lim
h→0

n∑
j=1

σjτj [x+ τjh, x; f ] = D1(σ, τ)f(x).

with (σ, τ) ∈ L(1, n,K).
2. If p = n− 1 and (σ, τ) ∈ L(p, n,K) and G ⊂ K open set and f : G→ K, then

Dp(σ, τ)f(x) = (n− 1)! lim
h→0

[x+ τ1h, x+ τ2h, . . . , x+ τnh; f ].

The following theorem gives conditions on a (σ, τ)-differentiable function at a
point x and on the system of vectors (σ, τ) for such function to become differentiable
in the classical sense and such that the two derivatives to be equal.

Theorem 2.7. Let G ⊂ R, (σ, τ) ∈ L(1, n,R), x ∈ IntG 6= ∅ and f : G → R.
Suppose that the following conditions hold:

(i) f is (σ, τ)-differentiable at x;
(ii) there exist left and right derivatives f ′l (x) and f ′r(x) and are finite;
(iii)

∑
τk<0 σkτk 6=

∑
τk>0 σkτk.

Under these conditions f is differentiable at x and D1(σ, τ)f(x) = f ′(x).

Proof. On the one hand, by the definition of (σ, τ)-derivative of f we obtain:
D1(σ, τ)f(x)

= lim
h→0,h>0

1
h

n∑
k=1

σkf(x+ τkh)

= lim
h→0,h>0

1
h

n∑
k=1

σk[f(x+ τkh)− f(x)]

= lim
h→0,h>0,τk 6=0

n∑
k=1

σkτk
f(x+ τkh)− f(x)

τkh

= lim
h→0,h>0

{ n∑
τk>0

σkτk
f(x+ τkh)− f(x)

τkh
+
∑
τk<0

σkτk
f(x+ τkh)− f(x)

τkh

}
=
( ∑
τk>0

σkτk

)
f ′r(x) +

( ∑
τk<0

σkτk

)
f ′l (x).

(2.1)
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On the other hand, we have
D1(σ, τ)f(x)

= lim
h→0,h<0

1
h

n∑
k=1

σkf(x+ τkh)

= lim
h′→0,h′>0

1
−h′

n∑
k=1

σkf(x− τkh′)

= lim
h′→0,h′>0

n∑
k=1

σkτk
f(x− τkh′)− f(x)

−τkh′

= lim
h′→0,h′>0

{ ∑
τk>0

σkτk
f(x− τkh′)− f(x)

−τkh′
+
∑
τk<0

σkτk
f(x− τkh′)− f(x)

−τkh′
}

= f ′l (x)
∑
τk>0

σkτk + f ′r(x)
∑
τk<0

σkτk.

(2.2)
From (2.1) and (2.2) we obtain( ∑

τk>0

σkτk −
∑
τk<0

σkτk

)
(f ′r(x)− f ′l (x)) = 0.

Taking into account (iii) it follows that: f ′l (x) = f ′r(x) = f ′(x). This lead us to
conclude that f is differentiable at x. In addition we have

D1(σ, τ)f(x) = f ′(x)
[ ∑
τk>0

σkτk +
∑
τk<0

σkτk

]
= f ′(x)

n∑
k=1

σkτk = f ′(x).

�

Remarks. (1) If G is an interval, f : G → R and conditions (i) and (ii) from
Theorem 2.7 hold, and

(iii’)
∑
τk<0 σkτk =

∑
τk>0 σkτk,

then
D1(σ, τ)f(x) =

1
2

[f ′l (x) + f ′r(x)].

(2) Condition (iii’) is very important because if the system (σ, τ) satisfies it, then
a large class of non-differentiable functions at a point or on a finite set becomes
(σ, τ)-differentiable. Let us consider the function f : R→ R,

f(x) =

{
αx, x < 0
βx, x ≥ 0

for α, β ∈ R∗, α 6= β. This function is not differentiable at x = 0. However we have

(D1(σ, τ)f)r(x) = lim
h→0,h>0

1
h

n∑
k=1

σkf(τkh)

= lim
h→0,h>0

1
h

[ ∑
τk>0

σkβτkh+
∑
τk<0

σkατkh
]

= β
∑
τk>0

σkτk + α
∑
τk<0

σkτk.
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For ∑
τk>0

σkτk =
∑
τk<0

σkτk =
1
2
,

we obtain
(D1(σ, τ)f)r(x) =

α+ β

2
.

Similarly we can prove that

(D1(σ, τ)f)l(x) =
α+ β

2
.

We conclude that function f is (σ, τ)-differentiable at x = 0 and moreover, is (σ, τ)-
differentiable on R.

(3) As we can easily observe, condition (iii) from Theorem 2.7 holds for the
classical derivative.

The (σ, τ)-derivative has a lot of interesting properties that shall be further
studied. We shall give a theorem for the Riemann generalized derivative of the
product of two functions.

Theorem 2.8. Let G ⊂ K open set, f , g : G → K and (σ, τ) ∈ L(1, n,K). If the
following conditions hold:

(1) f is Lipschitz and (σ, τ) differentiable;
(2) g is continuous and (σ, τ) differentiable,

then f · g is (σ, τ) differentiable and we have the following relation

D1(σ, τ)(f · g)(x) = f(x) ·D1(σ, τ)g(x) + g(x) ·D1(σ, τ)f(x), x ∈ G (2.3)

Proof. It is easy to show that

1
h

n∑
j=1

σj [f(x+ τjh)− f(x)][g(x+ τjh)− g(x)]

=
1
h

n∑
j=1

σjf(x+ τjh) · g(x+ τjh)

− f(x) · 1
h

n∑
j=1

σjg(x+ τjh)− g(x) · 1
h

n∑
j=1

σjf(x+ τjh)

+ f(x) · g(x) · 1
h

n∑
j=1

σj .

(2.4)

for x ∈ G, h 6= 0, |h| small enough. From (1) there exists L ≥ 0 such that
|f(x)− f(y)| ≤ L|x− y|, for all x, y ∈ G. By applying the modulus, the left side of
(2.4) becomes ∣∣ n∑

j=1

σj
f(x+ τjh)− f(x)

h
(g(x+ τjh)− g(x))

∣∣
≤

n∑
j=1

|σj | ·
∣∣f(x+ τjh)− f(x)

h

∣∣ · |g(x+ τjh)− g(x)|

≤ L
n∑
j=1

|σj | · |τj | · |g(x+ τjh)− g(x)|



EJDE-2013/74 GENERALIZED RIEMANN DERIVATIVE 7

for all x ∈ G, |h| small enough. Using that g is continuous, the left side of (2.4)
tends to 0 when h→ 0. So we obtain

0 = D1(σ, τ)(f · g)(x)− f(x) ·D1(σ, τ)g(x)− g(x) ·D1(σ, τ)f(x) for x ∈ G

which proves completes the proof. �

Corollary 2.9. Let G ⊂ K open set, f , g : G → K and (σ, τ) ∈ L(1, n,K). If the
following conditions hold:

(1) f is locally Lipschitz,
(2) g is continuous and (σ, τ) differentiable,

then f · g is (σ, τ) differentiable almost everywhere and relation (2.3) holds almost
everywhere.

Proof. We will use that any Lipschitz function is almost everywhere differentiable.
Many properties of the classical derivative correspond to (σ, τ) derivative and when
these properties does not hold on general case, we shall find conditions on f or on
the system (σ, τ) such as these properties remain available. Such a situation shall
be reveal in a theorem bellow. �

Notation. Let G ⊂ K such that IntG 6= ∅ , f : G → K, x ∈ IntG and λ ∈ K,
λ 6= −1. We define:

R(λ)f(x) := lim
h→0

f(x+ h)− f(x− λh)
(1 + λ)h

in the hypotheses in which this limit belongs to K, and we say that f is R(λ)
differentiable at x. We define:

σ =
( 1

1 + λ
,− 1

1 + λ

)
, τ =

(
1,−λ

)
.

We notice that (σ, τ) ∈ L(1, 2,K) and R(λ)f(x) = D1(σ, τ)f(x).

Theorem 2.10. Let G ⊂ K open set, x ∈ G and f, g : G → K, λ ∈ K, λ 6= −1,
such that:

(1) f, g are continuous at x;
(2) f, g are R(λ)-differentiable at x.

Under these conditions the function h = fg is R(λ) differentiable at x and we have
the formula

R(λ)(fg)(x) = g(x)R(λ)f(x) + f(x)R(λ)g(x), x ∈ G.

Proof. The proof is based on

R(λ)(fg)(x)

= lim
h→0

f(x+ h)g(x+ h)− f(x− λh)g(x− λh)
(1 + λ)h

= lim
h→0

f(x+ h)[g(x+ h)− g(x− λh)] + g(x− λh)[f(x+ h)− f(x− λh)]
(1 + λ)h

= f(x)R(λ)g(x) + g(x)R(λ)f(x).

�
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Remarks. (1) For p = 1, n = 2, σ1 = 1
2 , σ2 = − 1

2 , τ1 = 1, τ2 = −1 we obtain the
symmetric Riemann derivative.

(2). For p = 2, n = 3, σ1 = 1, σ2 = −2, σ3 = 1, τ1 = 1, τ2 = 0, τ3 = −1 we find
the Schwarz derivative.

(3) It is also easy to notice that R(λ) extend the symmetric Riemann derivative,
which is R(1) and the classical derivative, which is R(0).

In conclusion, the set of (σ, τ)-differentiable functions is larger than the set of
classical differentiable functions.

If (σ, τ) ∈ L(p, n,K) and G an open set, then we denote

Tp(σ, τ)(G,K) = {f : G→ K|f is (σ, τ)-differentiable everywhere on G}.

Theorem 2.11. If (σ, τ) ∈ L(p, n,K) and if any function from Tp(σ, τ)(G,K) is p
times differentiable in classical sense, then there exists j ∈ {1, 2, . . . , n} such that
τj = 0.

Proof. Indeed, if τj 6= 0, for all j ∈ {1, 2, . . . , n} we prove that there exist a function
in Tp(σ, τ)(G,K) which is (σ, τ) differentiable and does not have the property in
the theorem. This function is f : G→ K,

f(x) =

{
1 if x = a

0 if x ∈ G \ {a}.

This function is discontinuous at a and consequently is not differentiable in the
classical sense at a. However D(σ, τ)f(x) = 0 and this leads us to a contradiction.

�

More properties of (σ, τ)-Riemann differentiable functions were studied in [1, 13,
25].

3. Main Results

If we replace the classical derivative of the function with the Riemann general-
ized derivative in the process of solving numerical ordinary differential equations,
we shall obtain new solutions that are not differentiable in the classical sense (see
citeref9,ref12). This kind of solutions are well known in ordinary differential equa-
tions theory as weak solutions. Therefore is needed to study the system of pa-
rameters (σ, τ) that satisfy the consistency conditions and for which, the Riemann
generalized derivative which is defined by this system of parameters, is equal to
classical derivative.

The speed of convergence of the numerical scheme associated to the ordinary
differential equation, depends on the type of derivative, consequently on the sys-
tem of parameters (σ, τ). We shall further give some conditions in which a (σ, τ)-
differentiable function is classical differentiable.

Lemma 3.1. Let a, b ∈ K such that |a| ≤ |b| < 1 and the function ϕ : K → K.
Suppose that the conditions below hold:

(i) limx→0 xϕ(x) = 0;
(ii) limx→0[ϕ(x)− aϕ(bx)] = 0, x ∈ K.

Then limx→0 ϕ(x) = 0.
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Proof. If b = 0 results that a = 0 and the statement is available in this case. For b
in K∗, we denote

g(x) := ϕ(x)− aϕ(bx), x ∈ K. (3.1)
This condition is equivalent to ϕ(x) = g(x) + aϕ(bx), x ∈ K. Repeating the
transformation: x→ bx, we obtain

ϕ(bx) = g(bx) + aϕ(b2x), x ∈ K
ϕ(b2x) = g(b2x) + aϕ(b3x), x ∈ K

. . .

ϕ(bn−1x) = g(bn−1x) + aϕ(bnx), x ∈ K, n ∈ N∗.

It follows that

ϕ(x) = g(x) + ag(bx) + a2g(b2x) + · · ·+ an−1g(bn−1x) + anϕ(bnx),

for x ∈ K, n ∈ N∗. From (1) and (ii), we have limx→0 g(x) = 0. For 0 < |x| < r,
n ∈ N∗ we obtain

|ϕ(x)| ≤ sup
0<|y|≤r

|g(y)|+ |a| sup
0<|y|≤r

|g(by)|+ . . .

+ |a|n−1 sup
0<|y|≤r

|g(bn−1y)|+ |a
b
|n · 1
|x|
· |(bnx)ϕ(bnx)|.

For ε > 0 we consider Vε - the disc of radius ε centered in 0 such that for any
x ∈ Vr \ {0} we have

|ϕ(x)| ≤ 1
1− |a|

· sup
0<|y|≤r

|g(y)|+ 1
|x|
· lim
n→∞

|(bnx)ϕ(bnx)|.

As a consequence we obtain

|ϕ(x)| ≤ 1
1− |a|

· sup
0<|y|≤r

|g(y)|, for x in Vr \ {0}

and because limr→0

(
sup0<|y|≤r |g(y)|

)
= 0 we conclude that limx→0 ϕ(x) = 0. �

We remark that Lemma 3.1 remains true if we have the condition below instead
of condition (ii):

(ii’) limx→0[ϕ(x) + aϕ(bx)] = 0, x ∈ K.
In this chase the auxiliary function is g(x) := ϕ(x) + aϕ(bx), x ∈ K, and

ϕ(x) = g(x)−ag(bx)+a2g(b2x)−a3g(b3x)+· · ·+(−a)n−1g(bn−1x)+(−1)nanϕ(bnx),

for x ∈ K and n ∈ N∗.

Lemma 3.2. Let a, b ∈ K such that |a| ≥ |b| > 1 and ϕ : K → K for which the
following conditions hold:

(i) limx→0 xϕ(x) = 0,
(ii) limx→0[ϕ(x) + aϕ(bx)] = 0.

Then limx→0 ϕ(x) = 0.

Proof. To prove this we shall use Lemma 3.1 with transformations: x = y/b = b′y,
b ∈ K∗, b′ = 1/b, a′ = 1/a, a′ ∈ K∗ with 1 > |b′| ≥ |a′|. For the case b = 0 results
that a = 0 and condition (ii) validate the statement. �
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Lemma 3.3. Let a = (a1, a2, . . . , an) ∈ Kn, b = (b1, b2, . . . , bn) ∈ Kn with |aj | ≤
|bj | < 1, for all j ∈ {1, 2, . . . , n} and the function ϕ : K→ K with the properties:

(i) limx→0 xϕ(x) = 0;
(ii)

lim
x→0

{
ϕ(x) +

n∑
j=1

ajϕ(bjx) +
∑
j<k

ajakϕ(bjbkx) + . . .

+ a1a2 . . . anϕ(b1 . . . bnx)
}

= 0.

Then limx→0 ϕ(x) = 0.

Proof. We shall repeatedly use Lemma 3.1 with condition (ii’). For 1 ≤ j ≤ n we
define

(Ljϕ)(x) := ϕ(x) + ajϕ(bjx), x ∈ K
and hence limx→0(Ljϕ)(x) = 0 which implies limx→0 ϕ(x) = 0, for j ∈ {1, . . . , n}.
Using the relation

(LjLkϕ)(x) = ϕ(x) + [akϕ(bkx) + ajϕ(bjx)] + ajakϕ(bjbkx),

for 1 ≤ j, k ≤ n, x ∈ K. By induction we obtain

(L1L2 . . . Lnϕ)(x) = ϕ(x) +
n∑
j=1

ajϕ(bjx) +
∑
j<k

ajakϕ(bjbkx) + . . .

+ a1a2 . . . anϕ(b1 . . . bnx),

for x ∈ K. Therefore, the proof has the following logical scheme:

lim
x→0

(LjLkϕ)(x) = lim
x→0

Lj(Lkϕ(x)) = 0

implies
lim
x→0

(Lkϕ)(x) = 0⇒ lim
x→0

ϕ(x) = 0, j, k ∈ {1, . . . , n}.

This completes the proof. �

Lemma 3.4. Let the polynomial function

P (x) = α0 + α1x+ · · ·+ αnx
n ∈ K[x]

with roots (xj)1≤j≤n, that have the property |xj | < 1, for all j ∈ {1, . . . , n}. Let
ϕ : K→ K satisfy the following conditions:

(1) limx→0 xϕ(x) = 0;
(2) limx→0

∑n
k=0(−1)kαkϕ(bkx) = 0 where max1≤j≤n |xj | ≤ |b| < 1.

Then limx→0 ϕ(x) = 0.

For the proof of the above lemma, it is sufficient to consider b1 = b2 = · · · =
bn = b, aj = xj in Lemma 3.3 and to take into account Viète relations.

Lemma 3.5. Let ak, bk ∈ K∗, k ∈ {1, 2, . . . , n} and the function ϕ : K → K with
the following properties:

(1) ϕ is bounded on a neighborhood of the origin;
(2)

∑n
j=1 |aj | < 1;

(3) b = max1≤j≤n |bj | ≤ 1;
(4) limx→0[ϕ(x)−

∑n
j=1 ajϕ(bjx)] = 0.

Then limx→0 ϕ(x) = 0.
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Proof. We define the function

g(x) := ϕ(x)−
n∑
j=1

ajϕ(bjx), for x ∈ K.

Note that limx→0 g(x) = 0. We define the operator L : KK → KK,

Lψ(x) :=
n∑
j=1

ajψ(bjx), ψ ∈ KK, x ∈ K.

Note that the operator L is linear. We can write: ϕ− Lϕ = g as ϕ = Lϕ+ g and
iterate to obtain Lϕ = L2ϕ+ Lg, but Lϕ = ϕ− g, which implies

ϕ = L2ϕ+ Lg + g.

By induction we obtain

ϕ = Lkϕ+ Lk−1g + · · ·+ Lg + g, k ≥ 1.

As Lϕ(x) =
∑n
j=1 ajϕ(bjx), x ∈ K, we deduce that

|Lϕ(x)| ≤
n∑
j=1

|aj | · |ϕ(bjx)|, x ∈ K.

Denote
ϕ̃(r) := sup

0<|x|≤r
|ϕ(x)|, r ∈ (0,∞).

Then we have

L̃ϕ(r) ≤
( n∑
j=1

|aj |
)
ϕ̃(br), r ∈ (0,∞).

In the same manner we obtain(
L̃2ϕ

)
(r) ≤

( n∑
j=1

|aj |
)
L̃ϕ(br) ≤

( n∑
j=1

|aj |
)2

ϕ̃(b2r), r ∈ (0,∞)

and similarly, (
L̃kϕ

)
(r) ≤

( n∑
j=1

|aj |k
)
ϕ̃(bkr), r ∈ (0,∞), k ∈ N∗.

If we denote a :=
∑n
j=1 |aj |, then

L̃kϕ(r) ≤ akϕ̃(bkr), r ∈ (0,∞), k ∈ N∗.

If follows that

ϕ̃(r) ≤ L̃kϕ(r) + L̃k−1g(r) + · · ·+ L̃g(r) + g̃(r)

≤ akϕ̃(r) + ak−1g̃(r) + · · ·+ ag̃(r) + g̃(r)

≤ akϕ̃(r) +
1

1− a
g̃(r).

The above relation holds for all k ∈ N∗ and under hypotheses (1) and (2), that is
ϕ is bounded on a neighborhood of the origin and a ∈ (0, 1). This implies that

ϕ̃(r) ≤ 1
1− a

g̃(r), r ∈ (0,∞).
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As limr→0 g̃(r) = 0, it follows that limr→0 ϕ̃(r) = 0 and in conclusion we obtain
limx→0 ϕ(x) = 0. �

Lemma 3.6. Let ak, bk ∈ K∗, k ∈ {1, 2, . . . , n} and the functions ϕ : K→ K with
the following properties:

(1) limx→0 xϕ(x) = 0;
(2)

∑n
j=1

∣∣aj

bj

∣∣ ≤ 1;
(3) b = maxj |bj | < 1;
(4) limx→0

[
ϕ(x)−

∑n
j=1 ajϕ(bjx)

]
= 0.

Then limx→0 ϕ(x) = 0.

Proof. We define the operator L : KK → KK:

Lψ(x) :=
n∑
j=1

ajψ(bjx), ψ ∈ KK, x ∈ K

and the function g(x) := ϕ(x)− Lϕ(x), x ∈ K. Iterating, we have

ϕ = Lkϕ+ Lk−1g + · · ·+ Lg + g.

This leads us to define for a function ψ : K → K bounded on a neighborhood of
origin

ψ̃(r) := sup
0<|x|≤r

|ψ(x)|, r ∈ (0,∞).

We notice that ψ̃ is increasing. Denote u(x) := xϕ(x), x ∈ K. Then we can write

|Lϕ(x)| ≤
n∑
j=1

|aj | · |ϕ(bjx)|, x ∈ K

and further we have

|xLϕ(x)| ≤
n∑
j=1

∣∣aj
bj

∣∣ · |bjxϕ(bjx)| =
n∑
j=1

∣∣aj
bj

∣∣ · |u(bjx)|, x ∈ K.

Similarly, we obtain

|xL2ϕ(x)| ≤
n∑
j=1

∣∣aj
bj

∣∣ · |bjxLϕ(bjx)| ≤
n∑

j,k=1

∣∣aj
bj

∣∣ · ∣∣ak
bk

∣∣ · |bjbkxϕ(bjbk)|, x ∈ K.

As

|L2ϕ(x)| ≤ 1
|x|

n∑
j,k=1

∣∣aj
bj

∣∣ · ∣∣ak
bk

∣∣ · |u(bjbkx)|, x ∈ K∗,

we obtain

|Lkϕ(x)| ≤ 1
|x|

∑
j1,...,jk

∣∣aj1
bj1

∣∣ · · · · · ∣∣ajk
bjk

∣∣ · |u(bj1 . . . bjkx)|, x ∈ K∗, k ∈ N∗

So we have

|Lkϕ(x)| ≤ 1
|x|

( n∑
j=1

∣∣aj
bj

∣∣)k|ũ(bk|x|)| ≤ 1
|x|
ũ(bk|x|), x ∈ K∗
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where a :=
∑n
j=1 |aj |, a =

∑n
j=1

∣∣aj

bj

∣∣ · |bj | ≤∑n
j=1 |bj | = b < 1. Then we have

|Lg(x)| ≤
( n∑
j=1

|aj |
)
g̃(b|x|), x ∈ K∗,

|L̃kg(r)| ≤
( n∑
j=1

|aj |
)k
g̃(bkr), r ∈ (0,∞), k ∈ N∗.

As
|ϕ(x)| ≤ 1

|x|
· g̃(bk|x|) +

1
1− a

g̃(|x|), x ∈ K∗, k ∈ N∗,

letting k →∞ we obtain

|ϕ(x)| ≤ 1
1− a

g̃(|x|), x ∈ K∗.

We can now conclude that limx→0 ϕ(x) = 0. �

From Lemma 3.6 can be easy obtained the following lemma.

Lemma 3.7. Let n ≥ 2, ϕ : K → K, αj, βj ∈ K∗, j ∈ {1, . . . , n}, such that
conditions below hold:

(1) limx→0 xϕ(x) = 0;
(2) max2≤j≤n |βj | < |β1|;
(3)

∑n
j=2

∣∣αj

βj

∣∣ ≤ ∣∣α1
β1

∣∣;
(4) limx→0

∑n
j=1 αjϕ(βjx) = 0.

Then limx→0 ϕ(x) = 0.

Proof. For this proof, we denote
αj
α1

= −aj−1,
βj
β1

= bj−1, β1x = t, j ∈ {2, . . . , n}.

Then

lim
x→0

n∑
j=1

αjϕ(βjx) = α1 lim
x→0

n∑
j=1

αj
α1
ϕ
(βj
β1
β1x

)
= α1 lim

t→0

[
ϕ(t)−

n∑
j=2

aj−1ϕ(bj−1t)
]

= 0.

Therefore, condition (4) in Lemma 3.6 is verified. Further we have
n∑
j=2

∣∣αj
βj

∣∣ =
n∑
j=2

∣∣aj−1α1

bj−1β1

∣∣ =
∣∣α1

β1

∣∣ n−1∑
k=1

∣∣ak
bk

∣∣ < ∣∣α1

β1

∣∣
if and only if

∑n−1
k=1

∣∣ak

bk

∣∣ < 1. Also

max
2≤j≤n

|βj | = max
2≤j≤n

|β1bj−1| < |β1|.

Applying Lemma 3.6, it results that limx→0 ϕ(x) = 0. �

Lemma 3.8. Let n ≥ 2, ϕ : K → K, αj, βj ∈ K∗, j ∈ {1, 2, . . . , n}, such that the
following conditions hold:

(1) ϕ is bounded on a neighborhood of the origin;
(2)

∑n
j=2 |αj | < |α1|;
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(3) β = max1≤j≤n |βj | < |β1|;
(4) limx→0

∑n
j=1 αjϕ(βjx) = 0.

Then limx→0 ϕ(x) = 0.

Proof. We proceed analogously as in Lemma 3.7 and we make the transformations:

αj = −α1aj−1, βj = β1bj−1, β1x = t, j ∈ 1, . . . , n.

Further, we notice that the conditions from Lemma 3.5 hold. Indeed,

n∑
j=2

|αj | =
n∑
j=2

|aj−1α1| = |α1|
n−1∑
k=1

|ak| < |α1|

if and only if
∑n−1
k=1 |ak| < 1. As

0 = lim
x→0

n∑
j=1

αjϕ(βjx)

= α1 lim
x→0

n∑
j=1

αj
α1
ϕ
(βj
β1
β1x

)
= α1 lim

t→0

[
ϕ(t)−

n∑
j=2

aj−1ϕ(bj−1t)
]

= α1 lim
t→0

[
ϕ(t)−

n−1∑
k=1

akϕ(bkt)
]
,

according to Lemma 3.5, it results that limx→0 ϕ(x) = 0. �

The following theorem establishes conditions in which a (σ, τ)-differentiable func-
tion at a point is classical differentiable at that point.

Theorem 3.9. We consider the function f : K → K, x ∈ K and the numbers aj,
bj ∈ K∗, j ∈ {1, 2, . . . , n} such that the following conditions hold:

(1)
∑n
j=1 aj = 1;

(2) max2≤j≤n |bj | < |b1|;
(3)

∑n
j=2

∣∣aj

bj

∣∣ ≤ ∣∣a1
b1

∣∣;
(4) f is continuous at x;
(5) f is (σ, τ) differentiable at x, where σ =

(
a1
b1
, . . . , an

bn
,−
∑n
j=1

aj

bj

)
, τ =

(b1, . . . , bn, 0).

Then f is classical differentiable at the point x and D1(σ, τ)f(x) = f ′(x).

Proof. We shall use the Lemma 3.7 with the following notation

ϕ(h) :=
f(x+ h)− f(x)− `h

h
, h ∈ K∗,

where ` := D1(σ, τ)f(x). We notice that f is continuous at x, which is equivalent
to:

0 = lim
h→0

[f(x+ h)− f(x)] = lim
h→0

[
h · f(x+ h)− f(x)

h
− `h

]
= lim
h→0

hϕ(h);
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that is, condition (1) from Lemma 3.7 holds. On the one hand we have

` = lim
h→0

1
h

n+1∑
k=1

σkf(x+ τkh) = lim
h→0

1
h

[ n∑
k=1

ak
bk

(f(x+ bkh)− f(x))
]
.

On the other hand side we have

lim
h→0

n∑
k=1

akϕ(bkh) = lim
h→0

n∑
k=1

ak
f(x+ bkh)− f(x)− `bkh

bkh

= lim
h→0

1
h

n∑
k=1

ak
bk

(f(x+ bkh)− f(x))− `

= `− ` = 0.

The conditions for Lemma 3.7 being satisfied, it results that limx→0 ϕ(x) = 0. This
is equivalent with f differentiable at x and f ′(x) = `. �

Definition 3.10. Let V ⊂ K, a neighborhood of 0, a = (a1, . . . , an) ∈ Kn, b =
(b1, . . . , bn) ∈ Kn and the function ϕ : V → K. We say that the system (a, b)
satisfies condition (C1) if the following conditions are satisfied:

(i) limx→0 xϕ(x) = 0,
(ii) limx→0

∑n
k=1 akϕ(bkx) = 0

imply limx→0 ϕ(x) = 0.

Proposition 3.11. Let a, b ∈ Kn, c, d ∈ Km. If the systems (a, b) and (c, d)
satisfy condition (C1), then the system ((ai, cj), (bk, dl)), i, k ∈ {1, . . . , n}, j, l ∈
{1, . . . ,m} also satisfy condition (C1).

Proof. Indeed, it is sufficient to consider the function

g(x) =
m∑
j=1

cjϕ(djx), x ∈ K.

Then
n∑
k=1

akg(bkx) =
n∑
k=1

ak

m∑
j=1

cjϕ(bkdjx) =
n∑
k=1

m∑
j=1

akcjϕ(bkdjx),

for x ∈ K. �

Definition 3.12. The system (a, b) with a ∈ Kn, b ∈ Kn satisfies condition (C2)
if for all functions ϕ : K→ K with the properties:

(i) ϕ is bounded on a neighborhood of origin;
(ii) limx→0

∑n
k=1 akϕ(bkx) = 0; results that limx→0 ϕ(x) = 0.

Remarks. (1) It is easy to observe that for Definition 3.12, we can state a result
similar to Proposition 3.11.

(2) Condition (C1) and condition (C2) are related as follows: (C2) ⇒ (C1).
Indeed, let ϕ bounded on an arbitrary neighborhood of origin which satisfies the
condition

lim
x→0

n∑
k=1

akϕ(bkx) = 0.

As ϕ is bounded on a neighborhood of origin results that limx→0 xϕ(x) = 0.
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Theorem 3.13. Let f : K → K, x0 ∈ K fixed, aj ∈ K, bj ∈ K∗ j ∈ 1, . . . , n such
that the following condition hold:

(1)
∑n
j=1 aj = 1;

(2) f is continuous at x0;
(3) f is (σ, τ)- differentiable at x0, where

σ =
(a1

b1
, . . . ,

an
bn
,−

n∑
k=1

ak
bk

)
, τ = (b1, . . . , bn, 0);

(4) the system (a, b) satisfies condition (C1).
Then f is classical differentiable at x0 and D1(σ, τ)f(x0) = f ′(x0).

Proof. Let ϕ : K∗ → K,

ϕ(h) :=
f(x0 + h)− f(x0)− `h

h

where ` := D1(σ, τ)f(x0).
On the right hand side, because f is (σ, τ)-differentiable at x0, (σ, τ) ∈ L(1, n+1,K)
then

D1(σ, τ)f(x0) = lim
h→0

1
h

n+1∑
k=1

σkf(x0 + τkh)

= lim
h→0

1
h

[ n∑
k=1

ak
bk
f(x0 + bkh)−

n∑
k=1

ak
bk
f(x0)

]
= lim
h→0

n∑
k=1

ak
f(x0 + bkh)− f(x0)

bkh
= `.

On the left hand side, because f is continuous at x0 we have

lim
h→0

hϕ(h) = lim
h→0

[f(x0 + h)− f(x0)− `h] = 0

and as f is (σ, τ)-differentiable at x0 we obtain

lim
h→0

n∑
k=1

akϕ(bkh) = lim
h→0

n∑
k=1

ak
f(x0 + bkh)− f(x0)− `bkh

bkh

= lim
h→0

n∑
k=1

ak

(f(x0 + bkh)− f(x0)
bkh

− `
)

= lim
h→0

n∑
k=1

ak
f(x0 + bkh)− f(x0)

bkh
− `

n∑
k=1

ak = `− ` = 0.

Therefore, conditions (1) and (2) from Definition 3.10 are satisfied; that is, the
system (σ, τ) satisfies condition (C1). As a consequence we have: limh→0 ϕ(h) = 0
which is equivalent to f ′(x0) = `. �

Theorem 3.14. Let A ⊂ K such that IntA 6= ∅, x ∈ IntA, aj, bj ∈ K∗, 1 ≤ j ≤ n,
n ≥ 2 and f : A→ K with the following properties:

(1) f is Lipschitz on a neighborhood of x;
(2) max1≤j≤n |bj | ≤ |b1|;
(3)

∑n
j=2 |aj | ≤ |a1|;

(4)
∑n
j=1 aj = 1;
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(5) f is (σ, τ) differentiable at x, where

σ =
(a1

b1
, . . . ,

an
bn
,−

n∑
k=1

ak
bk

)
, τ = (b1, . . . , bn, 0).

Then f is differentiable at x and D1(σ, τ)f(x) = f ′(x).

Proof. We shall use Lemma 3.8. First we observe the equivalence between the
following two statements: “ϕ bounded on a neighborhood of origin” if and only
if “there exists M > 0 such that |ϕ(h)| ≤ M , for all h ∈ Vε(0), where Vε(0) is a
symmetric neighborhood of origin of length 2ε, (ε > 0)” if and only if∣∣f(x+ h)− f(x)− `h

h

∣∣ ≤M, ∀h ∈ Vε(0),

where we denoted ` := D1(σ, τ)f(x). This is further equivalent to

|f(x+ h)− f(x)| ≤ (M + |`|)|h|, ∀h ∈ Vε(0)

if and only if

|f(y)− f(x)| ≤ (M + |`|)|y − x|, ∀y ∈ Vε(0) ⊂ A,
where y = x+ h, which implies that f is Lipschitz at x. Similarly, we have

0 = lim
h→0

n∑
j=1

ajϕ(bjh) = lim
h→0

n∑
j=1

aj
f(x+ bjh)− f(x)− `bjh

bjh

if and only if

lim
h→0

n∑
j=1

aj
f(x+ bjh)− f(x)

bjh
= `

n∑
j=1

aj = ` .

However,

` = D1(σ, τ)f(x) = lim
h→0

1
h

n+1∑
k=1

σkf(x+ τkh)

= lim
h→0

1
h

n∑
k=1

ak
bk

[f(x+ bkh)− f(x)].

As the conditions for Lemma 3.8 are satisfied, it results that

lim
h→0

ϕ(h) = 0⇔ f(x+ h)− f(x)
h

= `⇔ f ′(x) = D1(σ, τ)f(x).

�

Theorem 3.15. Let G ⊂ K such that IntG 6= 0, x ∈ IntG, aj ∈ K, bj ∈ K∗,
j ∈ {1, . . . , n} and f : G→ K with properties:

(1) f is Lipschitz on a neighborhood of x;
(2)

∑n
j=1 aj = 1;

(3) f is (σ, τ)-differentiable at x, where

σ =
(a1

b1
, . . . ,

an
bn
,−

n∑
k=1

ak
bk

)
, τ = (b1, . . . , bn, 0);

(4) the system (a, b) satisfy condition (C2).
Then f is classical differentiable at x and D1(σ, τ)f(x) = f ′(x).
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Proof. The condition f -Lipschitz at x is equivalent to ϕ bounded on a neighborhood
of origin, where ϕ(h) = 1

h [f(x + h) − f(x) − `h] as we could observe in Theorem
3.15. Moreover, condition (ii) from Definition 3.12 of condition (C2) is also satisfied.
From here results that limh→0 ϕ(h) = 0 which is equivalent to

` = lim
h→0

f(x+ h)− f(x)
h

that is D1(σ, τ)f(x) = f ′(x). �

Conclusion. Theorems 3.13–3.15 are general criteria which state that if we find
systems (a, b), ((a, b) ∈ Kn × K∗n) that satisfy conditions (C1) and (C2), then
any (σ, τ)-differentiable function at a point, satisfying the conditions from these
theorems, is classical differentiable at that point and the two derivatives are equal.

References

[1] Alexandrescu, P.; Monotonicity theorems for generalized Riemann derivatives. Mathematical

Reports, no. 4, vol.1(51) (1999), 497-501.
[2] Ash, J. M.; Generalizations of the Riemann derivative. Trans. Amer. Math. Soc., 126, (1967),

181-199.

[3] Ash, J. M.; A characterization of the Peano derivative. Trans. Amer. Math. Soc., 149, (1970),
489-501.

[4] Ash, J. M.; Very generalized Riemann derivatives, generalized Riemann derivatives and

associated summability methods. Real Anal. Exchange, 11, no. 1, (1985/86), 10-29.
[5] Ash, J. M.; Generalized differentiation and summability. Real Anal. Exchange, 12, no. 1,

(1986/87), 366-371.

[6] Ash, J. M.; Uniqueness of representation by trigonometric series. Amer. Math. Monthly, 69,
no. 10, (1979), 873-885.

[7] Ash, J. M.; A new harder proof that continuous functions with Schwarz derivative zero are
lines. Fourier analysis (Orono, ME, 1992) 35-46. Lecture Notes in Pure and Applic. Math.,

157, Dekker New York (1994).

[8] Ash, J. M.; Jones, R. L.; Convergence of series conjugate to a convergent multiple trigono-
metric series. Bull. Soc. Math. (2), 110, no. 2, (1986), 174-224.

[9] Ash, J. M.; Cohen, J.; Freiling, C.; Gatto, A. C.; Rinne, D.; Generalized derivatives. Partial

differential equations with minimal smoothness and application. (Chicago, IL 1990), 25-30,
IMA, Vol. Math. Appl. 42, Springer, New York, (1992).

[10] Ash, J. M.; Catoiu, S.; Quantum Symmetric Lp derivatives. Trans. Amer. Math. Soc.360,

no. 2, (2008), 959-987.
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Collected Papers, 582-587, Panst wowe Wyderwonitwo Nankowe, Warszaw, (1964).

[19] Marcinkiewicz, J.; Zygmund, A.; On the differentiability of functions and summability of
trigonometric series, Fund. Math. 26, (1936), 1-43.

[20] Mukhopadhyay, S. N.; On Schwarz differentiability I. Proc. Nat. Acad. Sci. India, 36, (1966),
525-533.



EJDE-2013/74 GENERALIZED RIEMANN DERIVATIVE 19

[21] Mukhopadhyay, S. N.; Higher order derivatives. Chapman & Hall CRC Monographs and

Surveys in Pure and Applied Mathematics 144, (2012).

[22] Oliver, H. W.; The exact Peano derivative. Trans. Amer. Math. Soc., 76, (1954), 444-456.
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Petruş Alexandrescu

Institute of Sociology, Casa Academiei Române, Calea 13 Septembrie, no. 13, Bucharest
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