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POINT RUPTURE SOLUTIONS OF A SINGULAR ELLIPTIC
EQUATION

HUIQIANG JIANG, ATTOU MILOUA

Abstract. We consider the elliptic equation

∆u = f(u)

in a region Ω ⊂ R2, where f is a positive continuous function satisfying

lim
u→0+

f(u) =∞.

Motivated by the thin film equations, a solution u is said to be a point rupture
solution if for some p ∈ Ω, u(p) = 0 and u(p) > 0 in Ω\{p}. Our main result is

a sufficient condition on f for the existence of radial point rupture solutions.

1. Introduction

Let Ω be a region in R2 and f be a continuous function defined on (0,∞) satis-
fying

lim
v→0+

f(v) =∞.

We are interested in the elliptic equation

∆u = f(u) in Ω (1.1)

with Neumann boundary condition ∂u
∂n = 0 on ∂Ω. A solution to (1.1) is said to

be a point rupture solution if for some p ∈ Ω, u(p) = 0 and u(x) > 0 for any
x ∈ Ω\{p}.

In the lubrication model of thin films, u will be the thickness of the thin film
over a planar region Ω and the dynamic of the thin film can be modeled by the
fourth order partial differential equation

ut = −∇ · (um∇u)−∇ · (un∇∆u). (1.2)

Here the fourth-order term in the equation reflects surface tension effects, and the
second-order term can reflect gravity, van der Waals interactions, thermocapillary
effects or the geometry of the solid substrate. This class of model equation occurs in
connection with many physical systems involving fluid interfaces. When n = 1 and
m = 1, it describes a thin jet in a Hele-Shaw cell [1, 5, 7, 8, 15]; when n = m = 3
it describes fluid droplets hanging from a ceiling [9]; when n = 0 and m = 1, it is a
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modified Kuramoto-Sivashinsky equation which describes solidification of a hyper-
cooled melt[3, 4], and when n = 3, m = −1, it models van der Waals force driven
thin film [6, 11, 16, 17, 18].

Many mathematically rigorous works have been done when the space dimension
is one. Laugesen and Pugh [14] considered positive periodic steady states and
touchdown steady states in a more general setting. The dynamics of a special
type of thin film equation has been investigated by Bernis and Friedman [2]. They
established the existence of weak solutions and showed that the support of the thin
film will expand with time. On the other hand, when the space dimension is two,
the physically realistic dimension, the dynamics of (1.2) is not well understood.
Naturally, we start with its steady state. When n−m 6= 1, let

p = − 1
m− n+ 1

um−n+1 −∆u,

which can be viewed as the pressure of the fluid. We can rewrite (1.2) as

ut = ∇(un∇p).
Now let Ω ⊂ R2 be the bottom of a cylindrical container occupied by the thin

film fluid, we assume that there is no flux across the boundary, which yields the
boundary condition

∂p

∂ν
= 0 on ∂Ω. (1.3)

We also ignore the wetting or non-wetting effect, and assume that the fluid surface
is perpendicular to the boundary of the container, i.e.,

∂h

∂ν
= 0 on ∂Ω. (1.4)

Whenever m− n 6= −1 or −2, we can associate (1.2)) with the energy

E(u) =
∫

Ω

(
1
2
|∇u|2 − 1

(m− n+ 1)(m− n+ 2)
um−n+2),

and formally, using (1.3) , (1.4)), we have
d

dt
E(u) = −

∫
Ω

un|∇p|2.

Hence, for a thin film fluid at rest, p has to be a constant, and u satisfies

−∆u− 1
m− n+ 1

um−n+1 = p in Ω,

which is an elliptic equation.
If we further assume m − n + 1 < −1, which includes the van der Waals force

case. We can write the equation as

∆u =
1
α
u−α − p in Ω, (1.5)

where p is an unknown constant and

α = −(m− n+ 1) > 1.

For van der Waals force driven thin film, α = 3.
Hence, (1.1) can be viewed as a generalization of the stationary thin film equation

with van der Waals force.
The rupture set Σ = {x ∈ Ω : u(x) = 0} corresponds to “dry spots” in the thin

films, which is of great significance in the coatings industry where nonuniformities
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are very undesirable. In a joint work of Lin and the first author, an estimate on
the Hausdorff dimension of the rupture set to (1.5) was obtained using geometric
measure theory, under the assumption that the total energy is finite [12] and such
estimate seems the first estimate for such problems.

We conjecture that the ruptures are discrete for finite energy solutions, and we
expect that the radial point rupture solutions will serve as the blow up profile
of the solution near any point rupture. The main purpose of this paper is on
the existence of radial point rupture solution. And we are only interested in the
local solutions in a neighborhood of the point rupture. Since the equation has no
singularity away from the rupture, the possible extension of point rupture solution
to a global solution could be carried out using similar arguments in [13] where the
case f(u) = u−α − 1, α > 1, is completely studied.

Now we state our main result.

Theorem 1.1. Let σ∗ > 0 and f be a continuous, monotone decreasing positive
function on (0, σ∗] such that

lim
v→0+

f(v) =∞.

Let

G(v) =
∫ v

0

1
f(s)

ds. (1.6)

Assume in addition that
v

f(v)G(v)
∈ L1[0, σ∗]. (1.7)

Then there exists r∗ > 0 and a radial point rupture solution u0 to (1.1) in Br∗(0)
such that u0 = u0(r) is continuous on [0, r∗],

u0(0) = 0, u0(r) > 0 for any r ∈ (0, r∗],

and u is a weak solution to (1.1) in Br∗(0). Moreover, u0 is monotone increasing
and

G−1
(1

4
r2
)
≤ u0(r) ≤

∫ G−1(r2/4)

0

v

f(v)G(v)
dv for any r ∈ [0, r∗].

Remark 1.2. Here the technical assumption (1.7) is not very strong, for example,
if f(v) = v−α, for some α > 0, we would have

v

f(v)G(v)
=

v

v−α( 1
1+αv

1+α)
= 1 + α ∈ L1[0, σ∗].

Such assumption also holds for some singularity of exponential growth, for example,
if

f(v) = vp+1e1/vp , 0 < p < 1,
we have

v

f(v)G(v)
=

p

vp
∈ L1[0, σ∗].

Remark 1.3. The assumption that f is monotone decreasing can be replaced by
the assumption that f is a product of a monotone deceasing function and a bounded
positive function.

Such result is a generalization of the existence result obtained by the first author
and Ni in [13] for f(v) = 1

αv
−α − 1 with α > 1 where uniqueness of the radial

rupture solution is also established. In space dimension N ≥ 3, the existence result
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has also been obtained by Guo, Ye and Zhou[10], where the technical assumption
(1.7)) is not needed.

2. Proof of main results

For any σ ∈ (0, σ∗), we use uσ to denote the unique solution to the initial value
problem

urr +
1
r
ur = f(u),

u(0) = σ, u′(0) = 0.
(2.1)

Lemma 2.1. There exists rσ > 0 such that uσ is defined on [0, rσ] with uσ(rσ) =
σ∗. Moreover, u′σ(r) > 0 on (0, rσ] and

G−1
(1

4
r2
)
≤ uσ(r) ≤ σ +

∫ G−1(r2/4)

0

v

f(v)G(v)
dv on [0, rσ]. (2.2)

Proof. For simplicity, we suppress the σ subscript in this proof. We write

urr +
1
r
ur = f(u)

in the form of (rur)r = rf(u) ≥ 0, so we have

rur =
∫ r

0

sf(u(s))ds ≥ 0.

In particular, u is monotone increasing and u can be extended whenever f(u) is
defined and bounded. Hence, there exists rσ > 0 such that uσ is defined on [0, rσ]
with uσ(rσ) = σ∗. Since u is monotone increasing and f is monotone decreasing,
we have

rur =
∫ r

0

sf(u(s))ds ≥ f(u(r))
∫ r

0

sds =
1
2
r2f(u(r)),

hence,
ur
f(u)

≥ 1
2
r.

Integrating again, we have

G(u(r)) ≥ G(σ) +
1
4
r2 ≥ 1

4
r2.

Since G is strictly monotone increasing, we have

u(r) ≥ G−1
(1

4
r2
)
.

On the other hand,

rur =
∫ r

0

sf(u(s))ds ≤
∫ r

0

f(G−1(
1
4
s2))sds.

Let v = G−1( 1
4s

2), we have G(v) = 1
4s

2, and

1
f(v)

dv =
1
2
sds.

Hence, ∫ r

0

f(G−1(
1
4
s2))s ds =

∫ G−1(r2/4)

0

2dv = 2G−1(
1
4
r2).
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Hence,

ur ≤
2
r
G−1

(1
4
r2
)

which yields

u(r) ≤ σ +
∫ r

0

2
s
G−1(

1
4
s2)ds

= σ +
∫ G−1

(
1
4 r

2
)

0

v

f(v)G(v)
dv.

�

The bounds on uσ imply the following result.

Corollary 2.2. There exists r∗ > 0 such that for any σ ∈ (0, σ
∗

2 ],

rσ ≥ r∗.

We can take

r∗ = 2

√
G(H−1(

σ∗

2
)),

where

H(u) =
∫ u

0

v

f(v)G(v)
dv.

Proof. For any σ ∈ (0, σ∗/2],

σ∗ = uσ(rσ) ≤ σ +
∫ G−1( 1

4 r
2
σ)

0

v

f(v)G(v)
dv

≤ σ∗

2
+
∫ G−1( 1

4 r
2
σ)

0

v

f(v)G(v)
dv.

Hence, ∫ G−1( 1
4 r

2
σ)

0

v

f(v)G(v)
dv ≥ σ∗

2
.

Since v
f(v)G(v) is integrable, the function

H(u) =
∫ u

0

v

f(v)G(v)
dv

is strictly monotone increasing, so

H
(
G−1

(1
4
r2
σ

))
≥ σ∗

2
implies

rσ ≥ 2

√
G
(
H−1

(σ∗
2
))
.

�

The point rupture solution can be constructed as the limit of uσ as σ → 0.
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Proposition 2.3. There exists a sequence {σk}∞k=1 ⊂ (0, σ
∗

2 ] satisfying limk→∞ σk =
0, such that uσk → u0 uniformly in Br∗(0) as k → ∞, for some function u0 ∈
C0(Br∗(0)) ∩ C2(Br∗(0)\{0}). Moreover, u0 is a classical solution to (1.1) in
Br∗(0)\{0} and

G−1
(1

4
r2
)
≤ u0(r) ≤

∫ G−1
(

1
4 r

2
)

0

v

f(v)G(v)
dv on [0, r∗].

Proof. For any ε > 0, uσ, σ ∈ (0, σ∗/2] is a family of uniformly bounded classical
solutions to

∆u = f(u) in Br∗(0)\Bε(0),
hence by a diagonal argument, there exists a sequence {σk}∞k=1 ⊂ (0, σ

∗

2 ] satisfying
limk→∞ σk = 0, such that uσk → u0 locally uniformly in Br∗(0)\{0} as k → ∞.
Now (2.2) implies

G−1
(1

4
r2
)
≤ u0(r) ≤

∫ G−1
(

1
4 r

2
)

0

v

f(v)G(v)
dv on [0, r∗].

Since

lim
r→0

∫ G−1(r2/4)

0

v

f(v)G(v)
dv = 0,

it is not difficulty to see, from the bounds of uσ and u0, that uσk → u0 uniformly
in Br∗(0) as k →∞. �

Remark 2.4. The above limit should be independent of the choice of {σk}∞k=1.
Actually, we expect that uσ → u0 uniformly on [0, r∗] as σ → 0. Unfortunately, we
are unable to provide a proof here.

To show that u0 is a weak solution. We need the following lemma.

Lemma 2.5.
lim
r→0+

ru′0(r) = 0. (2.3)

Proof. For any r ∈ (0, r∗), we have

(ru′0(r))′ = rf(u0) > 0.

Hence, ru′0(r) is monotone increasing in (0, r∗). Since ru′0(r) ≥ 0 in (0, r∗),

β = lim
r→0+

ru′0(r) ≥ 0

is well defined. If β > 0, we have for r sufficiently small, say r ∈ (0, r̃],

ru′0(r) ≥ β

2
hence, for any r ∈ (0, r̃],

u0(r) = u0(r̃)−
∫ r̃

r

u′0(r)dr ≤ u0(r̃)−
∫ r̃

r

β

2r
dr.

which contradicts to the fact that u0 is continuous at 0 if we let r → 0+. Hence
β = 0 and (2.3) holds. �

Proposition 2.6. f(u0) ∈ L1(Br∗(0)) and u0 is a weak solution to (1.1)) in
Br∗(0).
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Proof. For any test function ϕ ∈ C∞c (Br∗(0)), we have∫
Br∗ (0)

u0∆ϕdx

= lim
ε→0+

∫
Br∗ (0)\Bε(0)

u0∆ϕdx

= lim
ε→0+

(∫
Br∗ (0)\Bε(0)

∆u0ϕdx−
∫
∂Bε(0)

(
u0
∂ϕ

∂n
− ϕ∂u0

∂n

)
dsx

)
= lim
ε→0+

(∫
Br∗ (0)\Bε(0)

f(u0)ϕdx−
∫
∂Bε(0)

u0
∂ϕ

∂n
dsx +

∫
∂Bε(0)

ϕ
∂u0

∂n
dsx

)
.

Now for any ε ∈ (0, r∗), since u0(ε) ≤ u0(r∗) ≤ δ∗, we have∣∣ ∫
∂Bε(0)

u0
∂ϕ

∂n
dsx
∣∣ ≤ u0(ε)‖∇ϕ‖L∞(Br∗ (0))|∂Bε(0)|

≤ 2πεu0(ε)‖∇ϕ‖L∞(Br∗ (0)) → 0

as ε→ 0+. On the other hand, (2.3)) implies that∣∣ ∫
∂Bε(0)

ϕ
∂u0

∂n
dsx
∣∣ ≤ 2πεu′0(ε)‖ϕ‖L∞(Br∗ (0)) → 0

as ε→ 0+. Hence, we have for any ϕ ∈ C∞c (Br∗(0)),∫
Br∗ (0)

u0∆ϕdx = lim
ε→0+

∫
Br∗ (0)\Bε(0)

f(u0)ϕdx.

Choosing ϕ such that ϕ ≡ 1 near the origin, the above limit implies that f(u0) is in-
tegrable near the origin. Since f(u0) is a positive continuous function in Br∗(0)\{0},
we conclude f(u0) ∈ L1(Br∗(0)). So we have for any test function ϕ ∈ C∞c (Br∗(0)),∫

Br∗ (0)

u0∆ϕdx = lim
ε→0+

∫
Br∗ (0)\Bε(0)

f(u0)ϕdx =
∫
Br∗ (0)

f(u0)ϕdx;

i.e., u0 is a weak solution to (1.1) in Br∗(0). �

The main theorem is a combination of Proposition 2.3 and Proposition 2.6.
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