Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 31, pp. 1-18. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

SOLUTIONS IN SEVERAL TYPES OF PERIODICITY FOR PARTIAL NEUTRAL INTEGRO-DIFFERENTIAL EQUATION

JOSÉ PAULO C. DOS SANTOS, SANDRO M. GUZZO

Abstract

In this article we study the existence of mild solutions in several types of periodicity for partial neutral integro-differential equations with unbounded delays.

1. Introduction

In this article we study the existence of several types of mild solutions for the partial neutral integro-differential equation

$$
\begin{gather*}
\frac{d}{d t}\left(x(t)+f\left(t, x_{t}\right)\right)=A x(t)+\int_{0}^{t} B(t-s) x(s) d s+g\left(t, x_{t}\right) \tag{1.1}\\
x_{0}=\varphi \in \mathcal{B} \tag{1.2}
\end{gather*}
$$

where $A: D(A) \subset X \rightarrow X$ and $B(t): D(B(t)) \subset X \rightarrow X, t \geq 0$, are closed linear operators; $(X,\|\cdot\|)$ is a Banach space; the history $x_{t}:(-\infty, 0] \rightarrow X, x_{t}(\theta)=x(t+\theta)$, belongs to an abstract phase space \mathcal{B} defined axiomatically, and $f, g: I \times \mathcal{B} \rightarrow X$ are appropriated functions.

The literature relative to ordinary neutral differential equations is very extensive, thus we suggest the Hale and Lunel book [20] concerning this matter. Referring to partial neutral functional differential equations, we cite the pioneer articles Hale [19] and Wu [37, 38, 39] for finite delay equations, Hernández and Henriquez [28, 29], Hernández [25] for the unbounded delay, Hernández and dos Santos [27] and Henríquez et al. [21, 24] and Dos Santos et al. [14, 16, 15] for partial neutral integro-differential equations with unbounded delay.

The existence of almost automorphic, asymptotically almost automorphic, almost periodic, asymptotically almost periodic, S-asymptotically ω-periodic and asymptotically ω-periodic solutions to differential equations is among the most attractive topics in mathematical analysis due to their possible applications in areas such as physics, economics, mathematical biology, engineering, etc. (cf. [1, 2, 3, 4, 4, 5, 8, 10, 11, 12, 13, [16, 17, 23, 26, 33, 34, 41, 42, 43]). The concept of asymptotically almost automorphic, was introduced in the literature in the early

[^0]eighties by N'Guérékata 32. However, the literature concerning S-asymptotically ω-periodic functions with values in Banach spaces is recent (cf [4, 6, 7, 22, 23]). The existence of asymptotically almost automorpic, S-asymptotically ω-periodic functions and asymptotically ω-periodic for the partial neutral system $(1.1)-(1.2)$ is an untreated topic in the literature and this fact is the main motivation of the present work.

This paper is organized in four sections. In Section 2 we mention a few results and notations related with resolvent of operators and of several types of periodicity. In Section 3 we study the existence of several types of periodicity mild solutions to the partial neutral system (1.1)- (1.2). In Section 4, we discuss the existence and uniqueness of several types of periodicity solution to a concrete partial neutral integro-differential equation with delay, as an illustration to our abstract results.

2. Preliminaries

Let $\left(Z,\|\cdot\|_{Z}\right)$ and $\left(W,\|\cdot\|_{W}\right)$ be Banach spaces. We denote by $\mathcal{L}(Z, W)$ the space of bounded linear operators from Z into W endowed with norm of operators, and we write simply $\mathcal{L}(Z)$ when $Z=W$. By $\mathbf{R}(Q)$ we denote the range of a map Q and for a closed linear operator $P: D(P) \subseteq Z \rightarrow W$, the notation $[D(P)]$ represents the domain of P endowed with the graph norm, $\|z\|_{1}=\|z\|_{Z}+\|P z\|_{W}, z \in D(P)$. In the case $Z=W$, the notation $\rho(P)$ stands for the resolvent set of P, and $R(\lambda, P)=$ $(\lambda I-P)^{-1}$ is the resolvent operator of P. Furthermore, for appropriate functions $K:[0, \infty) \rightarrow Z$ and $S:[0, \infty) \rightarrow \mathcal{L}(Z, W)$, the notation \widehat{K} denotes the Laplace transform of K, and $S * K$ the convolution between S and K, which is defined by $S * K(t)=\int_{0}^{t} S(t-s) K(s) d s$. The notation, $B_{r}(x, Z)$ stands for the closed ball with center at x and radius $r>0$ in Z. As usual, $C_{0}([0, \infty), Z)$ represents the sub-space of $C_{b}([0, \infty), Z)$ formed by the functions which vanish at infinity and $C_{\omega}([0, \infty), X)$ denote the spaces $C_{\omega}([0, \infty), X)=\left\{x \in C_{b}([0, \infty), X): x\right.$ is ω-periodic $\}$. If k : $\mathbb{R} \rightarrow W$, we denote $\|k\|_{W, \infty}=\sup _{s \in \mathbb{R}}\|k(s)\|_{W}$ or if $k:[0, \infty) \rightarrow W$, we denote $\|k\|_{W, \infty}=\sup _{s \in[0, \infty)}\|k(s)\|_{W}$.

In this work we will employ an axiomatic definition of the phase space \mathcal{B} similar at those in [30]. More precisely, \mathcal{B} will denote a vector space of functions defined from $(-\infty, 0]$ into X endowed with a semi-norm denoted by $\|\cdot\|_{\mathcal{B}}$ and such that the following axioms hold:
(A1) If $x:(-\infty, \sigma+b) \rightarrow X$ with $b>0$ is continuous on $[\sigma, \sigma+b)$ and $x_{\sigma} \in \mathcal{B}$, then for each $t \in[\sigma, \sigma+b)$ the following conditions hold:
(i) x_{t} is in \mathcal{B},
(ii) $\|x(t)\| \leq H\left\|x_{t}\right\|_{\mathcal{B}}$,
(iii) $\left\|x_{t}\right\|_{\mathcal{B}} \leq K(t-\sigma) \sup \{\|x(s)\|: \sigma \leq s \leq t\}+M(t-\sigma)\left\|x_{\sigma}\right\|_{\mathcal{B}}$,
where $H>0$ is a constant, and $K, M:[0, \infty) \mapsto[1, \infty)$ are functions such that $K(\cdot)$ and $M(\cdot)$ are respectively continuous and locally bounded, and H, K, M are independent of $x(\cdot)$.
(A2) If $x(\cdot)$ is a function as in (A1), then x_{t} is a \mathcal{B}-valued continuous function on $[\sigma, \sigma+b)$.
(B1) The space \mathcal{B} is complete.
(C1) If $\left(\varphi^{n}\right)_{n \in \mathbb{N}}$ is a sequence in $C_{b}((-\infty, 0], X)$ formed by functions with compact support such that $\varphi^{n} \rightarrow \varphi$ uniformly on compact, then $\varphi \in \mathcal{B}$ and $\left\|\varphi^{n}-\varphi\right\|_{\mathcal{B}} \rightarrow 0$ as $n \rightarrow \infty$.

Definition 2.1. Let $S(t): \mathcal{B} \rightarrow \mathcal{B}$ be the C_{0}-semigroup defined by $S(t) \varphi(\theta)=\varphi(0)$ on $[-t, 0]$ and $S(t) \varphi(\theta)=\varphi(t+\theta)$ on $(-\infty,-t]$. The phase space \mathcal{B} is called a fading memory if $\|S(t) \varphi\|_{\mathcal{B}} \rightarrow 0$ as $t \rightarrow \infty$ for each $\varphi \in \mathcal{B}$ with $\varphi(0)=0$.

Remark 2.2. In this work we assume there exists positive \mathfrak{K} such that

$$
\max \{K(t), M(t)\} \leq \mathfrak{K}
$$

for each $t \geq 0$. Observe that this condition is verified, for example, if \mathcal{B} is a fading memory, see [30, Proposition 7.1.5].

Example 2.3. The phase space $C_{r} \times L^{p}(\rho, X)$. Let $r \geq 0,1 \leq p<\infty$ and let $\rho:(-\infty,-r] \rightarrow \mathbb{R}$ be a nonnegative measurable function which satisfies the conditions (g-5), (g-6) in the terminology of 30]. Briefly, this means that ρ is locally integrable and there exists a non-negative, locally bounded function γ on $(-\infty, 0]$ such that $\rho(\xi+\theta) \leq \gamma(\xi) \rho(\theta)$, for all $\xi \leq 0$ and $\theta \in(-\infty,-r) \backslash N_{\xi}$, where $N_{\xi} \subseteq(-\infty,-r)$ is a set with Lebesgue measure zero. The space $C_{r} \times L^{p}(\rho, X)$ consists of all classes of functions $\varphi:(-\infty, 0] \rightarrow X$ such that φ is continuous on $[-r, 0]$, Lebesgue-measurable, and $\rho\|\varphi\|^{p}$ is Lebesgue integrable on $(-\infty,-r)$. The seminorm in $C_{r} \times L^{p}(\rho, X)$ is defined by

$$
\|\varphi\|_{\mathcal{B}}:=\sup \{\|\varphi(\theta)\|:-r \leq \theta \leq 0\}+\left(\int_{-\infty}^{-r} \rho(\theta)\|\varphi(\theta)\|^{p} d \theta\right)^{1 / p}
$$

The space $\mathcal{B}=C_{r} \times L^{p}(\rho ; X)$ satisfies axioms (A1), (A2), (B1). Moreover, when $r=$ 0 and $p=2$, we can take $H=1, M(t)=\gamma(-t)^{1 / 2}$ and $K(t)=1+\left(\int_{-t}^{0} \rho(\theta) d \theta\right)^{1 / 2}$, for $t \geq 0$ and

$$
\mathfrak{K}=\left(\sup _{s \leq 0}\left|\gamma(s)^{1 / 2}\right|+\left(1+\left(\int_{-\infty}^{0} \rho(\theta) d \theta\right)^{1 / 2}\right)\right) .
$$

See [30, Theorem 1.3.8] for details.
For better comprehension of the subject we shall introduce the following definitions, hypothesis and results. Throughout the rest of the paper we always assume that the abstract integro-differential problem

$$
\begin{gather*}
\frac{d x(t)}{d t}=A x(t)+\int_{0}^{t} B(t-s) x(s) d s \tag{2.1}\\
x(0)=x \in X \tag{2.2}
\end{gather*}
$$

Definition 2.4. A one-parameter family of bounded linear operators $(\mathcal{R}(t))_{t \geq 0}$ on X is called a resolvent operator of $2.1-2.2$ if the following conditions are satisifed.
(a) Function $\mathcal{R}(\cdot):[0, \infty) \rightarrow \mathcal{L}(X)$ is strongly continuous and $\mathcal{R}(0) x=x$ for all $x \in X$.
(b) For $x \in D(A), \mathcal{R}(\cdot) x \in C([0, \infty),[D(A)]) \cap C^{1}([0, \infty), X)$, and

$$
\begin{align*}
& \frac{d \mathcal{R}(t) x}{d t}=A \mathcal{R}(t) x+\int_{0}^{t} B(t-s) \mathcal{R}(s) x d s \tag{2.3}\\
& \frac{d \mathcal{R}(t) x}{d t}=\mathcal{R}(t) A x+\int_{0}^{t} \mathcal{R}(t-s) B(s) x d s \tag{2.4}
\end{align*}
$$

for every $t \geq 0$,
(c) There exists constants $M>0, \delta$ such that $\|\mathcal{R}(t)\| \leq M e^{\delta t}$ for every $t \geq 0$.

Definition 2.5. A resolvent operator $(\mathcal{R}(t))_{t \geq 0}$ of $2.1-2.2$ is called exponentially stable if there exists positive constants M, β such that $\|\mathcal{R}(t)\| \leq M e^{-\beta t}$.

In this work we assume that the following conditions are satisfied:
(H1) Operator $A: D(A) \subseteq X \rightarrow X$ is the infinitesimal generator of an analytic semigroup $(T(t))_{t \geq 0}$ on X, and there are constants $M_{0}>0, \omega \in \mathbb{R}$ and $\vartheta \in(\pi / 2, \pi)$ such that $\rho(A) \supseteq \Lambda_{\omega, \vartheta}=\{\lambda \in \mathbb{C}: \lambda \neq \omega,|\arg (\lambda-\omega)|<\vartheta\}$ and $\|R(\lambda, A)\| \leq \frac{M_{0}}{|\lambda-\omega|}$ for all $\lambda \in \Lambda_{\omega, \vartheta}$.
(H2) For all $t \geq 0, B(t): D(B(t)) \subseteq X \rightarrow X$ is a closed linear operator, $D(A) \subseteq$ $D(B(t))$ and $B(\cdot) x$ is strongly measurable on $(0, \infty)$ for each $x \in D(A)$. There exists $b(\cdot) \in L^{1}([0, \infty))$ such that $\widehat{b}(\lambda)$ exists for $\operatorname{Re}(\lambda)>0$ and $\|B(t) x\| \leq b(t)\|x\|_{1}$ for all $t>0$ and $x \in D(A)$. Moreover, the operator valued function $\widehat{B}: \Lambda_{\omega, \pi / 2} \rightarrow \mathcal{L}([D(A)], X)$ has an analytical extension (still denoted by \widehat{B}) to $\Lambda_{\omega, \vartheta}$ such that $\|\widehat{B}(\lambda) x\| \leq\|\widehat{B}(\lambda)\|\|x\|_{1}$ for all $x \in D(A)$, and $\|\widehat{B}(\lambda)\|=O\left(\frac{1}{|\lambda|}\right)$ as $|\lambda| \rightarrow \infty$.
(H3) There exists a subspace $D \subseteq D(A)$ dense in $[D(A)]$ and positive constants $C_{i}, i=1,2$, such that $A(D) \subseteq D(A), \widehat{B}(\lambda)(D) \subseteq D(A),\|A \widehat{B}(\lambda) x\| \leq$ $C_{1}\|x\|$ for every $x \in D$ and all $\lambda \in \Lambda_{\omega, \vartheta}$.
For $r>0, \theta \in\left(\frac{\pi}{2}, \vartheta\right)$ and $w \in \mathbb{R}$, set

$$
\Lambda_{r, \omega, \theta}=\{\lambda \in \mathbb{C}: \lambda \neq \omega,|\lambda|>r,|\arg (\lambda-\omega)|<\theta\}
$$

and $\omega+\Gamma_{r, \theta}^{i}, i=1,2,3$, the paths

$$
\begin{gathered}
\omega+\Gamma_{r, \theta}^{1}=\left\{\omega+t e^{i \theta}: t \geq r\right\} \\
\omega+\Gamma_{r, \theta}^{2}=\left\{\omega+r e^{i \xi}:-\theta \leq \xi \leq \theta\right\} \\
\omega+\Gamma_{r, \theta}^{3}=\left\{\omega+t e^{-i \theta}: t \geq r\right\}
\end{gathered}
$$

with $\omega+\Gamma_{r, \theta}=\bigcup_{i=1}^{3} \omega+\Gamma_{r, \theta}^{i}$ oriented counterclockwise. In addition, $\Psi(G)$ is the set

$$
\Psi(G)=\left\{\lambda \in \mathbb{C}: G(\lambda):=(\lambda I-A-\widehat{B}(\lambda))^{-1} \in \mathcal{L}(X)\right\}
$$

The next results establish that the operator family $(\mathcal{R}(t))_{t \geq 0}$ defined by

$$
\mathcal{R}(t)= \begin{cases}\frac{1}{2 \pi i} \int_{\omega+\Gamma_{r, \theta}} e^{\lambda t} G(\lambda) d \lambda, & t>0 \tag{2.5}\\ I, & t=0\end{cases}
$$

is an exponentially stable resolvent operator for $2.1-2.2$.
Theorem 2.6 ([16, Corollary 3.1]). Suppose that conditions (H1)-(H3) are satisfied. Then, the function $\mathcal{R}(\cdot)$ is a resolvent operator for system 2.1)-2.2). If $\omega+r<0$, the function $\mathcal{R}(\cdot)$ is an exponentially stable resolvent operator for system (2.1)-2.2).

In the next result we denote by $(-A)^{\vartheta}$ the fractional power of the operator $(-A)$, (see 35] for details).
Theorem 2.7 ([16, Corollary 3.2]). Suppose that conditions (H1)-(H3) are satisfied. Then there exists a positive number C such that

$$
\left\|(-A)^{\vartheta} \mathcal{R}(t)\right\| \leq \begin{cases}C e^{(r+\omega) t}, & t \geq 1 \tag{2.6}\\ C e^{(r+\omega) t} t^{-\vartheta}, & t \in(0,1)\end{cases}
$$

for all $\vartheta \in(0,1)$. If $\omega+r<0$ and $\vartheta \in(0,1)$, then there exists $\phi \in L^{1}([0, \infty))$ such that

$$
\begin{equation*}
\left\|(-A)^{\vartheta} \mathcal{R}(t)\right\| \leq \phi(t) \tag{2.7}
\end{equation*}
$$

In the remaining of this section we discuss the existence of solutions to

$$
\begin{gather*}
\frac{d x(t)}{d t}=A x(t)+\int_{0}^{t} B(t-s) x(s) d s+f(t), \quad t \in[0, a] \tag{2.8}\\
x(0)=z \in X \tag{2.9}
\end{gather*}
$$

where $f \in L^{1}([0, a], X)$. In the sequel, $\mathcal{R}(\cdot)$ is the operator function defined by (2.5). We begin by introducing the following concept of classical solution.

Definition 2.8. A function $x:[0, b] \rightarrow X, 0<b \leq a$, is called a classical solution of $(2.8)-(2.9)$ on $[0, b]$ if $x \in C([0, b],[D(A)]) \cap C^{1}((0, b], X)$, the condition 2.9) holds and the equation 2.8 is satisfied on $[0, a]$.
Theorem 2.9 ([18, Theorem 2]). Let $z \in X$. Assume that $f \in C([0, a], X)$ and $x(\cdot)$ is a classical solution of $(2.8)-(2.9)$ on $[0, a]$. Then

$$
\begin{equation*}
x(t)=\mathcal{R}(t) z+\int_{0}^{t} \mathcal{R}(t-s) f(s) d s, \quad t \in[0, a] \tag{2.10}
\end{equation*}
$$

Motivated by 2.10 , we introduce the following concept.
Definition 2.10. A function $u \in C([0, a], X)$ is called a mild solution of 2.8$)-2.9)$ if

$$
u(t)=\mathcal{R}(t) z+\int_{0}^{t} \mathcal{R}(t-s) f(s) d s, \quad t \in[0, a]
$$

To establish our existence result, motivated by the previous facts, we introduce the following assumptions.
(P1) There exists a Banach space $\left(Y,\|\cdot\|_{Y}\right)$ continuously included in X such that the following conditions are verified.
(a) For every $t \in(0, \infty), \mathcal{R}(t) \in \mathcal{L}(X) \cap \mathcal{L}(Y,[D(A)])$ and $B(t) \in \mathcal{L}(Y, X)$. In addition, $A \mathcal{R}(\cdot) x, B(\cdot) x \in C((0, \infty), X)$ for every $x \in Y$.
(b) There are positive constants M, β such that

$$
\|\mathcal{R}(s)\| \leq M e^{-\beta s}, \quad s \geq 0
$$

(c) There exists $\phi \in L^{1}([0, \infty))$ such that $\|A \mathcal{R}(t)\|_{\mathcal{L}(Y, X)} \leq \phi(t), \quad t \geq 0$.
(PF) $f: \mathbb{R} \times \mathcal{B} \rightarrow Y$ is a continuous function and there exists a continuous non decreasing function $L_{f}:[0, \infty) \rightarrow[0, \infty)$, such that
$\left\|f\left(t, \psi_{1}\right)-f\left(t, \psi_{2}\right)\right\|_{Y} \leq L_{f}(r)\left\|\psi_{1}-\psi_{2}\right\|_{\mathcal{B}}, \quad\left(t, \psi_{j}\right) \in \mathbb{R} \times B_{r}(0, \mathcal{B})$.
(PG) $g: \mathbb{R} \times \mathcal{B} \rightarrow X$ is a continuous function and there exists a continuous and non decreasing function $L_{g}:[0, \infty) \rightarrow[0, \infty)$ such that

$$
\left\|g\left(t, \psi_{1}\right)-g\left(t, \psi_{2}\right)\right\| \leq L_{g}(r)\left\|\psi_{1}-\psi_{2}\right\|_{\mathcal{B}}, \quad\left(t, \psi_{j}\right) \in \mathbb{R} \times B_{r}(0, \mathcal{B})
$$

$$
\begin{align*}
& \sup _{r>0}\left[\frac{r}{2 \mathfrak{K}}-L_{f}(2 \mathfrak{K} r) r \mu-\frac{M}{\beta} L_{g}(2 \mathfrak{K} r) r\right] \tag{P2}\\
& \geq \frac{1}{2 \mathfrak{K}}\left(M\|\varphi\|_{\mathcal{B}}+M\|f(0, \varphi)\|+\sup _{t \in[0, \infty)}\|f(t, 0)\|_{Y} \mu+\frac{M}{\beta} \sup _{t \in[0, \infty)}\|g(t, 0)\|\right)
\end{align*}
$$

where $\mu=\left(\left\|i_{c}\right\|_{\mathcal{L}(Y, X)}+\|\phi\|_{L^{1}}+\frac{M}{\beta}\|b\|_{L^{1}}\right)$.
Motivated by the theory of resolvent operator, we introduce the following concept of mild solution for (1.1)- 1.2 .

Definition 2.11. A function $u:(-\infty, b] \rightarrow X, 0<b \leq a$, is called a mild solution of $1.1-1.2)$ on $[0, b]$, if $u_{0}=\varphi \in \mathcal{B} ;\left.u\right|_{[0, b]} \in C([0, b]: X)$; the functions $\tau \mapsto A \mathcal{R}(t-\tau) f\left(\tau, u_{\tau}\right)$ and $\tau \mapsto \int_{0}^{\tau} B(\tau-\xi) f\left(\xi, u_{\xi}\right) d \xi$ are integrable on [0,t) for every $t \in(0, b]$ and

$$
\begin{aligned}
u(t)= & \mathcal{R}(t)(\varphi(0)+f(0, \varphi))-f\left(t, u_{t}\right)-\int_{0}^{t} A \mathcal{R}(t-s) f\left(s, u_{s}\right) d s \\
& -\int_{0}^{t} \mathcal{R}(t-s) \int_{0}^{s} B(s-\xi) f\left(\xi, u_{\xi}\right) d \xi d s+\int_{0}^{t} \mathcal{R}(t-s) g\left(s, u_{s}\right) d s, \quad t \in[0, b]
\end{aligned}
$$

Now, we need to introduce some concepts, definitions and technicalities on asymptotically almost periodical functions, S-asymptotically ω-periodic, asymptotically ω-periodic asymptotically and almost automorphic functions.

Definition 2.12. A function $f \in C(\mathbb{R}, Z)$ is almost periodic (a.p.) if for every $\varepsilon>0$ there exists a relatively dense subset of \mathbb{R}, denoted by $\mathcal{H}(\varepsilon, f, Z)$, such that

$$
\|f(t+\xi)-f(t)\|_{Z}<\varepsilon, \quad t \in \mathbb{R}, \xi \in \mathcal{H}(\varepsilon, f, Z)
$$

Definition 2.13. A function $f \in C([0, \infty), Z)$ is asymptotically almost periodic (a.a.p.) if there exists an almost periodic function $g(\cdot)$ and $w \in C_{0}([0, \infty), Z)$ such that $f(\cdot)=g(\cdot)+w(\cdot)$.

In this paper, $A P(Z)$ and $A A P(Z)$ are the spaces

$$
\begin{gathered}
A P(Z)=\{f \in C(\mathbb{R}, Z): f \text { is a.p. }\} \\
A A P(Z)=\{f \in C([0, \infty), Z): f \text { is a.a.p. }\}
\end{gathered}
$$

endowed with the norm of the uniform convergence. We know from the result in [40] that $A P(Z)$ and $A A P(Z)$ are Banach spaces.
Definition 2.14. A function $u \in C_{b}([0, \infty), X)$ is said S-asymptotically ω-periodic if

$$
\lim _{t \rightarrow \infty}(u(t+\omega)-u(t))=0
$$

In the rest of this paper, the notation $S A P_{\omega}(X)$ stands for the space

$$
S A P_{\omega}(X)=\left\{f \in C_{b}(\mathbb{R}, X): f \text { is } S \text {-asymptotically } \omega \text {-periodic }\right\}
$$

endowed with the norm of the uniform convergence. It is clear that $S A P_{\omega}(X)$ is a Banach space.
Definition 2.15. A continuous function $f:[0, \infty) \times Z \rightarrow W$ is said uniformly S-asymptotically ω-periodic on bounded sets if $f(\cdot, x)$ is bounded for each $x \in Z$, and for every $\varepsilon>0$ and for all bounded set $K \subseteq Z$, there exists $L(K, \varepsilon) \geq 0$ such that $\|f(t, x)-f(t+\omega, x)\|_{W} \leq \varepsilon$ for every $t \geq L(K, \varepsilon)$ and all $x \in K$.
Definition 2.16. A continuous function $f:[0, \infty) \times Z \rightarrow W$ is said asymptotically uniformly continuous on bounded sets, if for every $\varepsilon>0$ and for all bounded set $K \subseteq Z$ there exist constants $L(K, \varepsilon) \geq 0$ and $\delta=\delta(K, \varepsilon)>0$ such that $\|f(t, x)-f(t, y)\|_{W} \leq \varepsilon$ for all $t \geq L(K, \varepsilon)$ and every $x, y \in K$ with $\|x-y\|_{z} \leq \delta$.

Lemma 2.17 ([22, Lemma 4.1]). Assume that $f:[0, \infty) \times Z \rightarrow W$ is a function uniformly S-asymptotically ω-periodic on bounded sets and asymptotically uniformly continuous on bounded sets. Let $u \in S A P_{\omega}(Z)$, then the function $\theta: \mathbb{R} \rightarrow W$ defined by $\theta(t)=f(t, u(t))$ is S-asymptotically ω-periodic.

By using a similar procedure to the proof of the [23, Lemma 3.5], we prove the next result.

Lemma 2.18. Suppose that condition (P1)(b) holds and $f \in S A P_{\omega}(X)$. Let F : $[0, \infty) \rightarrow X$ be the function defined by

$$
F(t):=\int_{0}^{t} \mathcal{R}(t-s) f(s) d s
$$

Then $F \in S A P_{\omega}(X)$.
Lemma 2.19 ([23, Lemma 2.10]). Assume that \mathcal{B} is a fading memory space and $u \in C(\mathbb{R}, X)$ is such that $u_{0} \in \mathcal{B}$ and $\left.u\right|_{[0, \infty)} \in S A P_{\omega}(X)$, then $t \mapsto u_{t} \in S A P_{\omega}(\mathcal{B})$.

Definition 2.20. A function $u \in C_{b}([0, \infty), X)$ is called asymptotically ω-periodic if there exists an ω-periodic function v and $w \in C_{0}([0, \infty), X)$ such that $u=v+w$.

Remark 2.21. In [23] the authors have shown that the set of the asymptotically ω-periodic functions is properly contained in $S A P_{\omega}(W)$.

Lemma 2.22 ([23, Remark 3.13]). If $u \in C_{b}([0, \infty), X)$ is a function such that $\lim _{t \rightarrow \infty}(u(t+n \omega)-u(t))=0$, uniformly for $n \in \mathbb{N}$, then $u(\cdot)$ is asymptotically ω-periodic.

In the rest of this paper, $S_{\omega}(X)$ stands for the space
$S_{\omega}(X)=\left\{f \in C_{b}([0, \infty), X): \lim _{t \rightarrow \infty} f(t+n \omega)-f(t)=0\right.$, uniformly for $\left.n \in \mathbb{N}\right\}$,
endowed with the norm of the uniform convergence.
Lemma 2.23 ([4, Lemma 2.3]). Let $f:[0, \infty) \times Z \rightarrow W$ be asymptotically uniformly continuous on bounded sets. Suppose that for all bounded subset $K \subset Z$, the set $\{f(t, z) \geq 0, z \in K\}$ is bounded and $\lim _{t \rightarrow \infty}\|f(t+n \omega, z)-f(t, z)\|=0$, uniformly for $z \in K$ and $n \in \mathbb{N}$. If $u \in S_{\omega}(Z)$, then $f(\cdot, u(\cdot)) \in S_{\omega}(W)$.

Lemma 2.24. [4, Lemma 3.7] Suppose that condition (P1)(b) holds and $f \in$ $S_{\omega}(X)$. If F is the function defined by $F(t):=\int_{0}^{t} \mathcal{R}(t-s) f(s) d s, t \geq 0$, then $F \in S_{\omega}(X)$.

We now introduce some notion of asymptotically almost automorphic.
Definition 2.25. A function $f \in C(\mathbb{R}, X)$ is said to be almost automorphic if for every sequence of real numbers $\left(s_{n}^{\prime}\right)_{n \in \mathbb{N}}$, there exists a subsequence $\left(s_{n}\right)_{n \in \mathbb{N}} \subset$ $\left(s_{n}^{\prime}\right)_{n \in \mathbb{N}}$ such that

$$
g(t):=\lim _{n \rightarrow \infty} f\left(t+s_{n}\right)
$$

is well defined for each $t \in \mathbb{R}$, and

$$
f(t)=\lim _{n \rightarrow \infty} g\left(t-s_{n}\right)
$$

for all $t \in \mathbb{R}$.

It is well known that the range of an almost automorphic function is relatively compact on X, and hence it is bounded. Moreover, the space of all almost automorphic functions, denoted by $A A(X)$, endowed with the norm of the uniform convergence is a Banach space [33].
Definition 2.26. A function $f \in C([0, \infty), Z)$ is said to be asymptotically almost automorphic if it can be written as $f=g+h$ where $g \in A A(Z)$ and $h \in C_{0}([0, \infty), Z)$. Denote by $A A A(Z)$ the set of all such functions.

Definition 2.27. A function $f \in C(\mathbb{R}, Z)$ is said to be compact almost automorphic if for every sequence of real numbers $\left(\sigma_{n}\right)_{n \in \mathbb{N}}$ there exists a subsequence $\left(s_{n}\right)_{n \in \mathbb{N}} \subset\left(\sigma_{n}\right)_{n \in \mathbb{N}}$ such that

$$
\begin{aligned}
g(t) & :=\lim _{n \rightarrow \infty} f\left(t+s_{n}\right), \\
f(t) & =\lim _{n \rightarrow \infty} g\left(t-s_{n}\right)
\end{aligned}
$$

uniformly on compact subsets of \mathbb{R}. The collection of those functions will be denoted by $A A_{c}(Z)$.

Definition 2.28. A function $f \in C(\mathbb{R} \times Z, W)$ is said to be compact almost automorphic in $t \in \mathbb{R}$, if for every sequence of real numbers $\left(\sigma_{n}\right)_{n \in \mathbb{N}}$ there exists a subsequence $\left(s_{n}\right)_{n \in \mathbb{N}} \subset\left(\sigma_{n}\right)_{n \in \mathbb{N}}$ such that

$$
\begin{aligned}
g(t, z) & :=\lim _{n \rightarrow \infty} f\left(t+s_{n}, z\right) \\
f(t, z) & =\lim _{n \rightarrow \infty} g\left(t-s_{n}, z\right)
\end{aligned}
$$

where the limits are uniform on compact subset of \mathbb{R}, for each $z \in Z$. The space of such functions will be denoted by $A A_{c}(Z, W)$.

Definition 2.29. A continuous function $f \in C([0, \infty), Z)$ is said to be compact asymptotically almost automorphic if it can be written as $f=g+h$ where $g \in$ $A A_{c}(Z)$ and $h \in C_{0}\left(\mathbb{R}^{+}, Z\right)$. Denote by $A A A_{c}(Z)$ the set of all such functions.
Definition 2.30. Let $K \subset Z$ and $I \subset \mathbb{R}$. Let $C_{K}(I \times Z, W)$ denote the collection of functions $f: I \times Z \rightarrow W$ such that $f(t, \cdot)$ is uniformly continuous on K for every $t \in I \subseteq \mathbb{R}$.

Definition 2.31. A function $f \in C([0, \infty) \times Z, W)$ is said to be compact asymptotically almost automorphic if it can be written as $f=g+h$, where $g \in A A_{c}(Z, W)$ and $h \in C_{0}([0, \infty) \times Z, W)$. Denote by $A A A_{c}(Z, W)$ the set of all such functions.
Lemma 2.32 ([9, Lemma 3.3]). Let $u \in A A A_{c}(Z)$ and $f \in A A A_{c}(Z, W) \cap C_{R}(\mathbb{R} \times$ $Z, W)$, where $R=\overline{\{u(t): t \in \mathbb{R}\}}$. Then the function $\Phi: \mathbb{R} \rightarrow W$ defined by $\Phi(t)=$ $f(t, u(t)) \in A A A_{c}(W)$.
Lemma 2.33 (9, Lemma 3.4]). Suppose that condition (P1)-(b) holds and $f \in$ $A A A_{c}(X)$. If F is the function defined by

$$
F(t):=\int_{0}^{t} \mathcal{R}(t-s) f(s) d s, \quad t \geq 0
$$

then $F \in A A A_{c}(X)$.
Lemma 2.34 (9 , Lemma 3.5]). If $u \in A A_{c}(X)$, then the function $s \mapsto u_{s}$ belongs to $A A_{c}(\mathcal{B})$. Moreover, if \mathcal{B} is a fading memory space and $u \in C(\mathbb{R}, X)$ is such that $u_{0} \in \mathcal{B}$ and $\left.u\right|_{[0, \infty)} \in A A A_{c}(X)$, then $t \mapsto u_{t} \in A A A_{c}(\mathcal{B})$.

3. Several types of periodicity of mild solutions

In this section we establish the existence of several type of periodicity for solutions to partial neutral integro-differential equations system 1.1 - 1.2 . For that, we need to introduce a few preliminaries and important results. Following, we consider the problem of the existence of compact asymptotically almost automorphic solutions.

In the following, we let $\mathcal{A}(Z)$ stands for one of the spaces $A A A_{c}(Z), S A P_{\omega}(Z)$ or $S_{\omega}(Z)$.

Lemma 3.1. Assume the condition (P 1) is fulfilled. Let $u \in \mathcal{A}(Y)$ and $G(\cdot)$: $[0, \infty) \rightarrow X$ be the function defined by

$$
G(t)=\int_{0}^{t} \mathcal{R}(t-s) \int_{0}^{s} B(s-\tau) u(\tau) d \tau d s, \quad t \geq 0
$$

Then $G(\cdot) \in \mathcal{A}(X)$.
Proof. First we consider the $A A A_{c}(Y)$ case. By Lemma 2.33 is sufficient to prove that $H(t)=\int_{0}^{t} B(t-s) u(s) d s \in A A A_{c}(Y)$. Suppose $u=k+h$ where $k \in A A_{c}(Y)$ and $h \in C_{0}([0, \infty), Y)$. Then

$$
\begin{aligned}
H(t) & =\int_{-\infty}^{t} B(t-s) k(s) d s-\int_{-\infty}^{0} B(t-s) k(s) d s+\int_{0}^{t} B(t-s) h(s) d s \\
& =w(t)+q(t)
\end{aligned}
$$

where

$$
\begin{gathered}
w(t)=\int_{-\infty}^{t} B(t-s) k(s) d s \\
q(t)=\int_{0}^{t} B(t-s) h(s) d s-\int_{-\infty}^{0} B(t-s) k(s) d s
\end{gathered}
$$

For a given sequence $\left(\sigma_{n}\right)_{n \in \mathbb{N}}$ of real numbers, fix a subsequence $\left(s_{n}\right)_{n \in \mathbb{N}}$, and a continuous functions $v \in C_{b}(\mathbb{R}, Y)$ such that $k\left(t+s_{n}\right)$ converges to $v(t)$ in Y, and $v\left(t-s_{n}\right)$ converges to $k(t)$ in Y, uniformly on compact sets of \mathbb{R}.

From the Bochner's criterion related to integrable functions and the estimate

$$
\begin{equation*}
\|B(t-s) k(s)\|=\|B(t-s)\|_{\mathcal{L}(Y, X)}\|k(s)\|_{Y} \leq b(t-s)\|k(s)\|_{Y} \tag{3.1}
\end{equation*}
$$

it follows that the function $s \mapsto B(t-s) k(s)$ is integrable over $(-\infty, t)$ for each $t \in \mathbb{R}$. Furthermore, since

$$
w\left(t+s_{n}\right)=\int_{-\infty}^{t} B(t-s) k\left(s+s_{n}\right) d s, \quad t \in \mathbb{R}, n \in \mathbb{N}
$$

using the estimate (3.1) and the Lebesgue Dominated Convergence Theorem, it follows that $w\left(t+s_{n}\right)$ converges to $z(t)=\int_{-\infty}^{t} B(t-s) v(s) d s$ for each $t \in \mathbb{R}$.

The remaining task consists of showing that the convergence is uniform on all compact subsets of \mathbb{R} and that $q(\cdot) \in C_{0}([0, \infty), X)$. Let $K \subset \mathbb{R}$ be an arbitrary compact and let $\varepsilon>0$. Since $h \in C_{0}([0, \infty), Y)$ and $k(\cdot) \in A A_{c}(Y)$, there exists a constant L and N_{ε} such that $K \subset\left[\frac{-L}{2}, \frac{L}{2}\right]$ with

$$
\int_{\frac{L}{2}}^{\infty} b(s) d s<\varepsilon
$$

$$
\begin{gathered}
\left\|k\left(s+s_{n}\right)-v(s)\right\|_{Y} \leq \varepsilon, \quad n \geq N_{\varepsilon}, s \in[-L, L] \\
\|h(s)\|_{Y} \leq \varepsilon, \quad s \geq L
\end{gathered}
$$

For each $t \in K$, one has

$$
\begin{aligned}
& \left\|w\left(t+s_{n}\right)-z(t)\right\| \\
& \leq \int_{-\infty}^{t}\|B(t-s)\|_{\mathcal{L}(Y, X)}\left\|k\left(s+s_{n}\right)-v(s)\right\|_{Y} d s \\
& \leq \int_{-\infty}^{-L} b(t-s)\left\|k\left(s+s_{n}\right)-v(s)\right\|_{Y} d s+\int_{-L}^{t} b(t-s)\left\|k\left(s+s_{n}\right)-v(s)\right\|_{Y} d s \\
& \leq 2\|k\|_{Y, \infty} \int_{t+L}^{\infty} b(s) d s+\varepsilon \int_{0}^{\infty} b(s) d s \\
& \leq 2\|k\|_{Y, \infty} \int_{\frac{L}{2}}^{\infty} b(s) d s+\varepsilon \int_{0}^{\infty} b(s) d s \\
& \leq \varepsilon\left(2\|k\|_{Y, \infty}+\int_{0}^{\infty} b(s) d s\right)
\end{aligned}
$$

which proves that the convergence is uniform on K, from the fact that the last estimate is independent of $t \in K$. Proceeding as previously, one can similarly prove that $z\left(t-s_{n}\right)$ converges to w uniformly on all compact subsets of \mathbb{R}. Next, let us show that $q(\cdot) \in C_{0}([0, \infty), X)$. For all $t \geq 2 L$ we obtain

$$
\begin{aligned}
\|q(t)\| & \leq \int_{-\infty}^{0}\|B(t-s)\|_{\mathcal{L}(Y, X)}\|k(s)\|_{Y} d s+\int_{0}^{t}\|B(t-s)\|_{\mathcal{L}(Y, X)}\|h(s)\|_{Y} d s \\
& \leq \int_{-\infty}^{0} b(t-s)\|k(s)\|_{Y} d s+\int_{t / 2}^{t} b(t-s)\|h(s)\|_{Y} d s+\int_{0}^{t / 2} b(t-s)\|h(s)\|_{Y} d s \\
& \leq \int_{\frac{L}{2}}^{\infty} b(s) d s\|k\|_{Y, \infty}+\varepsilon \int_{t / 2}^{t} b(s) d s+\int_{\frac{L}{2}}^{\infty} b(s) d s\|h\|_{Y, \infty} \\
& \leq \varepsilon\left(\|k\|_{Y, \infty}+\int_{0}^{\infty} b(s) d s+\|h\|_{Y, \infty}\right)
\end{aligned}
$$

Now we consider the $S A P_{\omega}(Y)$ case. From Lemma 2.18 is sufficient to prove that

$$
H(t)=\int_{0}^{t} B(t-s) u(s) d s
$$

is $S A P_{\omega}(X)$. For all $t \geq 0$,

$$
\begin{aligned}
\|H(t)\| & \leq \int_{0}^{t}\|B(t-s)\|_{\mathcal{L}(Y, X)}\|u(s)\|_{Y} d \tau \\
& \leq \int_{0}^{t} b(t-s)\|u(s)\|_{Y} d s \\
& \leq\|u\|_{Y, \infty} \int_{0}^{\infty} b(s) d s
\end{aligned}
$$

This shows that $H \in C_{b}([0, \infty), X)$. Furthermore, for $\omega \geq 0$, we have for $t \geq L>0$,

$$
\begin{aligned}
& \|H(t+\omega)-H(t)\| \\
& =\left\|\int_{0}^{t+\omega} B(t+\omega-s) u(s) d s-\int_{0}^{t} B(t-s) u(s) d s\right\|
\end{aligned}
$$

$$
\begin{aligned}
\leq & \int_{0}^{\omega} b(t+\omega-s)\|u(s)\|_{Y} d s+\left\|\int_{0}^{t} B(t-s) u(s+\omega) d s-\int_{0}^{t} B(t-s) u(s) d s\right\| \\
\leq & \|u\|_{Y, \infty} \int_{0}^{\omega} b(t+\omega-s) d s+\int_{0}^{t}\|B(t-s)(u(s+\omega)-u(s))\| d s \\
\leq & \|u\|_{Y, \infty} \int_{0}^{\omega} b(t+\omega-s) d s+\int_{0}^{L} b(t-s)\|u(s+\omega)-u(s)\|_{Y} d s \\
& +\int_{L}^{t} b(t-s)\|u(s+\omega)-u(s)\|_{Y} d s
\end{aligned}
$$

For all $\varepsilon>0$, we choose L sufficiently large such that $\|u(s+\omega)-u(s)\|_{Y}<\varepsilon$ for all $s \geq L$ and $\int_{L}^{\infty} b(s) d s<\varepsilon$. Hence, for $t \geq 2 L$ we obtain

$$
\begin{aligned}
\|H(t+\omega)-H(t)\| & \leq\|u\|_{Y, \infty} \int_{t}^{t+\omega} b(s) d s+2\|u\|_{Y, \infty} \int_{t-L}^{t} b(s) d s+\varepsilon \int_{0}^{t-L} b(s) d s \\
& \leq\|u\|_{Y, \infty} \varepsilon+2\|u\|_{Y, \infty} \varepsilon+\varepsilon \int_{0}^{t-L} b(s) d s \\
& \leq \varepsilon\left(3\|u\|_{Y, \infty}+\int_{0}^{\infty} b(s) d s\right)
\end{aligned}
$$

Finally, let us prove the $S_{\omega}(Y)$ case. From the Lemma 2.24 is sufficient prove that $\lim _{t \rightarrow \infty} H(t+n \omega)-H(t)=0$, uniformly in $n \in \mathbb{N}$, where $H(t)=\int_{0}^{t} B(t-s) u(s) d s$. For all $\varepsilon>0$, we choose L sufficiently large such that $\|u(s+n \omega)-u(s)\|_{Y}<\varepsilon$ for all $s \geq L$ and $\int_{L}^{\infty} b(s) d s<\varepsilon$. Hence, for $t \geq 2 L$ we obtain

$$
\begin{aligned}
& \|H(t+n \omega)-H(t)\| \\
& \leq\left\|\int_{0}^{t+n \omega} B(t+n \omega-s) u(s) d s-\int_{0}^{t} B(t-s) u(s) d s\right\| \\
& \leq\|u\|_{Y, \infty} \int_{0}^{n \omega} b(t+n \omega-s) d s+\int_{0}^{L} b(t-s)\|u(s+n \omega)-u(s)\|_{Y} d s \\
& +\int_{L}^{t} b(t-s)\|u(s+n \omega)-u(s)\|_{Y} d s \\
& \leq\|u\|_{Y, \infty} \int_{t}^{t+n \omega} b(s) d s+2\|u\|_{Y, \infty} \int_{t-L}^{t} b(s) d s+\varepsilon \int_{0}^{\infty} b(s) d s \\
& \leq \varepsilon\left(3\|u\|_{Y, \infty}+\int_{0}^{\infty} b(s) d s\right) .
\end{aligned}
$$

This completes the proof.
Lemma 3.2. Let condition $(\mathrm{P} 1)(\mathrm{c})$ hold and u be a function in $\mathcal{A}(Y)$. If I : $[0, \infty) \rightarrow X$ is the function defined by $I(t)=\int_{0}^{t} A \mathcal{R}(t-s) u(s) d s$, then $I(\cdot) \in \mathcal{A}(X)$.

Proof. All the $A A A_{c}(Y), S A P_{\omega}(Y)$ and $S_{\omega}(Y)$ cases require small modifications in the proof of Lemma 3.1.

Theorem 3.3. Let $f \in A A A_{c}([0, \infty) \times \mathcal{B}, Y)$ and $g \in A A A_{c}([0, \infty) \times \mathcal{B}, X)$. Assume that \mathcal{B} is a fading memory space and (P1), (P2), (PF), (PG) hold. Then there exists $\varepsilon>0$ such that for each $\varphi \in B_{\varepsilon}(0, \mathcal{B})$ there exists a unique mild solution $u(\cdot, \varphi) \in A A A_{c}(X)$ of (1.1)-1.2).

Proof. By the hypothesis there exists a constant $r>0$ such that

$$
\begin{aligned}
& {\left[r-L_{f}(2 \mathfrak{K} r) 2 \mathfrak{K} r \mu-\frac{M}{\beta} L_{g}(2 \mathfrak{K} r) 2 \mathfrak{K} r\right]} \\
& \geq M\|\varphi\|_{\mathcal{B}}+M\|f(0, \varphi)\|+\sup _{t \in[0, \infty)}\|f(t, 0)\|_{Y} \mu+\frac{M}{\beta} \sup _{t \in[0, \infty)}\|g(t, 0)\|
\end{aligned}
$$

where \mathfrak{K} is the constant introduced in Remark 2.2. We affirm that the assertion holds for $\varepsilon \leq r$. Let $\varphi \in B_{\varepsilon}(0, \mathcal{B})$ and the space

$$
\mathfrak{D}=\left\{x \in A A A_{c}(X): x(0)=\varphi(0),\|x(t)\| \leq r, t \geq 0\right\}
$$

endowed with the metric $d(u, v)=\|u-v\|_{\infty}$, we define the operator $\Gamma: \mathfrak{D} \rightarrow$ $C([0, \infty) ; X)$ by

$$
\begin{aligned}
\Gamma u(t)= & \mathcal{R}(t)(\varphi(0)+f(0, \varphi))-f\left(t, \widetilde{u}_{t}\right)-\int_{0}^{t} A \mathcal{R}(t-s) f\left(s, \widetilde{u}_{s}\right) d s \\
& -\int_{0}^{t} \mathcal{R}(t-s) \int_{0}^{s} B(s-\xi) f\left(\xi, \widetilde{u}_{\xi}\right) d \xi d s+\int_{0}^{t} \mathcal{R}(t-s) g\left(s, \widetilde{u}_{s}\right) d s, \quad t \geq 0
\end{aligned}
$$

where $\widetilde{u}: \mathbb{R} \rightarrow X$ is the function defined by the relation $\widetilde{u}_{0}=\varphi$ and $\widetilde{u}=u$ on $[0, \infty)$. From the hypothesis (P1) (PF) and (PG) we obtain that Γu is well defined and that $\Gamma u \in C([0, \infty) ; X)$. Moreover, from Lemma 2.34 we have that function $s \mapsto \widetilde{u}_{s} \in A A A_{c}(\mathcal{B})$. By Lemma 2.32, we conclude that $s \mapsto f\left(s, \widetilde{u}_{s}\right) \in$ $A A A_{c}([0, \infty), Y)$ and $s \mapsto g\left(s, \widetilde{u}_{s}\right) \in A A A_{c}([0, \infty), X)$. From Lemmas 2.33, 3.1, 3.2 and $\lim _{t \rightarrow \infty}\|\mathcal{R}(t)(\varphi(0)+f(0, \varphi))\|=0$, we obtain that $\Gamma u \in A A A_{c}(X)$.

Next, we prove that $\Gamma(\cdot)$ is a contraction from \mathfrak{D} into \mathfrak{D}. If $u \in \mathfrak{D}$ and $t \geq 0$, we obtain

$$
\begin{aligned}
\| & \Gamma u(t) \| \\
\leq & \|\mathcal{R}(t)(\varphi(0)+f(0, \varphi))\|+\left\|i_{c}\right\|_{\mathcal{L}(Y, X)}\left(\left\|f\left(t, \widetilde{u}_{t}\right)-f(t, 0)\right\|_{Y}+\|f(t, 0)\|_{Y}\right) \\
& +\int_{0}^{t}\left\|A \mathcal{R}(t-s)\left(f\left(s, \widetilde{u}_{s}\right)-f(s, 0)\right)\right\| d s+\int_{0}^{t}\|A \mathcal{R}(t-s) f(s, 0)\| d s \\
& +\int_{0}^{t}\left\|\mathcal{R}(t-s) \int_{0}^{s} B(s-\xi)\left(f\left(\xi, \widetilde{u}_{\xi}\right)-f(\xi, 0)\right) d \xi\right\| d s \\
& +\int_{0}^{t}\left\|\mathcal{R}(t-s) \int_{0}^{s} B(s-\xi) f(\xi, 0) d \xi\right\| d s \\
& +\int_{0}^{t}\left\|\mathcal{R}(t-s)\left(g\left(s, \widetilde{u}_{s}\right)-g(s, 0)\right)\right\| d s+\int_{0}^{t}\|\mathcal{R}(t-s) g(s, 0)\| d s \\
\leq & M\left\|_{\varphi}\right\|_{\mathcal{B}}+M\|f(0, \varphi)\|+\left\|i_{c}\right\|_{\mathcal{L}(Y, X)}\left(L_{f}\left(\left\|\widetilde{u}_{t}\right\|_{\mathcal{B}}\right)\left\|\widetilde{u}_{t}\right\|_{\mathcal{B}}+\sup _{t \in[0, \infty)}\|f(t, 0)\|_{Y}\right) \\
& +\int_{0}^{t} \phi(t-s) L_{f}\left(\left\|\widetilde{u}_{s}\right\|_{\mathcal{B}}\right)\left\|\widetilde{u}_{s}\right\|_{\mathcal{B}} d s+\sup _{t \in[0, \infty)}^{\sin }\|f(t, 0)\|_{Y} \int_{0}^{t} \phi(s) d s \\
& +\int_{0}^{t} M e^{-\beta(t-s)} \int_{0}^{s} b(s-\xi) L_{f}\left(\left\|\widetilde{u}_{\xi}\right\|_{\mathcal{B}}\right)\left\|\widetilde{u}_{\xi}\right\|_{\mathcal{B}} d \xi d s \\
& +\sup _{t \in[0, \infty)}\|f(t, 0)\|_{Y} \int_{0}^{t} M e^{-\beta(t-s)} \int_{0}^{s} b(s-\xi) d \xi d s
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{0}^{t} M e^{-\beta(t-s)} L_{g}\left(\left\|\widetilde{u}_{s}\right\|_{\mathcal{B}}\right)\left\|\widetilde{u}_{s}\right\|_{\mathcal{B}} d s+\sup _{t \in[0, \infty)}\|g(t, 0)\| \int_{0}^{t} M e^{-\beta(t-s)} d s \\
\leq & M\|\varphi\|_{\mathcal{B}}+M\|f(0, \varphi)\| \\
& +\sup _{t \in[0, \infty)}\|f(t, 0)\|_{Y}\left(\left\|i_{c}\right\|_{\mathcal{L}(Y, X)}+\int_{0}^{\infty} \phi(s) d s+\frac{M}{\beta} \int_{0}^{\infty} b(s) d s\right) \\
& +\frac{M}{\beta} \sup _{t \in[0, \infty)}\|g(t, 0)\| \\
& +L_{f}\left(\left\|\widetilde{u}_{t}\right\|_{\mathcal{B}}\right)\left(\left\|i_{c}\right\|_{\mathcal{L}(Y, X)}+\int_{0}^{\infty} \phi(s) d s+\frac{M}{\beta} \int_{0}^{\infty} b(s) d s\right)\left\|\widetilde{u}_{t}\right\|_{\mathcal{B}} \\
& +\frac{M}{\beta} L_{g}\left(\left\|\widetilde{u}_{t}\right\|_{\mathcal{B}}\right)\left\|\widetilde{u}_{t}\right\|_{\mathcal{B}} \\
\leq & M\|\varphi\|_{\mathcal{B}}+M\|f(0, \varphi)\| \\
& +\sup _{t \in[0, \infty)}\|f(t, 0)\|_{Y}\left(\left\|i_{c}\right\|_{\mathcal{L}(Y, X)}+\|\phi\|_{L^{1}}+\frac{M}{\beta}\|b\|_{L^{1}}\right) \\
& +\frac{M}{\beta} \sup _{t \in[0, \infty)}\|g(t, 0)\|+L_{f}(2 \mathfrak{K} r)\left(\left\|i_{c}\right\|_{\mathcal{L}(Y, X)}+\|\phi\|_{L^{1}}+\frac{M}{\beta}\|b\|_{L^{1}}\right) 2 \mathfrak{K} r \\
& +\frac{M}{\beta} L_{g}(2 \mathfrak{K} r) 2 \mathfrak{K} r \leq r
\end{aligned}
$$

where the inequality $\left\|\widetilde{u}_{t}\right\| \leq 2 \mathfrak{K} r$ has been used and $i_{c}: Y \rightarrow X$ represents the continuous inclusion of Y on X. Thus, $\Gamma(\mathfrak{D}) \subset \mathfrak{D}$. On the other hand, for $u, v \in \mathfrak{D}$ we see that

$$
\begin{aligned}
&\|\Gamma u(t)-\Gamma v(t)\| \\
& \leq\left\|i_{c}\right\|_{\mathcal{L}(Y, X)}\left\|f\left(t, \widetilde{u}_{t}\right)-f\left(t, \widetilde{v}_{t}\right)\right\|_{Y} \\
&+\int_{0}^{t}\|A \mathcal{R}(t-s)\|_{\mathcal{L}(Y, X)}\left\|f\left(s, \widetilde{u}_{s}\right)-f\left(s, \widetilde{v}_{s}\right)\right\|_{Y} d s \\
&+\int_{0}^{t}\|\mathcal{R}(t-s)\|\left(\int_{0}^{s}\|B(s-\xi)\|_{\mathcal{L}(Y, X)}\left\|f\left(\xi, \widetilde{u}_{\xi}\right)-f\left(\xi, \widetilde{v}_{\xi}\right)\right\|_{Y} d \xi\right) d s \\
&+\int_{0}^{t}\|\mathcal{R}(t-s)\|\left\|g\left(s, \widetilde{u}_{s}\right)-g\left(s, \widetilde{v}_{s}\right)\right\| d s \\
& \leq\left(L_{f}(2 \mathfrak{K} r) \mathfrak{K} \mu+L_{g}(2 \mathfrak{K} r) \mathfrak{K} \frac{M}{\beta}\right)\|u-v\|_{\infty} \\
& \leq\left(L_{f}(2 \mathfrak{K} r) 2 \mathfrak{K} \mu+L_{g}(2 \mathfrak{K} r) 2 \mathfrak{K} \frac{M}{\beta}\right)\|u-v\|_{\infty}
\end{aligned}
$$

we observe that $r-L_{f}(2 \mathfrak{K} r) 2 \mathfrak{K} r \mu-\frac{M}{\beta} L_{g}(2 \mathfrak{K} r) 2 \mathfrak{K} r>0$, this implies that

$$
L_{f}(2 \mathfrak{K} r) 2 \mathfrak{K} \mu+\frac{M}{\beta} L_{g}(2 \mathfrak{K} r) 2 \mathfrak{K}<1,
$$

which shows that $\Gamma(\cdot)$ is a contraction from \mathfrak{D} into \mathfrak{D}. The assertion is now a consequence of the contraction mapping principle. The proof is complete.

Remark 3.4. A similar result was obtained by Dos Santos et al. [16] for the existence of asymptotically almost periodic solutions for the system (1.1)-(1.2).

Proposition 3.5. Let $f:[0, \infty) \times \mathcal{B} \rightarrow Y$ and $g:[0, \infty) \times \mathcal{B} \rightarrow X$ be uniformly S asymptotically ω-periodic on bounded sets and asymptotically uniformly continuous on bounded sets. Assume that \mathcal{B} is a fading memory space and (P 1), (P 2), (PF), (PG) hold. Then there exists $\varepsilon>0$ such that for each $\varphi \in B_{\varepsilon}(0, \mathcal{B})$ there exists a unique mild solution $u(\cdot, \varphi) \in S A P_{\omega}(X)$ of (1.1)-1.2 on $[0, \infty)$.
Proof. Let the space

$$
\mathfrak{D}_{\omega}=\left\{x \in S A P_{\omega}(X): x(0)=\varphi(0),\|x(t)\| \leq r, t \geq 0\right\}
$$

endowed with the metric $d(u, v)=\|u-v\|_{\infty}$, we define the operator $\Gamma: \mathfrak{D}_{\omega} \rightarrow$ $C([0, \infty) ; X)$ by

$$
\begin{aligned}
\Gamma u(t)= & \mathcal{R}(t)(\varphi(0)+f(0, \varphi))-f\left(t, \widetilde{u}_{t}\right)-\int_{0}^{t} A \mathcal{R}(t-s) f\left(s, \widetilde{u}_{s}\right) d s \\
& -\int_{0}^{t} \mathcal{R}(t-s) \int_{0}^{s} B(s-\xi) f\left(\xi, \widetilde{u}_{\xi}\right) d \xi d s+\int_{0}^{t} \mathcal{R}(t-s) g\left(s, \widetilde{u}_{s}\right) d s, \quad t \geq 0
\end{aligned}
$$

where $\widetilde{u}: \mathbb{R} \rightarrow X$ is the function defined by the relation $\widetilde{u}_{0}=\varphi$ and $\widetilde{u}=u$ on $[0, \infty)$. From the hypothesis (P1), (PF) and (PG) we obtain that Γu is well defined and that $\Gamma u \in C([0, \infty) ; X)$. Moreover, from Lemma 2.19, we have that function $s \mapsto$ $\widetilde{u}_{s} \in S A P_{\omega}(\mathcal{B})$. By Lemma 2.17, we conclude that $s \mapsto f\left(s, \widetilde{u}_{s}\right) \in S A P_{\omega}([0, \infty), Y)$ and $s \mapsto g\left(s, \widetilde{u}_{s}\right) \in S A P_{\omega}([0, \infty), X)$. From Lemmas 2.18, 3.1 and 3.2 it follows that $\Gamma u \in S A P_{\omega}(X)$. Using the same argument of Theorem 3.3 proof, we obtain that $\Gamma\left(\mathfrak{D}_{\omega}\right) \subset \mathfrak{D}_{\omega}$ and Γ is a contraction. This completes the proof.

Proposition 3.6. Let $f:[0, \infty) \times \mathcal{B} \rightarrow Y$ and $g:[0, \infty) \times \mathcal{B} \rightarrow X$ be asymptotically uniformly continuous on bounded subset $K \subset \mathcal{B}$, and $\lim _{t \rightarrow \infty} \| f(t+n \omega, \psi)-$ $f(t, \psi)\left\|_{Y}=0, \lim _{t \rightarrow \infty}\right\| g(t+n \omega, \psi)-g(t, \psi) \|=0$ uniformly for $\psi \in K$ and $n \in \mathbb{N}$. Assume that \mathcal{B} is a fading memory space and (P1), (P2), (PF) and (PG) hold. Then there exists $\varepsilon>0$ such that for each $\varphi \in B_{\varepsilon}(0, \mathcal{B})$ there exists a unique asymptotically ω-periodic mild solution $u(\cdot, \varphi)$ of $1.1-1.2$ on $[0, \infty)$.

Proof. We define the space

$$
\mathfrak{D}_{0}=\left\{x \in S_{\omega}(X): x(0)=\varphi(0),\|x(t)\| \leq r, t \geq 0\right\}
$$

endowed with the metric $d(u, v)=\|u-v\|_{\infty}$. It is easy see that \mathfrak{D}_{0} is a closed subspace of S_{ω}. We define the operator $\Gamma: \mathfrak{D}_{0} \rightarrow C([0, \infty) ; X)$ by

$$
\begin{aligned}
\Gamma u(t)= & \mathcal{R}(t)(\varphi(0)+f(0, \varphi))-f\left(t, \widetilde{u}_{t}\right)-\int_{0}^{t} A \mathcal{R}(t-s) f\left(s, \widetilde{u}_{s}\right) d s \\
& -\int_{0}^{t} \mathcal{R}(t-s) \int_{0}^{s} B(s-\xi) f\left(\xi, \widetilde{u}_{\xi}\right) d \xi d s+\int_{0}^{t} \mathcal{R}(t-s) g\left(s, \widetilde{u}_{s}\right) d s, \quad t \geq 0
\end{aligned}
$$

where $\widetilde{u}: \mathbb{R} \rightarrow X$ is the function defined by the relation $\widetilde{u}_{0}=\varphi$ and $\widetilde{u}=u$ on $[0, \infty)$. We observe that $\left.\mathcal{R}(\cdot)(\varphi(0)+f(0, \varphi)) \in C_{b}([0, \infty), X)\right)$ and

$$
\lim _{t \rightarrow \infty}(\mathcal{R}(t+n \omega)-R(t))(\varphi(0)+f(0, \varphi))=0
$$

uniformly in $n \in \mathbb{N}$. Moreover, from [36, Lemma 3.16] and Lemma 2.23, we obtain that $\lim _{t \rightarrow \infty}\left\|f\left(t+n \omega, \widetilde{u}_{t+n \omega}\right)-f\left(t, \widetilde{u}_{t}\right)\right\|_{Y}=0$ and $\lim _{t \rightarrow \infty} \| g\left(t+n \omega, \widetilde{u}_{t+n \omega}\right)-$ $g\left(t, \widetilde{u}_{t}\right) \|=0$, uniformly in $n \in \mathbb{N}$. By Lemmas 2.24, 3.1 and 3.2 we have that

$$
\lim _{t \rightarrow \infty} \Gamma x(t+n \omega)-\Gamma x(t)=0
$$

uniformly in $n \in \mathbb{N}$. From Lemma 2.22 and using the same argument of the Theorem 3.3 proof we conclude that $u=\Gamma u \in \mathfrak{D}_{0}$ and u is asymptotically ω-periodic. The proof is ended.

4. Applications

In this section we study the existence of several type of asymptotically periodicity solutions of the partial neutral integro-differential system

$$
\begin{gather*}
\frac{\partial}{\partial t}\left[u(t, \xi)+\int_{-\infty}^{t} \int_{0}^{\pi} b(s-t, \eta, \xi) u(s, \eta) d \eta d s\right] \\
=\left(\frac{\partial^{2}}{\partial \xi^{2}}+\nu\right)\left[u(t, \xi)+\int_{0}^{t} e^{-\gamma(t-s)} u(s, \xi) d s\right]+\int_{-\infty}^{t} a_{0}(s-t) u(s, \xi) d s \tag{4.1}\\
u(t, 0)=u(t, \pi)=0, \quad u(\theta, \xi)=\varphi(\theta, \xi) \tag{4.2}
\end{gather*}
$$

for $(t, \xi) \in[0, a] \times[0, \pi], \theta \leq 0, \nu<0$ and $\gamma>0$. Moreover, we have identified $\varphi(\theta)(\xi)=\varphi(\theta, \xi)$.

To represent this system in the abstract form $\sqrt{1.1}-(\sqrt{1.2})$, we choose the spaces $X=L^{2}([0, \pi])$ and $\mathcal{B}=C_{0} \times L^{2}(\rho, X)$, see Example 2.3 for details. We also consider the operators $A, B(t): D(A) \subseteq X \rightarrow X, t \geq 0$, given by $A x=x^{\prime \prime}+$ $\nu x, B(t) x=e^{-\gamma t} A x$ for $x \in D(A)=\left\{x \in X: x^{\prime \prime} \in X, x(0)=x(\pi)=0\right\}$. Moreover, A has discrete spectrum, the eigenvalues are $-n^{2}+\nu, n \in \mathbb{N}$, with corresponding eigenvectors $z_{n}(\xi)=\left(\frac{2}{\pi}\right)^{1 / 2} \sin (n \xi)$, the set of functions $\left\{z_{n}: n \in \mathbb{N}\right\}$ is an orthonormal basis of X and $T(t) x=\sum_{n=1}^{\infty} e^{-\left(n^{2}-\nu\right) t}\left\langle x, z_{n}\right\rangle z_{n}$ for $x \in X$. For $\alpha \in(0,1)$, from [35] we can define the fractional power $(-A)^{\alpha}: D\left((-A)^{\alpha}\right) \subset$ $X \rightarrow X$ of A is given by $(-A)^{\alpha} x=\sum_{n=1}^{\infty}\left(n^{2}-\nu\right)^{\alpha}\left\langle x, z_{n}\right\rangle z_{n}$, where $D\left((-A)^{\alpha}\right)=$ $\left\{x \in X:(-A)^{\alpha} x \in X\right\}$. In the next Theorem we consider $Y=D\left((-A)^{1 / 2}\right)$. We observe that $\rho(A) \supset\{\lambda \in \mathbb{C}: \operatorname{Re}(\lambda) \geq \nu\}$ and $\|\lambda R(\lambda, A)\| \leq M_{1}$ for $\operatorname{Re}(\lambda) \geq \nu$, from [31, Proposition 2.2.11] we obtain that A is a sectorial operator satisfying $\|R(\lambda, A)\| \leq \frac{M}{|\lambda-\nu|}, M>0$, therefore (H1) is satisfied. Moreover, it is easy to see that conditions (H2)-(H3) are satisfied with $b(t)=e^{-\gamma t}$, and $D=C_{0}^{\infty}([0, \pi])$ the space of infinitely differentiable functions that vanishes at $\xi=0$ and $\xi=\pi$. Under the above conditions we can represent the system

$$
\begin{gather*}
\frac{\partial u(t, \xi)}{\partial t}=\left(\frac{\partial^{2}}{\partial \xi^{2}}+\nu\right)\left[u(t, \xi)+\int_{0}^{t} e^{-\gamma(t-s)} u(s, \xi) d s\right] \tag{4.3}\\
u(t, \pi)=u(t, 0)=0 \tag{4.4}
\end{gather*}
$$

in the abstract for

$$
\begin{gathered}
\frac{d x(t)}{d t}=A x(t)+\int_{0}^{t} B(t-s) x(s) d s \\
x(0)=z \in X
\end{gathered}
$$

We define the functions $f, g: \mathcal{B} \rightarrow X$ by

$$
\begin{gathered}
f(\psi)(\xi)=\int_{-\infty}^{0} \int_{0}^{\pi} b(s, \eta, \xi) \psi(s, \eta) d \eta d s \\
g(\psi)(\xi)=\int_{-\infty}^{0} a_{0}(s) \psi(s, \xi) d s
\end{gathered}
$$

where
(i) The function $a_{0}: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $L_{g}:=\left(\int_{-\infty}^{0} \frac{\left(a_{0}(s)\right)^{2}}{\rho(s)} d s\right)^{\frac{1}{2}}<\infty$.
(ii) The functions $b(\cdot), \frac{\partial b(s, \eta, \xi)}{\partial \xi}$ are measurable, $b(s, \eta, \pi)=b(s, \eta, 0)=0$ for all (s, η) and

$$
L_{f}:=\max \left\{\left(\int_{0}^{\pi} \int_{-\infty}^{0} \int_{0}^{\pi} \rho^{-1}(\theta)\left(\frac{\partial^{i}}{\partial \xi^{i}} b(\theta, \eta, \xi)\right)^{2} d \eta d \theta d \xi\right)^{1 / 2}: i=0,1\right\}<\infty
$$

Moreover, f, g are bounded linear operators, $\|f\|_{\mathcal{L}(\mathcal{B}, X)} \leq L_{f},\|g\|_{\mathcal{L}(\mathcal{B}, X)} \leq L_{g}$ and a straightforward estimation using (ii) shows that $f(I \times \mathcal{B}) \subset D\left((-A)^{\frac{1}{2}}\right)$ and

$$
\left\|(-A)^{\frac{1}{2}} f(t, \cdot)\right\|_{\mathcal{L}(\mathcal{B}, X)} \leq L_{f}
$$

for all $t \in I$. This allows us to rewrite the system (4.1)-(4.2) in the abstract form (1.1)- 1.2 with $u_{0}=\varphi \in \mathcal{B}$.

Theorem 4.1. Assume that the previous conditions are verified. Let $2<K<\gamma$ and $\nu<0$ such that $|\nu|>\max \{M(K+1+\gamma), \gamma\}$. If $\frac{1}{2 \mathfrak{K}} \geq L_{f} \mu+\frac{M}{|r+\nu|} L_{g}$, where $\mu=\left(\left\|(-A)^{-\frac{1}{2}}\right\|+M\left(2+\frac{e^{r+\nu}}{|r+\nu|}+\frac{1}{|r+\nu| \gamma}\right)\right)$, then there exists $R>0$ such that if $\|\varphi\|_{\mathcal{B}}<R$,
(i) there exists a unique mild solution $u(\cdot) \in A A A_{c}(X)$ of 4.1)- 4.2).
(ii) there exists a unique mild solution $u(\cdot) \in S A P_{\omega}(X)$ of 4.1)-(4.2).
(iii) there exists a unique asymptotically ω-periodic mild solution $u(\cdot)$ of 4.1)4.2.

Proof. By using a similar procedure as in the proof of [16, Theorem 5.1] we obtain an exponentially stable resolvent operator for the system 4.3)-4.4. From the previous facts, Theorem 2.6 and Theorem 2.7, the assumption (P1) is satisfied. Observing that

$$
M\|\varphi\|_{\mathcal{B}}\left(1+L_{f}\right)<+\infty
$$

since $\frac{r}{2 \mathfrak{R}} \geq L_{f} \mu+\frac{M}{\beta} L_{g}$, there exists a constant r_{0} such that if $R \geq r_{0}$, we have

$$
\frac{R}{2 \mathfrak{K}}-L_{f} \mu R-\frac{M}{\beta} L_{g} R>M\|\varphi\|_{\mathcal{B}}\left(1+L_{f}\right)
$$

Now, for $\|\varphi\|_{\mathcal{B}}<R$, from Theorem 3.3 we obtain that there exists a unique mild solution of 4.1)-4.2 such that $u(\cdot) \in A A A_{c}(X)$. By Proposition 3.5 there exists a unique mild solution $u(\cdot) \in S A P_{\omega}(X)$ of 4.1$)-4.2$ and from Proposition 3.6 it follows that there exists a unique asymptotically ω-periodic mild solution $u(\cdot)$ of (4.1)-(4.2). The proof is complete.

References

[1] R. P. Agarwal, B. de Andrade, C. Cuevas; On type of periodicity and ergodicity to a class of fractional order differential equations, Advances in Difference Equations, 25 (2010). doi:10.1155/2010/179750.
[2] D. Bugajewski, G. M. N'Guérékata; On the topological structure of almost automorphic and asymptotically almost automorphic solutions of differential and integral equations in abstract spaces, Nonlinear Anal. 59 (8) (2004) 1333-1345.
[3] D. Bugajewski, T. Diagana; Almost automorphy of the convolution operator and applications to differential and functional-differential equations, Nonlinear Stud. 13 (2) (2006) 129-140.
[4] A. Caiedo, C Cuevas; S-asymptotically ω-periodic solutions of abstract partial neutral integrodifferential equations, Funct. Differ. Equ. 17 (2010) 1-12.
[5] S. Calzadillas, C. Lizama; Bounded mild solutions of perturbed Volterra equations with infinite delay, Nonlinear Anal. 72 (2010) 3976-3983.
[6] C. Cuevas, J. C. de Souza; S-asymptotically ω-periodic solutions of semilinear fractional integro-differential equations, Applied Math. Letters 22 (2009) 865-870.
[7] C. Cuevas, J. C. de Souza; Existence of S-asymptotically ω-periodic solutions for fractional order functional Integro- Differential Equations with infinite delay, Nonlinear Anal. 72 (2010) 1683-1689.
[8] T. Diagana, H. Henrquez, E. Hernndez; Almost automorphic mild solutions to some partial neutral functional-differential equations and applications, Nonlinear. Anal. 69 (1) (2008) 1485-1493.
[9] T. Diagana, E. Hernndez, J. P. C. dos Santos; Existence of asymptotically almost automorphic solutions to some abstract partial neutral integro-differential equations, Nonlinear. Anal. 71 (1) (2009) 248-257.
[10] T. Diagana, G. M. N'Guérékata; Almost automorphic solutions to semilinear evolution equations, Funct. Differ. Equ. 13 (2) (2006) 195-206.
[11] T. Diagana, G. M. N'Guérékata; Almost automorphic solutions to some classes of partial evolution equations, Appl. Math. Lett. 20 (4) (2007) 462-466.
[12] T. Diagana, G. M. N'Guérékata, N. V. Minh; Almost automorphic solutions of evolution equations, Proc. Amer. Math. Soc. 132 (11) (2004) 3289-3298.
[13] H. S. Ding, T. Xiao, J. Liang; Asymptotically almost automorphic solutions for some integrodifferential equations with nonlocal initial conditions, J. Math. Anal. Appl. 338 (1) (2008) 141-151.
[14] J. P. C. dos Santos; On state-dependent delay partial neutral functional integro-differential equations, Appl. Math. Comp. 216 (5) (2010) 1637-1644.
[15] J. P. C. Dos Santos, H. Henrquez, E. Hernández; Existence results for neutral integrodifferential equations with unbounded delay, to apper Journal Integral Eq. and Applictions.
[16] J. P. C. dos Santos, S. M. Guzzo, M. N. Rabelo; Asymptotically almost periodic solutions for abstract partial neutral integro-differential equation, Ad. Difference Equ. 26 (2010). doi:10.1155/2010/310951
[17] K. Ezzinbi, G. M. N'Guérékata; A Massera type theorem for almost automorphic solutions of functional differential equations of neutral type, J. Math. Anal. Appl. 316 (2006) 707-721.
[18] R. Grimmer, J. Prüss; On linear Volterra equations in Banach spaces. Hyperbolic partial differential equations II, Comput. Math. Appl. 11 (1985) 189-205.
[19] J. K. Hale; Partial neutral functional-differential equations, Rev. Roumaine Math Pures Appl. 39 (4) (1994) 339-344.
[20] J. Hale, S. M. Lunel; Introduction to Functional-differential Equations. Applied Mathematical Sciences, 99. Springer-Verlag, New York, 1993.
[21] H. R. Henríquez, E. Hernández, J. P. C. dos Santos; Asymptotically almost periodic and almost periodic solutions for partial neutral integrodifferential equations, Z. Anal. Anwend. 26 (3) (2007) 261-375.
[22] H. R. Henríquez, M. Pierri, P. Taboas; On S-asymptotically ω-periodic functions on Banach spaces and applications, J. Math. Anal. Appl. 343 (2) (2008), 1119-1130.
[23] H. Henríquez, M. Pierri, P. Táboas; Existence of S-assymptotically ω-periodic solutions for abstract neutral equations, Bull. Austral. Math. Soc. 78 (2008) 365-382.
[24] H. Henriquez, E. Hernández, J. P. C. dos Santos; Existence Results for Abstract Partial Neutral Integro-differential Equation with Unbounded Delay, E. J. Qualitative Theory of Diff. Equ. 29 (2009) 1-23.
[25] E. Hernández; Existence results for partial neutral integrodifferential equations with unbounded delay. J. Math. Anal. Appl 292 (1) (2004) 194-210.
[26] E. Hernández, J. P. C. dos Santos; Asymptotically almost periodic and almost periodic solutions for a class of partial integrodifferential equations, Electron. J. Differential Equations Vol. 2006 (2006), no. 38, 1-8.
[27] E. Hernández, J. P. C. dos Santos; Existence results for partial neutral integro-differential equations with unbounded delay, Applicable Anal. 86 (2) (2007) 223-237.
[28] E. Hernández, H. Henríquez; Existence results for partial neutral functional differential equations with unbounded delay, J. Math. Anal. Appl. 221 (2) (1998) 452-475.
[29] E. Hernández and H. R. Henríquez; Existence of periodic solutions of partial neutral functional differential equations with unbounded delay, J. Math. Anal. Appl 221 (2) (1998) 499-522.
[30] Y. Hino, S. Murakami, T. Naito; Functional-differential Equations with Infinite Delay. Lecture Notes in Mathematics, 1473. Springer-Verlag, Berlin, 1991.
[31] A. Lunardi; Analytic semigroup and optimal regularity in parabolic problems. Progress in Nolinear Differential Equations and their applications, 16. Birkhäuser, 1995.
[32] G. M. N'Guérékata; Sur les solutions presque automorphes d'équations différentielles abstraites, Ann. Sc. Math. Québec. vol. 1 (1981) 69-79.
[33] G. M. N'Guérékata; Almost automorphic functions and almost periodic functions in abstract spaces, Kluwer Academic/Plenum Publishers, New York,London, Moscow, 2001.
[34] G. M. N'Guérékata; Topics in almost automorphy, Springer, New York, Boston, Dordrecht, London, Moscow, 2005.
[35] A. Pazy; Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer-Verlag, New-York, (1983).
[36] M. Pierri; S-asymptotically ω-periodic functions on Banach spaces and applications to differential equations, Ph.D. Thesis, Universidade de São Paulo, Brazil, 2009.
[37] J. Wu, H. Xia; Rotating waves in neutral partial functional-differential equations, J. Dynam. Diff. Equ. 11 (2) (1999) 209-238.
[38] J. Wu, H. Xia; Self-sustained oscillations in a ring array of coupled lossless transmission lines, J. Diff. Equ. 124 (1) (1996) 247-278.
[39] J. Wu; Theory and Applications of Partial Functional-differential Equations. Applied Mathematical Sciences, 119. Springer-Verlag, New York, 1996.
[40] S. Zaidman; Almost-periodic Functions in Abstract Spaces. Research Notes in Mathematics, 126. Pitman (Advanced Publishing Program), Boston, MA, 1985.
[41] W. A. Veech; Almost automorphic functions, Proc. Nat. Acad. Sci. USA 49 (1963) 462-464.
[42] S. Zaidman; Almost automorphic solutions of some abstract evolution equations. II, Istit. Lombardo. Accad. Sci. Lett. Rend. A 111 (2) (1977) 260-272.
[43] M. Zaki; Almost automorphic solutions of certain abstract differential equations, Ann. Mat. Pura Appl 101 (4) (1974) 91-114.

José Paulo C. dos Santos
Instituto de Ciências Exatas - Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, 37130-000 Alfenas - MG, Brazil

E-mail address: zepaulo@unifal-mg.edu.br
Sandro M. Guzzo
Universidade Estadual do Oeste do Paraná - UnioEste, Colegiado do curso de Matemática, Rua Universitária, 2069. Caixa Postal 711, 85819-110 Cascavel - PR, Brazil

E-mail address: smguzzo@gmail.com

[^0]: 2000 Mathematics Subject Classification. 45K05, 34K40, 34K14, 45N05.
 Key words and phrases. Integro-differential equations; neutral differential equations; asymptotically almost periodic; asymptotic compact almost automorphic;
 S-asymptotically ω-periodic; asymptotically ω-periodic.
 © 2013 Texas State University - San Marcos.
 Submitted August 4, 2012. Published January 28, 2013.
 J. C. dos Santos was supported by grant APQ-00748-12 from FAPEMIG/Brazil.

