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SOLUTIONS IN SEVERAL TYPES OF PERIODICITY FOR
PARTIAL NEUTRAL INTEGRO-DIFFERENTIAL EQUATION

JOSÉ PAULO C. DOS SANTOS, SANDRO M. GUZZO

Abstract. In this article we study the existence of mild solutions in sev-

eral types of periodicity for partial neutral integro-differential equations with
unbounded delays.

1. Introduction

In this article we study the existence of several types of mild solutions for the
partial neutral integro-differential equation

d

dt
(x(t) + f(t, xt)) = Ax(t) +

∫ t

0

B(t− s)x(s)ds+ g(t, xt), (1.1)

x0 = ϕ ∈ B, (1.2)

where A : D(A) ⊂ X → X and B(t) : D(B(t)) ⊂ X → X, t ≥ 0, are closed linear
operators; (X, ‖·‖) is a Banach space; the history xt : (−∞, 0]→ X, xt(θ) = x(t+θ),
belongs to an abstract phase space B defined axiomatically, and f, g : I × B → X
are appropriated functions.

The literature relative to ordinary neutral differential equations is very extensive,
thus we suggest the Hale and Lunel book [20] concerning this matter. Referring
to partial neutral functional differential equations, we cite the pioneer articles Hale
[19] and Wu [37, 38, 39] for finite delay equations, Hernández and Henriquez [28,
29], Hernández [25] for the unbounded delay, Hernández and dos Santos [27] and
Henŕıquez et al. [21, 24] and Dos Santos et al. [14, 16, 15] for partial neutral
integro-differential equations with unbounded delay.

The existence of almost automorphic, asymptotically almost automorphic, al-
most periodic, asymptotically almost periodic, S-asymptotically ω-periodic and
asymptotically ω-periodic solutions to differential equations is among the most
attractive topics in mathematical analysis due to their possible applications in
areas such as physics, economics, mathematical biology, engineering, etc. (cf.
[1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 16, 17, 23, 26, 33, 34, 41, 42, 43]). The concept
of asymptotically almost automorphic, was introduced in the literature in the early
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eighties by N’Guérékata [32]. However, the literature concerning S-asymptotically
ω-periodic functions with values in Banach spaces is recent (cf [4, 6, 7, 22, 23]).
The existence of asymptotically almost automorpic, S-asymptotically ω-periodic
functions and asymptotically ω-periodic for the partial neutral system (1.1)-(1.2)
is an untreated topic in the literature and this fact is the main motivation of the
present work.

This paper is organized in four sections. In Section 2 we mention a few results
and notations related with resolvent of operators and of several types of periodicity.
In Section 3 we study the existence of several types of periodicity mild solutions
to the partial neutral system (1.1)-(1.2). In Section 4, we discuss the existence
and uniqueness of several types of periodicity solution to a concrete partial neutral
integro-differential equation with delay, as an illustration to our abstract results.

2. Preliminaries

Let (Z, ‖·‖Z) and (W, ‖·‖W ) be Banach spaces. We denote by L(Z,W ) the space
of bounded linear operators from Z into W endowed with norm of operators, and
we write simply L(Z) when Z = W . By R(Q) we denote the range of a map Q and
for a closed linear operator P : D(P ) ⊆ Z →W , the notation [D(P )] represents the
domain of P endowed with the graph norm, ‖z‖1 = ‖z‖Z + ‖Pz‖W , z ∈ D(P ). In
the case Z = W , the notation ρ(P ) stands for the resolvent set of P , and R(λ, P ) =
(λI − P )−1 is the resolvent operator of P . Furthermore, for appropriate functions
K : [0,∞) → Z and S : [0,∞) → L(Z,W ), the notation K̂ denotes the Laplace
transform of K, and S ∗K the convolution between S and K, which is defined by
S∗K(t) =

∫ t
0
S(t−s)K(s)ds. The notation, Br(x, Z) stands for the closed ball with

center at x and radius r > 0 in Z. As usual, C0([0,∞), Z) represents the sub-space
of Cb([0,∞), Z) formed by the functions which vanish at infinity and Cω([0,∞), X)
denote the spaces Cω([0,∞), X) = {x ∈ Cb([0,∞), X) : x is ω-periodic }. If k :
R → W , we denote ‖k‖W,∞ = sups∈R ‖k(s)‖W or if k : [0,∞) → W , we denote
‖k‖W,∞ = sups∈[0,∞) ‖k(s)‖W .

In this work we will employ an axiomatic definition of the phase space B similar
at those in [30]. More precisely, B will denote a vector space of functions defined
from (−∞, 0] into X endowed with a semi-norm denoted by ‖ · ‖B and such that
the following axioms hold:

(A1) If x : (−∞, σ + b)→ X with b > 0 is continuous on [σ, σ + b) and xσ ∈ B,
then for each t ∈ [σ, σ + b) the following conditions hold:

(i) xt is in B,
(ii) ‖x(t)‖ ≤ H‖xt‖B,

(iii) ‖xt‖B ≤ K(t− σ) sup{‖x(s)‖ : σ ≤ s ≤ t}+M(t− σ)‖xσ‖B,
where H > 0 is a constant, and K,M : [0,∞) 7→ [1,∞) are functions such
that K(·) and M(·) are respectively continuous and locally bounded, and
H,K,M are independent of x(·).

(A2) If x(·) is a function as in (A1), then xt is a B-valued continuous function
on [σ, σ + b).

(B1) The space B is complete.
(C1) If (ϕn)n∈N is a sequence in Cb((−∞, 0], X) formed by functions with com-

pact support such that ϕn → ϕ uniformly on compact, then ϕ ∈ B and
‖ϕn − ϕ‖B → 0 as n→∞.
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Definition 2.1. Let S(t) : B → B be the C0-semigroup defined by S(t)ϕ(θ) = ϕ(0)
on [−t, 0] and S(t)ϕ(θ) = ϕ(t+θ) on (−∞,−t]. The phase space B is called a fading
memory if ‖S(t)ϕ‖B → 0 as t→∞ for each ϕ ∈ B with ϕ(0) = 0.

Remark 2.2. In this work we assume there exists positive K such that

max{K(t),M(t)} ≤ K

for each t ≥ 0. Observe that this condition is verified, for example, if B is a fading
memory, see [30, Proposition 7.1.5].

Example 2.3. The phase space Cr × Lp(ρ,X). Let r ≥ 0, 1 ≤ p < ∞ and
let ρ : (−∞,−r] → R be a nonnegative measurable function which satisfies the
conditions (g-5), (g-6) in the terminology of [30]. Briefly, this means that ρ is
locally integrable and there exists a non-negative, locally bounded function γ on
(−∞, 0] such that ρ(ξ + θ) ≤ γ(ξ)ρ(θ), for all ξ ≤ 0 and θ ∈ (−∞,−r) \Nξ, where
Nξ ⊆ (−∞,−r) is a set with Lebesgue measure zero. The space Cr × Lp(ρ,X)
consists of all classes of functions ϕ : (−∞, 0] → X such that ϕ is continuous on
[−r, 0], Lebesgue-measurable, and ρ‖ϕ‖p is Lebesgue integrable on (−∞,−r). The
seminorm in Cr × Lp(ρ,X) is defined by

‖ϕ‖B := sup{‖ϕ(θ)‖ : −r ≤ θ ≤ 0}+
(∫ −r
−∞

ρ(θ)‖ϕ(θ)‖pdθ
)1/p

.

The space B = Cr×Lp(ρ;X) satisfies axioms (A1), (A2), (B1). Moreover, when r =
0 and p = 2, we can take H = 1, M(t) = γ(−t)1/2 and K(t) = 1 + (

∫ 0

−t ρ(θ) dθ)1/2,
for t ≥ 0 and

K =
(

sup
s≤0
|γ(s)1/2|+

(
1 + (

∫ 0

−∞
ρ(θ)dθ)1/2

))
.

See [30, Theorem 1.3.8] for details.

For better comprehension of the subject we shall introduce the following defini-
tions, hypothesis and results. Throughout the rest of the paper we always assume
that the abstract integro-differential problem

dx(t)
dt

= Ax(t) +
∫ t

0

B(t− s)x(s) ds, (2.1)

x(0) = x ∈ X. (2.2)

Definition 2.4. A one-parameter family of bounded linear operators (R(t))t≥0

on X is called a resolvent operator of (2.1)-(2.2) if the following conditions are
satisifed.

(a) Function R(·) : [0,∞) → L(X) is strongly continuous and R(0)x = x for
all x ∈ X.

(b) For x ∈ D(A), R(·)x ∈ C([0,∞), [D(A)]) ∩ C1([0,∞), X), and

dR(t)x
dt

= AR(t)x+
∫ t

0

B(t− s)R(s)xds, (2.3)

dR(t)x
dt

= R(t)Ax+
∫ t

0

R(t− s)B(s)xds, (2.4)

for every t ≥ 0,
(c) There exists constants M > 0, δ such that ‖R(t)‖ ≤Meδt for every t ≥ 0.
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Definition 2.5. A resolvent operator (R(t))t≥0 of (2.1)-(2.2) is called exponen-
tially stable if there exists positive constants M,β such that ‖R(t)‖ ≤Me−βt.

In this work we assume that the following conditions are satisfied:
(H1) Operator A : D(A) ⊆ X → X is the infinitesimal generator of an analytic

semigroup (T (t))t≥0 on X, and there are constants M0 > 0, ω ∈ R and
ϑ ∈ (π/2, π) such that ρ(A) ⊇ Λω,ϑ = {λ ∈ C : λ 6= ω, | arg(λ − ω)| < ϑ}

and ‖R(λ,A)‖ ≤ M0

|λ− ω|
for all λ ∈ Λω,ϑ.

(H2) For all t ≥ 0, B(t) : D(B(t)) ⊆ X → X is a closed linear operator, D(A) ⊆
D(B(t)) and B(·)x is strongly measurable on (0,∞) for each x ∈ D(A).
There exists b(·) ∈ L1([0,∞)) such that b̂(λ) exists for Re(λ) > 0 and
‖B(t)x‖ ≤ b(t)‖x‖1 for all t > 0 and x ∈ D(A). Moreover, the operator
valued function B̂ : Λω,π/2 → L([D(A)], X) has an analytical extension
(still denoted by B̂) to Λω,ϑ such that ‖B̂(λ)x‖ ≤ ‖B̂(λ)‖ ‖x‖1 for all
x ∈ D(A), and ‖B̂(λ)‖ = O( 1

|λ| ) as |λ| → ∞.
(H3) There exists a subspace D ⊆ D(A) dense in [D(A)] and positive constants

Ci, i = 1, 2, such that A(D) ⊆ D(A), B̂(λ)(D) ⊆ D(A), ‖AB̂(λ)x‖ ≤
C1‖x‖ for every x ∈ D and all λ ∈ Λω,ϑ.

For r > 0, θ ∈ (π2 , ϑ) and w ∈ R, set

Λr,ω,θ = {λ ∈ C : λ 6= ω, |λ| > r, | arg(λ− ω)| < θ},
and ω + Γir,θ, i = 1, 2, 3, the paths

ω + Γ1
r,θ = {ω + teiθ : t ≥ r},

ω + Γ2
r,θ = {ω + reiξ : −θ ≤ ξ ≤ θ},

ω + Γ3
r,θ = {ω + te−iθ : t ≥ r},

with ω + Γr,θ =
⋃3
i=1 ω + Γir,θ oriented counterclockwise. In addition, Ψ(G) is the

set
Ψ(G) = {λ ∈ C : G(λ) := (λI −A− B̂(λ))−1 ∈ L(X)}.

The next results establish that the operator family (R(t))t≥0 defined by

R(t) =

{
1

2πi

∫
ω+Γr,θ

eλtG(λ)dλ, t > 0,

I, t = 0.
(2.5)

is an exponentially stable resolvent operator for (2.1)-(2.2).

Theorem 2.6 ([16, Corollary 3.1]). Suppose that conditions (H1)–(H3) are sat-
isfied. Then, the function R(·) is a resolvent operator for system (2.1)-(2.2). If
ω+r < 0, the function R(·) is an exponentially stable resolvent operator for system
(2.1)-(2.2).

In the next result we denote by (−A)ϑ the fractional power of the operator (−A),
(see [35] for details).

Theorem 2.7 ([16, Corollary 3.2]). Suppose that conditions (H1)–(H3) are satis-
fied. Then there exists a positive number C such that

‖(−A)ϑR(t)‖ ≤

{
Ce(r+ω)t, t ≥ 1,
Ce(r+ω)tt−ϑ, t ∈ (0, 1),

(2.6)
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for all ϑ ∈ (0, 1). If ω + r < 0 and ϑ ∈ (0, 1), then there exists φ ∈ L1([0,∞)) such
that

‖(−A)ϑR(t)‖ ≤ φ(t). (2.7)

In the remaining of this section we discuss the existence of solutions to

dx(t)
dt

= Ax(t) +
∫ t

0

B(t− s)x(s) ds+ f(t), t ∈ [0, a], (2.8)

x(0) = z ∈ X, (2.9)

where f ∈ L1([0, a], X). In the sequel, R(·) is the operator function defined by
(2.5). We begin by introducing the following concept of classical solution.

Definition 2.8. A function x : [0, b]→ X, 0 < b ≤ a, is called a classical solution
of (2.8)-(2.9) on [0, b] if x ∈ C([0, b], [D(A)]) ∩ C1((0, b], X), the condition (2.9)
holds and the equation (2.8) is satisfied on [0, a].

Theorem 2.9 ([18, Theorem 2]). Let z ∈ X. Assume that f ∈ C([0, a], X) and
x(·) is a classical solution of (2.8)-(2.9) on [0, a]. Then

x(t) = R(t)z +
∫ t

0

R(t− s)f(s) ds, t ∈ [0, a]. (2.10)

Motivated by (2.10), we introduce the following concept.

Definition 2.10. A function u ∈ C([0, a], X) is called a mild solution of (2.8)-(2.9)
if

u(t) = R(t)z +
∫ t

0

R(t− s)f(s) ds, t ∈ [0, a].

To establish our existence result, motivated by the previous facts, we introduce
the following assumptions.

(P1) There exists a Banach space (Y, ‖ · ‖Y ) continuously included in X such
that the following conditions are verified.
(a) For every t ∈ (0,∞), R(t) ∈ L(X)∩L(Y, [D(A)]) and B(t) ∈ L(Y,X).

In addition, AR(·)x,B(·)x ∈ C((0,∞), X) for every x ∈ Y .
(b) There are positive constants M,β such that

‖R(s)‖ ≤Me−βs, s ≥ 0.

(c) There exists φ ∈ L1([0,∞)) such that ‖AR(t)‖L(Y,X) ≤ φ(t), t ≥ 0.
(PF) f : R× B → Y is a continuous function and there exists a continuous non

decreasing function Lf : [0,∞)→ [0,∞), such that

‖f(t, ψ1)− f(t, ψ2)‖Y ≤ Lf (r)‖ψ1 − ψ2‖B, (t, ψj) ∈ R×Br(0,B).

(PG) g : R× B → X is a continuous function and there exists a continuous and
non decreasing function Lg : [0,∞)→ [0,∞) such that

‖g(t, ψ1)− g(t, ψ2)‖ ≤ Lg(r)‖ψ1 − ψ2‖B, (t, ψj) ∈ R×Br(0,B).

(P2)

sup
r>0

[ r
2K
− Lf (2Kr)rµ− M

β
Lg(2Kr)r

]
≥ 1

2K
(M‖ϕ‖B +M‖f(0, ϕ)‖+ sup

t∈[0,∞)

‖f(t, 0)‖Y µ+
M

β
sup

t∈[0,∞)

‖g(t, 0)‖),
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where µ = (‖ic‖L(Y,X) + ‖φ‖L1 + M
β ‖b‖L1).

Motivated by the theory of resolvent operator, we introduce the following concept
of mild solution for (1.1)-(1.2).

Definition 2.11. A function u : (−∞, b] → X, 0 < b ≤ a, is called a mild
solution of (1.1)-(1.2) on [0, b], if u0 = ϕ ∈ B; u|[0,b] ∈ C([0, b] : X); the functions
τ 7→ AR(t − τ)f(τ, uτ ) and τ 7→

∫ τ
0
B(τ − ξ)f(ξ, uξ)dξ are integrable on [0, t) for

every t ∈ (0, b] and

u(t) = R(t)(ϕ(0) + f(0, ϕ))− f(t, ut)−
∫ t

0

AR(t− s)f(s, us)ds

−
∫ t

0

R(t− s)
∫ s

0

B(s− ξ)f(ξ, uξ)dξds+
∫ t

0

R(t− s)g(s, us)ds, t ∈ [0, b].

Now, we need to introduce some concepts, definitions and technicalities on
asymptotically almost periodical functions, S-asymptotically ω-periodic, asymp-
totically ω-periodic asymptotically and almost automorphic functions.

Definition 2.12. A function f ∈ C(R, Z) is almost periodic (a.p.) if for every
ε > 0 there exists a relatively dense subset of R, denoted by H(ε, f, Z), such that

‖f(t+ ξ)− f(t)‖Z < ε, t ∈ R, ξ ∈ H(ε, f, Z).

Definition 2.13. A function f ∈ C([0,∞), Z) is asymptotically almost periodic
(a.a.p.) if there exists an almost periodic function g(·) and w ∈ C0([0,∞), Z) such
that f(·) = g(·) + w(·).

In this paper, AP (Z) and AAP (Z) are the spaces

AP (Z) = {f ∈ C(R, Z) : f is a.p. },
AAP (Z) = {f ∈ C([0,∞), Z) : f is a.a.p. },

endowed with the norm of the uniform convergence. We know from the result in
[40] that AP (Z) and AAP (Z) are Banach spaces.

Definition 2.14. A function u ∈ Cb([0,∞), X) is said S-asymptotically ω-periodic
if

lim
t→∞

(u(t+ ω)− u(t)) = 0.

In the rest of this paper, the notation SAPω(X) stands for the space

SAPω(X) = {f ∈ Cb(R, X) : f is S-asymptotically ω-periodic },
endowed with the norm of the uniform convergence. It is clear that SAPω(X) is a
Banach space.

Definition 2.15. A continuous function f : [0,∞) × Z → W is said uniformly
S-asymptotically ω-periodic on bounded sets if f(·, x) is bounded for each x ∈ Z,
and for every ε > 0 and for all bounded set K ⊆ Z, there exists L(K, ε) ≥ 0 such
that ‖f(t, x)− f(t+ ω, x)‖W ≤ ε for every t ≥ L(K, ε) and all x ∈ K.

Definition 2.16. A continuous function f : [0,∞)×Z →W is said asymptotically
uniformly continuous on bounded sets, if for every ε > 0 and for all bounded
set K ⊆ Z there exist constants L(K, ε) ≥ 0 and δ = δ(K, ε) > 0 such that
‖f(t, x)− f(t, y)‖W ≤ ε for all t ≥ L(K, ε) and every x, y ∈ K with ‖x− y‖Z ≤ δ.



EJDE-2013/31 SOLUTIONS IN SEVERAL TYPES OF PERIODICITY 7

Lemma 2.17 ([22, Lemma 4.1]). Assume that f : [0,∞) × Z → W is a function
uniformly S-asymptotically ω-periodic on bounded sets and asymptotically uniformly
continuous on bounded sets. Let u ∈ SAPω(Z), then the function θ : R→W defined
by θ(t) = f(t, u(t)) is S-asymptotically ω-periodic.

By using a similar procedure to the proof of the [23, Lemma 3.5], we prove the
next result.

Lemma 2.18. Suppose that condition (P1)(b) holds and f ∈ SAPω(X). Let F :
[0,∞)→ X be the function defined by

F (t) :=
∫ t

0

R(t− s)f(s)ds.

Then F ∈ SAPω(X).

Lemma 2.19 ([23, Lemma 2.10]). Assume that B is a fading memory space and
u ∈ C(R, X) is such that u0 ∈ B and u|[0,∞) ∈ SAPω(X), then t 7→ ut ∈ SAPω(B).

Definition 2.20. A function u ∈ Cb([0,∞), X) is called asymptotically ω-periodic
if there exists an ω-periodic function v and w ∈ C0([0,∞), X) such that u = v+w.

Remark 2.21. In [23] the authors have shown that the set of the asymptotically
ω-periodic functions is properly contained in SAPω(W ).

Lemma 2.22 ([23, Remark 3.13]). If u ∈ Cb([0,∞), X) is a function such that
limt→∞(u(t + nω) − u(t)) = 0, uniformly for n ∈ N, then u(·) is asymptotically
ω-periodic.

In the rest of this paper, Sω(X) stands for the space

Sω(X) = {f ∈ Cb([0,∞), X) : lim
t→∞

f(t+ nω)− f(t) = 0, uniformly for n ∈ N},

endowed with the norm of the uniform convergence.

Lemma 2.23 ([4, Lemma 2.3]). Let f : [0,∞)×Z →W be asymptotically uniformly
continuous on bounded sets. Suppose that for all bounded subset K ⊂ Z, the set
{f(t, z) ≥ 0, z ∈ K} is bounded and limt→∞ ‖f(t+ nω, z)− f(t, z)‖ = 0, uniformly
for z ∈ K and n ∈ N. If u ∈ Sω(Z), then f(·, u(·)) ∈ Sω(W ).

Lemma 2.24. [4, Lemma 3.7] Suppose that condition (P1)(b) holds and f ∈
Sω(X). If F is the function defined by F (t) :=

∫ t
0
R(t − s)f(s)ds, t ≥ 0, then

F ∈ Sω(X).

We now introduce some notion of asymptotically almost automorphic.

Definition 2.25. A function f ∈ C(R, X) is said to be almost automorphic if
for every sequence of real numbers (s′n)n∈N, there exists a subsequence (sn)n∈N ⊂
(s′n)n∈N such that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R, and

f(t) = lim
n→∞

g(t− sn)

for all t ∈ R.
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It is well known that the range of an almost automorphic function is relatively
compact on X, and hence it is bounded. Moreover, the space of all almost au-
tomorphic functions, denoted by AA(X), endowed with the norm of the uniform
convergence is a Banach space [33].

Definition 2.26. A function f ∈ C([0,∞), Z) is said to be asymptotically al-
most automorphic if it can be written as f = g + h where g ∈ AA(Z) and
h ∈ C0([0,∞), Z). Denote by AAA(Z) the set of all such functions.

Definition 2.27. A function f ∈ C(R, Z) is said to be compact almost auto-
morphic if for every sequence of real numbers (σn)n∈N there exists a subsequence
(sn)n∈N ⊂ (σn)n∈N such that

g(t) := lim
n→∞

f(t+ sn),

f(t) = lim
n→∞

g(t− sn)

uniformly on compact subsets of R. The collection of those functions will be denoted
by AAc(Z).

Definition 2.28. A function f ∈ C(R × Z,W ) is said to be compact almost
automorphic in t ∈ R, if for every sequence of real numbers (σn)n∈N there exists a
subsequence (sn)n∈N ⊂ (σn)n∈N such that

g(t, z) := lim
n→∞

f(t+ sn, z),

f(t, z) = lim
n→∞

g(t− sn, z),

where the limits are uniform on compact subset of R, for each z ∈ Z. The space of
such functions will be denoted by AAc(Z,W ).

Definition 2.29. A continuous function f ∈ C([0,∞), Z) is said to be compact
asymptotically almost automorphic if it can be written as f = g + h where g ∈
AAc(Z) and h ∈ C0(R+, Z). Denote by AAAc(Z) the set of all such functions.

Definition 2.30. Let K ⊂ Z and I ⊂ R. Let CK(I × Z,W ) denote the collection
of functions f : I×Z →W such that f(t, ·) is uniformly continuous on K for every
t ∈ I ⊆ R.

Definition 2.31. A function f ∈ C([0,∞)×Z,W ) is said to be compact asymptot-
ically almost automorphic if it can be written as f = g + h, where g ∈ AAc(Z,W )
and h ∈ C0([0,∞)× Z,W ). Denote by AAAc(Z,W ) the set of all such functions.

Lemma 2.32 ([9, Lemma 3.3]). Let u ∈ AAAc(Z) and f ∈ AAAc(Z,W )∩CR(R×
Z,W ), where R = {u(t) : t ∈ R}. Then the function Φ : R→ W defined by Φ(t) =
f(t, u(t)) ∈ AAAc(W ).

Lemma 2.33 ([9, Lemma 3.4]). Suppose that condition (P1)-(b) holds and f ∈
AAAc(X). If F is the function defined by

F (t) :=
∫ t

0

R(t− s)f(s)ds, t ≥ 0,

then F ∈ AAAc(X).

Lemma 2.34 ([9, Lemma 3.5]). If u ∈ AAc(X), then the function s 7→ us belongs
to AAc(B). Moreover, if B is a fading memory space and u ∈ C(R, X) is such that
u0 ∈ B and u|[0,∞) ∈ AAAc(X), then t 7→ ut ∈ AAAc(B).
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3. Several types of periodicity of mild solutions

In this section we establish the existence of several type of periodicity for solu-
tions to partial neutral integro-differential equations system (1.1)-(1.2). For that,
we need to introduce a few preliminaries and important results. Following, we con-
sider the problem of the existence of compact asymptotically almost automorphic
solutions.

In the following, we let A(Z) stands for one of the spaces AAAc(Z), SAPω(Z)
or Sω(Z).

Lemma 3.1. Assume the condition (P1) is fulfilled. Let u ∈ A(Y ) and G(·) :
[0,∞)→ X be the function defined by

G(t) =
∫ t

0

R(t− s)
∫ s

0

B(s− τ)u(τ) dτds, t ≥ 0.

Then G(·) ∈ A(X).

Proof. First we consider the AAAc(Y ) case. By Lemma 2.33 is sufficient to prove
that H(t) =

∫ t
0
B(t− s)u(s)ds ∈ AAAc(Y ). Suppose u = k + h where k ∈ AAc(Y )

and h ∈ C0([0,∞), Y ). Then

H(t) =
∫ t

−∞
B(t− s)k(s)ds−

∫ 0

−∞
B(t− s)k(s)ds+

∫ t

0

B(t− s)h(s)ds

= w(t) + q(t),

where

w(t) =
∫ t

−∞
B(t− s)k(s)ds,

q(t) =
∫ t

0

B(t− s)h(s)ds−
∫ 0

−∞
B(t− s)k(s)ds.

For a given sequence (σn)n∈N of real numbers, fix a subsequence (sn)n∈N, and a
continuous functions v ∈ Cb(R, Y ) such that k(t+ sn) converges to v(t) in Y , and
v(t− sn) converges to k(t) in Y , uniformly on compact sets of R.

From the Bochner’s criterion related to integrable functions and the estimate

‖B(t− s)k(s)‖ = ‖B(t− s)‖L(Y,X)‖k(s)‖Y ≤ b(t− s)‖k(s)‖Y (3.1)

it follows that the function s 7→ B(t − s)k(s) is integrable over (−∞, t) for each
t ∈ R. Furthermore, since

w(t+ sn) =
∫ t

−∞
B(t− s)k(s+ sn)ds, t ∈ R, n ∈ N,

using the estimate (3.1) and the Lebesgue Dominated Convergence Theorem, it
follows that w(t+ sn) converges to z(t) =

∫ t
−∞B(t− s)v(s)ds for each t ∈ R.

The remaining task consists of showing that the convergence is uniform on all
compact subsets of R and that q(·) ∈ C0([0,∞), X). Let K ⊂ R be an arbitrary
compact and let ε > 0. Since h ∈ C0([0,∞), Y ) and k(·) ∈ AAc(Y ), there exists a
constant L and Nε such that K ⊂ [−L2 , L2 ] with∫ ∞

L
2

b(s)ds < ε,
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‖k(s+ sn)− v(s)‖Y ≤ ε, n ≥ Nε, s ∈ [−L,L],

‖h(s)‖Y ≤ ε, s ≥ L.
For each t ∈ K, one has

‖w(t+ sn)− z(t)‖

≤
∫ t

−∞
‖B(t− s)‖L(Y,X)‖k(s+ sn)− v(s)‖Y ds

≤
∫ −L
−∞

b(t− s)‖k(s+ sn)− v(s)‖Y ds+
∫ t

−L
b(t− s)‖k(s+ sn)− v(s)‖Y ds

≤ 2‖k‖Y,∞
∫ ∞
t+L

b(s)ds+ ε

∫ ∞
0

b(s)ds

≤ 2‖k‖Y,∞
∫ ∞
L
2

b(s)ds+ ε

∫ ∞
0

b(s)ds

≤ ε
(

2‖k‖Y,∞ +
∫ ∞

0

b(s)ds
)
,

which proves that the convergence is uniform on K, from the fact that the last
estimate is independent of t ∈ K. Proceeding as previously, one can similarly prove
that z(t − sn) converges to w uniformly on all compact subsets of R. Next, let us
show that q(·) ∈ C0([0,∞), X). For all t ≥ 2L we obtain

‖q(t)‖ ≤
∫ 0

−∞
‖B(t− s)‖L(Y,X)‖k(s)‖Y ds+

∫ t

0

‖B(t− s)‖L(Y,X)‖h(s)‖Y ds

≤
∫ 0

−∞
b(t− s)‖k(s)‖Y ds+

∫ t

t/2

b(t− s)‖h(s)‖Y ds+
∫ t/2

0

b(t− s)‖h(s)‖Y ds

≤
∫ ∞
L
2

b(s)ds‖k‖Y,∞ + ε

∫ t

t/2

b(s)ds+
∫ ∞
L
2

b(s)ds‖h‖Y,∞

≤ ε(‖k‖Y,∞ +
∫ ∞

0

b(s)ds+ ‖h‖Y,∞).

Now we consider the SAPω(Y ) case. From Lemma 2.18 is sufficient to prove
that

H(t) =
∫ t

0

B(t− s)u(s)ds

is SAPω(X). For all t ≥ 0,

‖H(t)‖ ≤
∫ t

0

‖B(t− s)‖L(Y,X)‖u(s)‖Y dτ

≤
∫ t

0

b(t− s)‖u(s)‖Y ds

≤ ‖u‖Y,∞
∫ ∞

0

b(s)ds.

This shows that H ∈ Cb([0,∞), X). Furthermore, for ω ≥ 0, we have for t ≥ L > 0,

‖H(t+ ω)−H(t)‖

= ‖
∫ t+ω

0

B(t+ ω − s)u(s)ds−
∫ t

0

B(t− s)u(s)ds‖
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≤
∫ ω

0

b(t+ ω − s)‖u(s)‖Y ds+ ‖
∫ t

0

B(t− s)u(s+ ω)ds−
∫ t

0

B(t− s)u(s)ds‖

≤ ‖u‖Y,∞
∫ ω

0

b(t+ ω − s)ds+
∫ t

0

‖B(t− s)(u(s+ ω)− u(s))‖ds

≤ ‖u‖Y,∞
∫ ω

0

b(t+ ω − s)ds+
∫ L

0

b(t− s)‖u(s+ ω)− u(s)‖Y ds

+
∫ t

L

b(t− s)‖u(s+ ω)− u(s)‖Y ds.

For all ε > 0, we choose L sufficiently large such that ‖u(s + ω) − u(s)‖Y < ε for
all s ≥ L and

∫∞
L
b(s)ds < ε. Hence, for t ≥ 2L we obtain

‖H(t+ ω)−H(t)‖ ≤ ‖u‖Y,∞
∫ t+ω

t

b(s)ds+ 2‖u‖Y,∞
∫ t

t−L
b(s)ds+ ε

∫ t−L

0

b(s)ds

≤ ‖u‖Y,∞ε+ 2‖u‖Y,∞ε+ ε

∫ t−L

0

b(s)ds

≤ ε
(

3‖u‖Y,∞ +
∫ ∞

0

b(s)ds
)
.

Finally, let us prove the Sω(Y ) case. From the Lemma 2.24 is sufficient prove that
limt→∞H(t+nω)−H(t) = 0, uniformly in n ∈ N, where H(t) =

∫ t
0
B(t−s)u(s)ds.

For all ε > 0, we choose L sufficiently large such that ‖u(s+ nω)− u(s)‖Y < ε for
all s ≥ L and

∫∞
L
b(s)ds < ε. Hence, for t ≥ 2L we obtain

‖H(t+ nω)−H(t)‖

≤ ‖
∫ t+nω

0

B(t+ nω − s)u(s)ds−
∫ t

0

B(t− s)u(s)ds‖

≤ ‖u‖Y,∞
∫ nω

0

b(t+ nω − s)ds+
∫ L

0

b(t− s)‖u(s+ nω)− u(s)‖Y ds

+
∫ t

L

b(t− s)‖u(s+ nω)− u(s)‖Y ds

≤ ‖u‖Y,∞
∫ t+nω

t

b(s)ds+ 2‖u‖Y,∞
∫ t

t−L
b(s)ds+ ε

∫ ∞
0

b(s)ds

≤ ε(3‖u‖Y,∞ +
∫ ∞

0

b(s)ds).

This completes the proof. �

Lemma 3.2. Let condition (P1)(c) hold and u be a function in A(Y ). If I :
[0,∞)→ X is the function defined by I(t) =

∫ t
0
AR(t−s)u(s)ds, then I(·) ∈ A(X).

Proof. All the AAAc(Y ), SAPω(Y ) and Sω(Y ) cases require small modifications in
the proof of Lemma 3.1. �

Theorem 3.3. Let f ∈ AAAc([0,∞)×B, Y ) and g ∈ AAAc([0,∞)×B, X). Assume
that B is a fading memory space and (P1), (P2), (PF), (PG) hold. Then there
exists ε > 0 such that for each ϕ ∈ Bε(0,B) there exists a unique mild solution
u(·, ϕ) ∈ AAAc(X) of (1.1)-(1.2).
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Proof. By the hypothesis there exists a constant r > 0 such that

[r − Lf (2Kr)2Krµ− M

β
Lg(2Kr)2Kr]

≥M‖ϕ‖B +M‖f(0, ϕ)‖+ sup
t∈[0,∞)

‖f(t, 0)‖Y µ+
M

β
sup

t∈[0,∞)

‖g(t, 0)‖,

where K is the constant introduced in Remark 2.2. We affirm that the assertion
holds for ε ≤ r. Let ϕ ∈ Bε(0,B) and the space

D = {x ∈ AAAc(X) : x(0) = ϕ(0), ‖x(t)‖ ≤ r, t ≥ 0}

endowed with the metric d(u, v) = ‖u − v‖∞, we define the operator Γ : D →
C([0,∞);X) by

Γu(t) = R(t)(ϕ(0) + f(0, ϕ))− f(t, ũt)−
∫ t

0

AR(t− s)f(s, ũs)ds

−
∫ t

0

R(t− s)
∫ s

0

B(s− ξ)f(ξ, ũξ)dξds+
∫ t

0

R(t− s)g(s, ũs)ds, t ≥ 0

where ũ : R → X is the function defined by the relation ũ0 = ϕ and ũ = u
on [0,∞). From the hypothesis (P1) (PF) and (PG) we obtain that Γu is well
defined and that Γu ∈ C([0,∞);X). Moreover, from Lemma 2.34, we have that
function s 7→ ũs ∈ AAAc(B). By Lemma 2.32, we conclude that s 7→ f(s, ũs) ∈
AAAc([0,∞), Y ) and s 7→ g(s, ũs) ∈ AAAc([0,∞), X). From Lemmas 2.33, 3.1, 3.2
and limt→∞ ‖R(t)(ϕ(0) + f(0, ϕ))‖ = 0, we obtain that Γu ∈ AAAc(X).

Next, we prove that Γ(·) is a contraction from D into D. If u ∈ D and t ≥ 0, we
obtain

‖Γu(t)‖
≤ ‖R(t)(ϕ(0) + f(0, ϕ))‖+ ‖ic‖L(Y,X)(‖f(t, ũt)− f(t, 0)‖Y + ‖f(t, 0)‖Y )

+
∫ t

0

‖AR(t− s)(f(s, ũs)− f(s, 0))‖ds+
∫ t

0

‖AR(t− s)f(s, 0)‖ds

+
∫ t

0

‖R(t− s)
∫ s

0

B(s− ξ)(f(ξ, ũξ)− f(ξ, 0))dξ‖ds

+
∫ t

0

‖R(t− s)
∫ s

0

B(s− ξ)f(ξ, 0)dξ‖ds

+
∫ t

0

‖R(t− s)(g(s, ũs)− g(s, 0))‖ds+
∫ t

0

‖R(t− s)g(s, 0)‖ds

≤M‖ϕ‖B +M‖f(0, ϕ)‖+ ‖ic‖L(Y,X)(Lf (‖ũt‖B)‖ũt‖B + sup
t∈[0,∞)

‖f(t, 0)‖Y )

+
∫ t

0

φ(t− s)Lf (‖ũs‖B)‖ũs‖Bds+ sup
t∈[0,∞)

‖f(t, 0)‖Y
∫ t

0

φ(s)ds

+
∫ t

0

Me−β(t−s)
∫ s

0

b(s− ξ)Lf (‖ũξ‖B)‖ũξ‖Bdξds

+ sup
t∈[0,∞)

‖f(t, 0)‖Y
∫ t

0

Me−β(t−s)
∫ s

0

b(s− ξ)dξds
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+
∫ t

0

Me−β(t−s)Lg(‖ũs‖B)‖ũs‖Bds+ sup
t∈[0,∞)

‖g(t, 0)‖
∫ t

0

Me−β(t−s)ds

≤M‖ϕ‖B +M‖f(0, ϕ)‖

+ sup
t∈[0,∞)

‖f(t, 0)‖Y (‖ic‖L(Y,X) +
∫ ∞

0

φ(s)ds+
M

β

∫ ∞
0

b(s)ds)

+
M

β
sup

t∈[0,∞)

‖g(t, 0)‖

+ Lf (‖ũt‖B)(‖ic‖L(Y,X) +
∫ ∞

0

φ(s)ds+
M

β

∫ ∞
0

b(s)ds)‖ũt‖B

+
M

β
Lg(‖ũt‖B)‖ũt‖B

≤M‖ϕ‖B +M‖f(0, ϕ)‖

+ sup
t∈[0,∞)

‖f(t, 0)‖Y (‖ic‖L(Y,X) + ‖φ‖L1 +
M

β
‖b‖L1)

+
M

β
sup

t∈[0,∞)

‖g(t, 0)‖+ Lf (2Kr)(‖ic‖L(Y,X) + ‖φ‖L1 +
M

β
‖b‖L1)2Kr

+
M

β
Lg(2Kr)2Kr ≤ r

where the inequality ‖ũt‖ ≤ 2Kr has been used and ic : Y → X represents the
continuous inclusion of Y on X. Thus, Γ(D) ⊂ D. On the other hand, for u, v ∈ D
we see that

‖Γu(t)− Γv(t)‖
≤ ‖ic‖L(Y,X)‖f(t, ũt)− f(t, ṽt)‖Y

+
∫ t

0

‖AR(t− s)‖L(Y,X)‖f(s, ũs)− f(s, ṽs)‖Y ds

+
∫ t

0

‖R(t− s)‖(
∫ s

0

‖B(s− ξ)‖L(Y,X)‖f(ξ, ũξ)− f(ξ, ṽξ)‖Y dξ)ds

+
∫ t

0

‖R(t− s)‖‖g(s, ũs)− g(s, ṽs)‖ds

≤
(
Lf (2Kr)Kµ+ Lg(2Kr)K

M

β

)
‖u− v‖∞

≤
(
Lf (2Kr)2Kµ+ Lg(2Kr)2K

M

β

)
‖u− v‖∞,

we observe that r − Lf (2Kr)2Krµ− M
β Lg(2Kr)2Kr > 0, this implies that

Lf (2Kr)2Kµ+
M

β
Lg(2Kr)2K < 1,

which shows that Γ(·) is a contraction from D into D. The assertion is now a
consequence of the contraction mapping principle. The proof is complete. �

Remark 3.4. A similar result was obtained by Dos Santos et al. [16] for the
existence of asymptotically almost periodic solutions for the system (1.1)-(1.2).
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Proposition 3.5. Let f : [0,∞)×B → Y and g : [0,∞)×B → X be uniformly S-
asymptotically ω-periodic on bounded sets and asymptotically uniformly continuous
on bounded sets. Assume that B is a fading memory space and (P1), (P2), (PF),
(PG) hold. Then there exists ε > 0 such that for each ϕ ∈ Bε(0,B) there exists a
unique mild solution u(·, ϕ) ∈ SAPω(X) of (1.1)-(1.2) on [0,∞).

Proof. Let the space

Dω = {x ∈ SAPω(X) : x(0) = ϕ(0), ‖x(t)‖ ≤ r, t ≥ 0}

endowed with the metric d(u, v) = ‖u − v‖∞, we define the operator Γ : Dω →
C([0,∞);X) by

Γu(t) = R(t)(ϕ(0) + f(0, ϕ))− f(t, ũt)−
∫ t

0

AR(t− s)f(s, ũs)ds

−
∫ t

0

R(t− s)
∫ s

0

B(s− ξ)f(ξ, ũξ)dξds+
∫ t

0

R(t− s)g(s, ũs)ds, t ≥ 0,

where ũ : R→ X is the function defined by the relation ũ0 = ϕ and ũ = u on [0,∞).
From the hypothesis (P1), (PF) and (PG) we obtain that Γu is well defined and
that Γu ∈ C([0,∞);X). Moreover, from Lemma 2.19, we have that function s 7→
ũs ∈ SAPω(B). By Lemma 2.17, we conclude that s 7→ f(s, ũs) ∈ SAPω([0,∞), Y )
and s 7→ g(s, ũs) ∈ SAPω([0,∞), X). From Lemmas 2.18, 3.1 and 3.2 it follows
that Γu ∈ SAPω(X). Using the same argument of Theorem 3.3 proof, we obtain
that Γ(Dω) ⊂ Dω and Γ is a contraction. This completes the proof. �

Proposition 3.6. Let f : [0,∞) × B → Y and g : [0,∞) × B → X be asymptoti-
cally uniformly continuous on bounded subset K ⊂ B, and limt→∞ ‖f(t+ nω, ψ)−
f(t, ψ)‖Y = 0, limt→∞ ‖g(t + nω, ψ) − g(t, ψ)‖ = 0 uniformly for ψ ∈ K and
n ∈ N. Assume that B is a fading memory space and (P1), (P2), (PF) and (PG)
hold. Then there exists ε > 0 such that for each ϕ ∈ Bε(0,B) there exists a unique
asymptotically ω-periodic mild solution u(·, ϕ) of (1.1)-(1.2) on [0,∞).

Proof. We define the space

D0 = {x ∈ Sω(X) : x(0) = ϕ(0), ‖x(t)‖ ≤ r, t ≥ 0}

endowed with the metric d(u, v) = ‖u − v‖∞. It is easy see that D0 is a closed
subspace of Sω. We define the operator Γ : D0 → C([0,∞);X) by

Γu(t) = R(t)(ϕ(0) + f(0, ϕ))− f(t, ũt)−
∫ t

0

AR(t− s)f(s, ũs)ds

−
∫ t

0

R(t− s)
∫ s

0

B(s− ξ)f(ξ, ũξ)dξds+
∫ t

0

R(t− s)g(s, ũs)ds, t ≥ 0,

where ũ : R → X is the function defined by the relation ũ0 = ϕ and ũ = u on
[0,∞). We observe that R(·)(ϕ(0) + f(0, ϕ)) ∈ Cb([0,∞), X)) and

lim
t→∞

(R(t+ nω)−R(t))(ϕ(0) + f(0, ϕ)) = 0,

uniformly in n ∈ N. Moreover, from [36, Lemma 3.16] and Lemma 2.23, we obtain
that limt→∞ ‖f(t + nω, ũt+nω) − f(t, ũt)‖Y = 0 and limt→∞ ‖g(t + nω, ũt+nω) −
g(t, ũt)‖ = 0, uniformly in n ∈ N. By Lemmas 2.24, 3.1 and 3.2 we have that

lim
t→∞

Γx(t+ nω)− Γx(t) = 0,
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uniformly in n ∈ N. From Lemma 2.22 and using the same argument of the Theorem
3.3 proof we conclude that u = Γu ∈ D0 and u is asymptotically ω-periodic. The
proof is ended. �

4. Applications

In this section we study the existence of several type of asymptotically periodicity
solutions of the partial neutral integro-differential system

∂

∂t

[
u(t, ξ) +

∫ t

−∞

∫ π

0

b(s− t, η, ξ)u(s, η)dηds
]

= (
∂2

∂ξ2
+ ν)

[
u(t, ξ) +

∫ t

0

e−γ(t−s)u(s, ξ)ds
]

+
∫ t

−∞
a0(s− t)u(s, ξ)ds,

(4.1)

u(t, 0) = u(t, π) = 0, u(θ, ξ) = ϕ(θ, ξ), (4.2)

for (t, ξ) ∈ [0, a] × [0, π], θ ≤ 0, ν < 0 and γ > 0. Moreover, we have identified
ϕ(θ)(ξ) = ϕ(θ, ξ).

To represent this system in the abstract form (1.1)-(1.2), we choose the spaces
X = L2([0, π]) and B = C0 × L2(ρ,X), see Example 2.3 for details. We also
consider the operators A,B(t) : D(A) ⊆ X → X, t ≥ 0, given by Ax = x′′ +
νx, B(t)x = e−γtAx for x ∈ D(A) = {x ∈ X : x′′ ∈ X, x(0) = x(π) = 0}.
Moreover, A has discrete spectrum, the eigenvalues are −n2 + ν, n ∈ N, with
corresponding eigenvectors zn(ξ) = ( 2

π )1/2 sin(nξ), the set of functions {zn : n ∈ N}
is an orthonormal basis of X and T (t)x =

∑∞
n=1 e

−(n2−ν)t〈x, zn〉zn for x ∈ X.
For α ∈ (0, 1), from [35] we can define the fractional power (−A)α : D((−A)α) ⊂
X → X of A is given by (−A)αx =

∑∞
n=1(n2 − ν)α〈x, zn〉zn, where D((−A)α) =

{x ∈ X : (−A)αx ∈ X}. In the next Theorem we consider Y = D((−A)1/2). We
observe that ρ(A) ⊃ {λ ∈ C : Re(λ) ≥ ν} and ‖λR(λ,A)‖ ≤ M1 for Re(λ) ≥ ν,
from [31, Proposition 2.2.11] we obtain that A is a sectorial operator satisfying
‖R(λ,A)‖ ≤ M

|λ−ν| ,M > 0, therefore (H1) is satisfied. Moreover, it is easy to see
that conditions (H2)–(H3) are satisfied with b(t) = e−γt, and D = C∞0 ([0, π]) the
space of infinitely differentiable functions that vanishes at ξ = 0 and ξ = π. Under
the above conditions we can represent the system

∂u(t, ξ)
∂t

=
( ∂2

∂ξ2
+ ν
)[
u(t, ξ) +

∫ t

0

e−γ(t−s)u(s, ξ)ds
]
, (4.3)

u(t, π) = u(t, 0) = 0, (4.4)

in the abstract for
dx(t)
dt

= Ax(t) +
∫ t

0

B(t− s)x(s)ds,

x(0) = z ∈ X.
We define the functions f, g : B → X by

f(ψ)(ξ) =
∫ 0

−∞

∫ π

0

b(s, η, ξ)ψ(s, η)dηds,

g(ψ)(ξ) =
∫ 0

−∞
a0(s)ψ(s, ξ)ds,

where
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(i) The function a0 : R→ R is continuous and Lg := (
∫ 0

−∞
(a0(s))2

ρ(s) ds)
1
2 <∞.

(ii) The functions b(·), ∂b(s,η,ξ)∂ξ are measurable, b(s, η, π) = b(s, η, 0) = 0 for all
(s, η) and

Lf := max
{(∫ π

0

∫ 0

−∞

∫ π

0

ρ−1(θ)
( ∂i
∂ξi

b(θ, η, ξ)
)2

dηdθdξ
)1/2

: i = 0, 1
}
<∞.

Moreover, f, g are bounded linear operators, ‖f‖L(B,X) ≤ Lf , ‖g‖L(B,X) ≤ Lg and
a straightforward estimation using (ii) shows that f(I × B) ⊂ D((−A)

1
2 ) and

‖(−A)
1
2 f(t, ·)‖L(B,X) ≤ Lf

for all t ∈ I. This allows us to rewrite the system (4.1)-(4.2) in the abstract form
(1.1)-(1.2) with u0 = ϕ ∈ B.

Theorem 4.1. Assume that the previous conditions are verified. Let 2 < K < γ
and ν < 0 such that |ν| > max{M(K + 1 + γ), γ}. If 1

2K ≥ Lfµ + M
|r+ν|Lg, where

µ = (‖(−A)−
1
2 ‖+M(2 +

er+ν

|r + ν|
+

1
|r + ν|γ

)), then there exists R > 0 such that if

‖ϕ‖B < R,
(i) there exists a unique mild solution u(·) ∈ AAAc(X) of (4.1)-(4.2).
(ii) there exists a unique mild solution u(·) ∈ SAPω(X) of (4.1)-(4.2).

(iii) there exists a unique asymptotically ω-periodic mild solution u(·) of (4.1)-
(4.2).

Proof. By using a similar procedure as in the proof of [16, Theorem 5.1] we obtain
an exponentially stable resolvent operator for the system (4.3)-(4.4). From the
previous facts, Theorem 2.6 and Theorem 2.7, the assumption (P1) is satisfied.
Observing that

M‖ϕ‖B(1 + Lf ) < +∞,
since r

2K ≥ Lfµ+ M
β Lg, there exists a constant r0 such that if R ≥ r0, we have

R

2K
− LfµR−

M

β
LgR > M‖ϕ‖B(1 + Lf ).

Now, for ‖ϕ‖B < R, from Theorem 3.3 we obtain that there exists a unique mild
solution of (4.1)-(4.2) such that u(·) ∈ AAAc(X). By Proposition 3.5 there exists
a unique mild solution u(·) ∈ SAPω(X) of (4.1)-(4.2) and from Proposition 3.6 it
follows that there exists a unique asymptotically ω-periodic mild solution u(·) of
(4.1)-(4.2). The proof is complete. �
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