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UNIQUE CONTINUATION PRINCIPLE FOR HIGH ORDER
EQUATIONS OF KORTEWEG-DE VRIES TYPE

PEDRO ISAZA

Abstract. In this article we consider the problem of unique continuation

for high-order equations of Korteweg-de Vries type which include the kdV
hierarchy. It is proved that if the difference w of two solutions of an equation

of this form has certain exponential decay for x > 0 at two different times,

then w is identically zero.

1. Introduction

This article concerns a unique continuation principle for the equation

∂tu+ (−1)k+1∂nxu+ P (u, ∂xu, . . . , ∂pxu) = 0 , u = u(x, t), x, t ∈ R, (1.1)

where n = 2k + 1, k = 1, 2 . . . , and P is a polynomial in u, ∂xu, . . . , ∂
p
xu, with

p ≤ n− 1. In particular, we will focus our attention to the case in which P has the
form

P (u, ∂xu, . . . , ∂n−2
x u) =

k+1∑
d=2

∑
|m|=2(k+1−d)+1

ad,m ∂
m1
x u . . . ∂mdx u ≡

k+1∑
d=2

Ad(z),

z = (u, ∂xu, . . . , ∂n−2
x u),

(1.2)

where, for d ∈ N and for integers m1, . . . ,md, m := (m1, . . . ,md) is a multi-index
with 0 ≤ m1 ≤ · · · ≤ md, |m| := m1 + · · · + md, and ad,m is a constant. We will
refer to equation (1.1) with P defined by (1.2) as equation (1.1)-(1.2). We will also
consider equation (1.1) when the nonlinearity P has order p ≤ k.

The type of relation expressed in (1.2), between the degree and the order of each
monomial of P , is present in the nonlinearities of the collection of equations known
as the KdV (Korteweg-de Vries) hierarchy. This set of equations was introduced
by Lax [15] in the process to determine the functions u = u(x, t) for which the
eigenvalues of the operator L := d2

dx2 − u(·, t) remain constant as t evolves. This
property had been already discovered by Gardner et al. in [3] for the solutions of
the Korteweg-de Vries equation

∂tu+ ∂3
xu+ u∂xu = 0.
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Lax [15] showed that this property holds for the solutions of the equations

∂tu+ [Bk(u), L] = 0, (1.3)

where [B,L] := BL − LB denotes the commutator of B and L, and Bk(u) is the
skew-adjoint operator defined by

Bk(u) = bk
d2k+1

dx2k+1
+
k−1∑
j=0

bk,j(u)
d2j+1

dx2j+1
+

d2j+1

dx2j+1
bk,j(u),

with the coefficients bk,j(u) chosen in such a way that the operator [Bk(u), L] has
order zero. It was proved in [16] that the equations in the KdV hierarchy (1.3)
can be written in the form ∂tu+ ∂xGk+1(u) = 0, were the functions Gk(u) are the
gradients of the functionals Fk(u) which define the conservation laws of the KdV
equation. The gradients Gk satisfy the following recursion formula due to Lenard
(see [4] and [20]):

∂xGk+1 = cJGk , where J = ∂3
x +

2
3
u∂x +

1
3
∂xu .

This formula can be applied to obtain a derivation of the equations in the hierarchy.
Starting with G0(u) = 3, with k = 0 we get the transport equation, with k = 1
the KdV equation, and, with k = 2, k = 3, and k = 4, we respectively find the
equations

∂tu+ ∂5
xu− 10u∂3

xu− 20∂xu∂2
xu+ 30u2∂xu = 0,

∂tu+ ∂7
xu+ 14u∂5

xu+ 42∂xu∂4
xu+ 70∂2

xu∂
3
xu+ 70u2∂3

xu

+ 280u∂xu∂2
xu+ 70(∂xu)3 + 140u3∂xu = 0,

∂tu+ ∂9
xu+

∑
m1+m2=7
0≤m1≤m2

a2,m ∂
m1
x u∂m2

x u

+
∑

m1+m2+m3=5
0≤m1≤m2≤m3

a3,m ∂
m1
x u∂m2

x u∂m3
x u+ · · ·+ a5,mu

4∂xu = 0,

(1.4)

for certain constants ad,m, with d = 2, . . . , 5 and |m| = 2(5− d) + 1.
In spite of computational difficulties, it is possible to obtain exact expressions for

all the equations in the hierarchy (see [1]). However, following a simple procedure,
and without obtaining the explicit values for the coefficients, it can be proved (see
[5]) that the equations in the KdV hierarchy (1.3) have the form of (1.1)-(1.2).
When k is even we have made the change of variable x 7→ −x and thus the linear
term ∂nxu has been transformed into (−1)k+1∂nxu in (1.1).

The aspects of local and global well-posedness of the initial value problem (IVP)
associated with the general equation (1.1) have been considered in [10] and [11],
where Kenig, Ponce, and Vega proved that the (IVP) is locally well-posed in
weighted spaces Hs(R) ∩ L2(|x|m dx) if s ≥ s0(k), for some s0(k) and some in-
teger m = m(k).

For the (IVP) associated to (1.1)-(1.2), in [21], Saut proved the existence of
global solutions for initial data in Sobolev spaces Hm(R) for m ≥ k, integer. By
using a variant of Bourgain spaces, in [5], Grünrok proved the local well-posedness
for the (IVP) of equation (1.1)-(1.2) in the context of the spaces

Ĥr
s (R) := {f | ‖f‖s,r := ‖(1 + ξ2)s/2f̂(ξ)‖Lr′ξ <∞},
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with

r ∈ (1,
2k

2k − 1
], and s > k − 3

2
− 1

2k
+

2k − 1
2r′

.

Herêdenotes the Fourier transform and 1/r+1/r′ = 1. We also refer to the articles
[9, 14, 17, 18, 19], which, among others, consider the problem of well-posedness for
high order equations of KdV-type and especially for the equations of order five
(k = 2).

Our main goal is to prove continuation principles for (1.1)-(1.2) with n ≥ 5,
which include the KdV hierarchy, and for the equations (1.1) with n ≥ 5 and
p ≤ k. Roughly speaking, we will prove that if the difference w := u1 − u2 of two
sufficiently smooth solutions of equation (1.1)-(1.2) decays as exp(−x4/3+

+ ) at two
different times, then w ≡ 0. (Here x+ := 1

2 (x+ |x|), and 4/3+ means 4/3 + ε for
arbitrarily small ε > 0). For (1.1) with p ≤ k we have a similar result if w decays
as exp(−axn/(n−1)

+ ) for a > 0 sufficiently large at two different times. This last
result is coherent with the decay exp(−cxn/(n−1)

+ ) of the fundamental solution of
the linear problem associated with (1.1) (see [23]). When the nonlineariy P has
higher order as in (1.1)-(1.2), it is then necessary to impose a stronger decay on w.

The aspect of unique continuation has been studied for a variety of non-linear
dispersive equations, and especially for the KdV and Schrödinger equations. Saut
and Sheurer [22] considered a class of nonlinear dispersive equations, which includes
the KdV equation, and proved that if a solution u of one of such equations van-
ishes in an open set Ω of the space-time space, then u vanishes in all horizontal
components of Ω, that is, in the set {(x, t) : ∃ y with (y, t) ∈ Ω}.

By using methods of complex analysis, Bourgain [2] proved that if a solution u of
the KdV equation is supported in a compact set {(x, t) : −B ≤ x ≤ B, t0 ≤ t ≤ t1},
then u vanishes identically.

Kenig, Ponce and Vega [12], considered a solution of the KdV equation which
vanishes only in two half lines [B,+∞)×{t0} and [B,+∞)×{t1}, and proved that
this solution must be identically zero. A similar result was proved in [13] for the
difference w = u1 − u2 of two solutions of the KdV equation. Escauriaza et al. [8]
refined this result by only imposing the condition that w(·, t0) and w(·, t1) decay
as exp(−axγ+), for γ = 3/2 and a > 0 sufficiently large, together with a additional
hypothesis of polynomial decay for u1 and u2. This result is obtained by applying
two types of estimates for the function w: Carleman type estimates, which express
a boundedness of the inverse of the linear operator ∂t + ∂3

x in Lp − Lq-spaces with
exponential weight; and a so-called lower estimate which bounds the L2-norm of
w in a small rectangle at the origin with the H2-norm of w in a distant rectangle
[R,R+ 1]× [0, 1].

For the fifth-order equation (1.1) (k = 2), Dawson [6] proved a result similar to
that in [8] with γ = 4/3+ for the general case p ≤ n− 1 = 4, and with γ = 5/4 for
the case p ≤ 2.

In this article we consider equations (1.1) and (1.1)-(1.2) with arbitrary order
n and prove the continuation principles stated in Theorem 1.1 and 1.2 below. For
that, we follow the method traced in [8]. The greatest difficulty in this process is
to manage the huge amount of terms arising in the computations of the operators
involved in the lower estimate. We consider that the main contribution of our work
is the presentation of a clear and organized procedure to obtain the lower estimate
(see Lemma 4.1 and Theorem 4.3).
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We now state our main results.

Theorem 1.1. For odd n ≥ 5 , k = (n− 1)/2, and α > n+1
3 , suppose that u1, u2

are in C([0, 1];Hn+1(R) ∩ L2((1 + x+)2α dx)) are two solutions of the equation

∂tu+ (−1)k+1∂nxu+ P (u, ∂xu, . . . , ∂n−2
x u) = 0 (1.5)

with P as in (1.2), and let w := u1 − u2. If

w(0), w(1) ∈ L2(e2x
4/3+ε
+ dx) (1.6)

for some ε > 0, then w ≡ 0.

The proof of this theorem can be adapted to obtain a similar continuation prin-
ciple for equation (1.1) when p ≤ k. In this case we require a weaker decay for w(0)
and w(1) and consider some minor modifications in the polynomial decay hypoth-
esis for u1 and u2. For the sake of simplicity we state this result without making
special emphasis in the optimal value of α.

Theorem 1.2. For odd n ≥ 5, k = (n − 1)/2, and α0 > 0 sufficiently large,
suppose that u1, u2 ∈ C([0, 1];Hn+1(R) ∩ L2((1 + |x|)2α0 dx)) are two solutions of
the equation

∂tu+ (−1)k+1∂nxu+ P (u, ∂xu, . . . , ∂pxu) = 0 (1.7)
with p ≤ k. Define w := u1 − u2. Then, there is a > 0, which depends only on n,
such that if

w(0), w(1) ∈ L2(e2ax
n/(n−1)
+ dx), (1.8)

then w ≡ 0.

The article is organized as follows: In section 2 we prove that the exponential
decay for w in the semi-axis x > 0 is preserved in time. In section 3 we establish
the Carleman type estimates and in section 4 we prove the lower estimates. Finally
we give the proofs of Theorems 1.1 and 1.2 in section 5.

Throughout the paper the letters C and c will denote diverse positive constants
which may change from line to line, and whose dependence on certain parameters
is clearly established in all cases. Sometimes, for a parameter a, we will use the
notations Ca, C(a), and ca to make emphasis in the fact that the constants depend
upon a. We frequently write f(·s) to denote a function s 7→ f(s). For a set A, χA
will denote the characteristic function of A. The symbols ̂ and ˇ will denote the
Fourier and the inverse Fourier transform, respectively. The notations ̂ x and ˇξ
will emphasize the facts that the Fourier transform and its inverse are taken with
respect to specific variables x and ξ, respectively. For 1 ≤ p, q < ∞, A,B ⊆ R,
D = A×B, and f = f(x, t) we will denote

‖f‖p
LpxL

q
t (D)

:=
∫
A

(∫
B

|f(x, t)|q dt
)p/q

dx .

We will use similar definitions when p =∞ or q =∞ and also for ‖f‖LqtLpx(D).

2. Exponential decay

In this section we prove that if the difference w of two solutions of (1.5) decays
exponentially at t = 0, then this decay is preserved at all positive times. This
property will be crucial for the application of the Carleman estimates in the proofs
of Theorem 1.1 and 1.2.
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Theorem 2.1. For odd n ≥ 5, k = (n− 1)/2, and α > (n+ 1)/4, let u1, u2 are in
C([0, 1];Hn+1(R) ∩ L2((1 + x+)2α dx))) be two solutions of (1.1)-(1.2), and define
w := u1 − u2. Let β > 0 and suppose that w(0) ∈ L2(eβx dx). Then

sup
t∈[0,1]

‖w(t)‖L2(eβx dx) <∞. (2.1)

Proof. Let us denote zi = (ui, ∂xui, . . . ∂n−2
x ui), i = 1, 2. Then w is a solution of

the differential equation

∂tw + (−1)k+1∂nxw + P (z1)− P (z2) = 0. (2.2)

We will first prove that the theorem is valid provided we can construct a se-
quence {φN}N∈N of nondecreasing functions in C∞(R) satisfying for all x ∈ R the
conditions

ϕN (x)→ eβx as N →∞ and 0 ≤ ϕN (x) ≤ C eβx, (2.3)

ϕN (x) ≤ CN (1 + x+)(k+2)/4 , (2.4)

|ϕ(j)
N (x)| ≤ Cjϕ′N (x) for j = 2, 3 . . . , n = 2k + 1 and ϕ′N (x) ≤ CϕN (x), (2.5)

ϕN (x) ≤ C(1 + x+)ϕ′N (x) , (2.6)

where the constants C and Cj are independent of N .
We multiply (2.2) by ϕNu and, for t fixed, integrate in R. Thus, by applying

integration by parts we obtain

1
2
d

dt

∫
ϕNw

2 = −2k + 1
2

∫
ϕ′N (∂kxw)2 + ck−1

∫
ϕ

(3)
N (∂k−1

x w)2 + . . .

+ c1

∫
ϕ

(2k−1)
N (∂xw)2 +

1
2

∫
ϕ

(2k+1)
N w2

−
∫

(P (z1)− P (z2))ϕNw .

(2.7)

The integration by parts is justified as follows: since there is a constant C > 0 such
that ‖(1 + x+)αui(t)‖L2 ≤ C, and ‖ui(t)‖Hn+1(R) ≤ C for all t ∈ [0, 1] and i = 1, 2,
by using integration by parts and truncation functions, it can be proved that the
following interpolation property holds:

‖(1 +x+)α(1− j
(n+1) )∂jxui(t)‖L2(R ≤ C , for all t ∈ [0, 1]; i = 1, 2; j = 0, . . . , n+ 1.

(2.8)
Since α > (n+ 1)/4, it follows that, for 0 ≤ j ≤ k, (1 + x+)(k+2)/4∂jxw(t) ∈ L2(R,
and thus, from (2.4) and (2.5) ϕ(l)∂jxw(t) ∈ L2(R for all positive integers l. This
implies that all the terms which appear in the procedure to obtain (2.7) are in a
right setting for the application of the integration by parts.

Let us estimate the last term on the rand-hand side of (2.7). From (1.2) we have
that

P (z) =
k+1∑
d=2

Ad(z) where Ad(z) =
∑

|m|=n−2(d−1)
0≤m1≤···≤md

ad,m ∂
m1
x u . . . ∂mdx u , (2.9)
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and thus

|
∫ (

P (z1)− P (z2)
)
ϕN w dx| = |

k+1∑
d=2

∫ (
Ad(z1)−Ad(z2)

)
ϕN w dx| ≡ |

k+1∑
d=2

Id| .

(2.10)
It is easily seen that

Ad(z1)−Ad(z2) =
∑

|m|=n−2(d−1)
0≤m1≤···≤md

ad,m

(
∂m1
x w∂m2

x u1 . . . ∂
md
x u1

+ ∂m1
x u2∂

m2
x w . . . ∂mdx u1 + ∂m1

x u2∂
m2
x u2 . . . ∂

md
x w

)
.

(2.11)

We estimate I2, which, having the derivatives of the highest order, is the most
critical term in (2.10). From (2.11),

I2 =
∫ (

A2(z1)−A2(z2)
)
ϕN w dx

=
∑

m1+m2=n−2
0≤m1≤m2

a2,m

∫
(∂m1
x w∂m2

x u1 + ∂m1
x u2∂

m2
x w)ϕN w dx.

(2.12)

We estimate only the second term on the right-hand side of (2.12), the other term
being similar. We apply integration by parts to reduce the order of ∂m2

x w and
obtain that∫

(∂m1
x u2) (∂m2

x w)ϕN w =
∑

r1+r2+2r3=m1+m2=n−2
r1≥m1

cr1,r2

∫
(∂r1x u2)ϕ(r2)

N (∂r3x w)2

(2.13)
To analyze the terms in this sum we consider the cases r2 = 0 and r2 ≥ 1:

(i) If r2 = 0 and r3 = 0, then r1 = n−2 and we bound the corresponding integral
in (2.13) by

C‖∂n−2
x u2(t)‖L∞

∫
ϕN w

2 ≤ C
∫
ϕN w

2,

where C is independent of t ∈ [0, 1] by the Sobolev embedding of H1(R) in L∞(R).
If r2 = 0 and r3 ≥ 1, then the maximum value of r1 in (2.13) is n−4. Therefore,

using the fact that ϕN ≤ C(1 + x+)ϕ′N we bound the corresponding integral in
(2.13) by

C max
0≤r1≤n−4

‖(1 + x+)∂r1x u2(t)‖L∞
∫
ϕ′N (∂r3x w)2. (2.14)

From (2.8) it can be seen that if Ψ ∈ C∞(R) is a truncation function with Ψ ≡ 0
in (−∞, 1], and Ψ ≡ 1 in [2,+∞), then Ψ(·)(1 + x+)α(1− j+1

n+1 )∂jxui(t) ∈ H1(R),
i = 1, 2, j = 0, 1, . . . , n, and

‖Ψ(·)(1 + x+)α(1− j+1
n+1 )∂jxui(t)‖H1(R)

≤ C(‖(1 + x+)αui(t)‖L2(R , ‖ui(t)‖Hn+1(R)) ≤ C for all t ∈ [0, 1].
(2.15)

In particular, for j = 0, . . . , n− 4, α(1− j+1
n+1 ) > n+1

4 (1− n−3
n+1 ) = 1, and thus from

the Sobolev embedding of H1 in L∞ we conclude that

max
0≤j≤n−4

‖(1 + x+)∂jxui(t)‖L∞(R) ≤ C, (2.16)

with C independent of t ∈ [0, 1]. Thus (2.14) is bounded by C
∫
ϕ′N (∂r3x w)2.
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(ii) If r2 ≥ 1, then r1 ≤ n−3. From (2.5), ϕ(r2) ≤ Cr2 ϕ′ ≤ Cϕ′ for 1 ≤ r2 ≤ n−2.
Thus we bound the corresponding term in (2.13) by

C max
0≤r1≤n−3

‖∂r1x u2(t)‖L∞
∫
ϕ′N (∂r3x w)2 ≤ C

∫
ϕ′N (∂r3x w)2. (2.17)

Now, let us determine the maximum value of r3 appearing in (2.13). For that,
we observe that r1 + r2 + 2r3 = n − 2 is odd, and thus the maximum value of r3

occurs when (r1, r2) = (0, 1) or (1, 0), which then gives r3 ≤ (n− 3)/2 = k − 1.
Gathering the estimates of the cases (i) and (ii) above, and taking into account

that r3 ≤ k − 1, we conclude that

|I2| ≤ C
k−1∑
j=1

∫
ϕ′N (∂jxw)2 dx+ C

∫
ϕNw

2 . (2.18)

Proceeding in a similar way, we obtain the same bound for |I3|, . . . |Ik+1|, and thus
for the left hand side of (2.10). Therefore, returning to (2.7) and using the fact
that, from condition (2.5), |φ(j)| ≤ C φ′, j = 1, . . . 2k + 1, we obtain

1
2
d

dt

∫
ϕNw

2 ≤ −2k + 1
2

∫
ϕ′N (∂kxw)2+C

k−1∑
j=1

∫
ϕ′N (∂jxw)2 dx+C

∫
ϕNw

2 (2.19)

To handle the terms in (2.19) having derivatives ∂jxw with j = 1, . . . , k − 1, we
will show that given ε > 0 there is a constant Cε > 0 such that for j = 1, . . . , k− 1∫

ϕ′N (∂jxw)2 ≤ ε
∫
ϕ′N (∂kxw)2 + Cε

∫
ϕNw

2 . (2.20)

In fact, we first prove that∫
ϕ′N (∂jxw)2 ≤ ε

∫
ϕ′N (∂j+1

x w)2 + Cε

∫
ϕNw

2 . (2.21)

This can be seen by induction: by applying integration by parts, Young’s inequality
|xy| ≤ 1

2εx
2 + ε

2y
2, and the properties of ϕN we can see that (2.21) is valid for j = 1.

If we assume that (2.21) is valid for j−1, then, again integrating by parts and using
Young’s inequality,∫

ϕ′N (∂jxw)2 =
1
2

∫
ϕ

(3)
N (∂j−1

x w)2 −
∫
ϕ′N∂

j−1
x w ∂j+1

x w

≤ C
∫
ϕ′N (∂j−1

x w)2 +
1
2ε

∫
ϕ′N (∂j−1

x w)2 +
ε

2

∫
ϕ′N (∂j+1

x w)2.

If we apply the induction hypothesis at level j− 1, with 1/2
C+1/(2ε) instead of ε, then

we have∫
ϕ′N (∂jxw)2 ≤ 1

2

∫
ϕ′N (∂jxw)2 + Cε

∫
ϕNw

2 +
ε

2

∫
ϕ′N (∂j+1

x w)2 , (2.22)

which gives (2.21). From a repeated application of (2.21) we obtain (2.20).
Therefore, taking into account that the first term on the right-hand side of

(2.19) is negative, we can apply (2.20) with ε sufficiently small, to absorb with this
negative term the integrals containing (∂jxw)2 in (2.19). Thus we conclude that

d

dt

∫
ϕNw

2 ≤ Cε
∫
ϕNw

2, (2.23)
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which, from Gronwall’s inequality and (2.3) implies that∫
ϕNw(t)2 dx ≤ C

∫
ϕNw(0)2 dx ≤ C

∫
eβxw(0)2dx , for all t ∈ [0, 1],

where C is independent of t ∈ [0, 1] and N . Since ϕN (x) → eβx as N → ∞, the
conclusion of the theorem will follow by applying Fatou’s Lemma on the left-hand
side of the former inequality.

In this way, the proof of theorem 2.1 will be complete if we construct a sequence
of functions ϕN , satisfying the conditions (2.3) to (2.6). For that we proceed as
follows:

Let φ̃ ∈ C∞(R) be a nonincreasing function such that φ̃(x) = 1 for x ∈ (−∞, 0],
and φ̃(x) = 0 for x ∈ [1,∞). For each N ∈ N let φN (x) ≡ φ(x) := φ̃(x−N). Thus
φ is supported in (−∞, N + 1], and (1− φ) in [N,+∞). We define

θN (x) ≡ θ(x) := φβeβx + (1− φ)βeβN , (2.24)

ϕN (x) ≡ ϕ(x) :=
∫ x

−∞
θ(x′) dx′ . (2.25)

Let us show that ϕN satisfies the conditions (2.3)–(2.6).
Taking into account the support of (1−φ), we see that 0 ≤ θ(x) ≤ φβeβx + (1−

φ)βeβx = βeβx. Thus, by integrating ϕ′ we have that 0 ≤ ϕ(x) ≤ eβx. Besides,
from the definition of ϕ it is clear that ϕN (x) → eβx as N → ∞. Thus ϕ satisfies
(2.3).

To prove (2.4) it suffices to observe that for x ≤ N , ϕ(x) ≤ eβN ≤ CN (1 +
x+)(k+2)/4, while for x > N ,

ϕ(x) ≤
∫ N+1

−∞
βeβx

′
dx′ +

∫ x

N

βeβNdx′ ≤ eβ(N+1) + xβeβN ≤ CN (1 + x+)(k+2)/4,

(2.26)
since k ≥ 2. Thus we have (2.4).

We proceed now to prove (2.6). For x ≤ N , ϕ(x) = eβx = 1
βϕ
′(x) ≤ C(1 +

x+)ϕ′(x). If x > N , then, from (2.26), and using the fact that x ≥ 1, we see that

ϕ(x) ≤ eβ(N+1) + xβeβN ≤ (
1
β

+ 1)eβxβeβN . (2.27)

On the other hand, for x > N ,

xϕ′(x) = xθ(x) ≥ NφβeβN + x(1− φ)βeβN . (2.28)

Therefore, from (2.27) and (2.28), taking into account the supports of φ and (1−φ)
we observe that for x > N + 1, xϕ′(x) ≥ Cϕ(x), while for N < x < N + 1, we
conclude that

xϕ′(x) ≥ NφβeβN+N(1−φ)βeβN = NβeβN ≥ 1
2

(N+1)βeβN ≥ 1
2
xβeβN ≥ Cϕ(x),

from which (2.6) follows.
Finally, we verify (2.5). We observe that that for j = 1, 2 . . . , and fixed β > 0,

|ϕ(j+1)| = |θ(j)| = |φβ1+jeβx +
j∑
l=1

cj,lφ
(l)βj−lβeβx − φ(j)βeβN |

≤ βjφβeβx + Cj(1 + β)j−1(βeβ(N+1) + βeβN )χ[N,N+1]

≤ βjθ + Cjβe
βNχ[N,N+1]
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= βjθ + Cj(βφeβN + (1− φ)βeβN )χ[N,N+1]

≤ βjθ + Cjθ = Cjϕ
′,

where Cj depends on β and j but is independent of N . Thus, the first inequality
in (2.5) is proved. For the inequality φ′ ≤ Cφ in (2.5) we proceed by integrating
the inequality φ′′ ≤ Cφ′ already established. This completes the proof of Theorem
2.1. �

Remark 2.2. For the case of equation (1.1), with p ≤ k, we can establish a result
similar to Theorem 2.1, by making minor modifications and some simplifications in
the former proof. In the simple case p ≤ 1, for example for the equation

∂tu+ (−1)k+1∂nxu = −u∂xu,
it is possible to follow the procedure of the proof of Theorem 2.1 to establish,
without the hypothesis of polynomial decay, that the exponential decay at t = 0 is
preserved for t ∈ [0, 1]. This can be done by taking ϕN (x) :=

∫ x
−∞ θN (x′) dx′ as in

(2.25), with θN (x) ≡ θ(x) := φβeβx + (1− φ)βe−β(x−2N), instead of the functions
θN defined in (2.24). This functions ϕN are bounded and satisfy (2.3) and (2.5)
which is enough for this case.

3. Estimates of Carleman type

In this section we obtain boundedness properties of the linear operator (∂t +
(−1)k+1∂nx )−1, and its spatial derivatives up to order n − 1, in spaces of the type
Lp −Lq with exponential weight eλx. We keep our exposition simple since we only
use values of p and q in the set {1, 2,+∞}.

Let D := R× [0, 1] and, for R ∈ R, let DR := {(x, t) | x ≥ R , t ∈ [0, 1]}. We will
denote

‖ · ‖LpxLqT := ‖ · ‖LpxLqt (D), ‖ · ‖Lp
x≥RL

q
T

:= ‖ · ‖LpxLqt (DR),

‖ · ‖LqTLpx := ‖ · ‖LqtLpx(D), ‖ · ‖LqTLpx≥R := ‖ · ‖LqtLpx(DR).

Theorem 3.1. For n = 2k+1 with k ∈ N, let v be a function in C([0, 1];Hn(R))∩
C1([0, 1];L2(R) such that supp v(t) ⊂ [−M,M ] for all t ∈ [0, 1], for some M > 0.
Then, for λ > 2 we have

‖eλxv‖L∞T L2
x
≤ C‖eλx(|v(0)|+ |v(1)|)‖2L(R + C‖eλx(∂t + (−1)k+1∂nx )v‖L1

TL
2
x
.

(3.1)
n−1∑
j=1

‖eλx∂jxv‖L∞x L2
T
≤ Cλn−1‖(|Jn(eλxv(1))|+ |Jn(eλxv(0))|‖2L(R

+ ‖eλx(∂t + (−1)k+1∂nx )v‖L1
xL

2
T
,

(3.2)

where C is independent of λ > 2 and M , and (Jf )̂ := (1 + |ξ|2)1/2f̂ .

Reasoning formally, suppose that eλx(∂t+(−1)k+1∂nx )g = h, and denote f = eλxg
and T0 = [eλx(∂t + (−1)k+1∂nx )e−λx]−1. Then, f = T0h. Since eλx∂xe

−λxf =
(∂x−λ)f , we have that eλx∂nx e

−λxf = (∂x−λ)nf , and thus the multipier operator
representing T0 via the Fourier transform is given by

(T0h)̂ (ξ, τ) =
ĥ

iτ + (−1)k+1(iξ − λ)n
≡ m0ĥ. (3.3)
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We will write m0 as

m0 =
−i

τ − (ξ + iλ)n
. (3.4)

Since for a positive integer j, eλx∂jxg = (∂x − λ)jf , we have that

eλx∂jxg = (∂x − λ)jT0h ≡ Tjh = [(iξ − λ)jm0ĥ]ˇ

=
[−ij+1(ξ + iλ)j

τ − (ξ + iλ)n
ĥ
]

ˇ ≡ [mj ĥ] .̌
(3.5)

Lemma 3.2. Let h ∈ L1(R2). Then there is C > 0 independent of h and λ > 0
such that

‖T0h‖L∞t L2
x
≤ C‖h‖L1

tL
2
x
. (3.6)

Proof. Let a(ξ) and b(ξ) be the real and imaginary parts of −(ξ+iλ)n, respectively.
Then

m0 =
−i

τ + a(ξ) + ib(ξ)
.

We recall that for a ∈ R and b 6= 0( 1
τ + a+ ib

)
ˇτ (t)

= ce−iat[e−btχ[0,∞](t)χ(0,∞)(b) + ebtχ[−∞,0)(t)χ(−∞,0)(b)] =: Ga,b(t).
(3.7)

Since |Ga,b| ≤ c, by taking inverse Fourier transform in the variable τ and using
convolutions, it follows that for t ∈ R

|[T0h(t)]̂ (ξ)| = |
∫ ∞
−∞

Ga(ξ),b(ξ)(t− s)ĥ(s)(ξ) ds| ≤ C
∫ ∞
−∞
|ĥ(s)(ξ)| ds,

for those values of ξ such that b(ξ) 6= 0 (a finite set). In this way, applying
Plancherel’s identity and Minkowski’s integral inequality we obtain (3.6). �

Lemma 3.3. Let h ∈ L1(R2). Then there is C > 0, independent of h and λ > 2,
such that

‖Tjh‖L∞x L2
t
≤ C‖h‖L1

xL
2
t

for j = 1, . . . , n− 1. (3.8)

Proof. From (3.4) and (3.5), it follows that

(Tjh)̂ = (iξ − λ)jm0ĥ =
−ij+1(ξ + iλ)j ĥ
τ − (ξ + iλ)n

= mj ĥ. (3.9)

Let us denote θ := (ξ + iλ)/τ1/n. Then

mj =
C

τ1−j/n
θj

1− θn
=

C

τ1−j/n

n∑
l=1

cl
θ − rl

, (3.10)

where rl := al+ ibl, l = 1, . . . , n, are the nth-roots of 1, and the cl can be computed
by L’Hopital’s rule to obtain that

cl = lim
θ→rl

(θ − rl)θj

1− θn
= − 1

nrn−j−1
l

.

Therefore,

mj =
C

τ1−(j+1)/n

n∑
l=1

cl
ξ + iλ− τ1/nrl

=
C

τ1−(j+1)/n

n∑
l=1

cl
ξ − τ1/nal + i(λ− τ1/nbl)

.
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Taking the inverse Fourier transform with respect to the variable ξ, observing that
for fixed λ, λ − τ1/mbl 6= 0 for all l, except for a finite number of values of τ , and
applying (3.7) (with ξ and x instead of τ and t, respectively) we obtain a collection
of bounded functions G1, . . . , Gl of x and τ such that

[mj(·ξ, τ)]ˇξ (x) =
C

τ1−(j+1)/n

n∑
l=1

clGl(x, τ).

If |τ | > 1, then it is clear that

|[mj(·, τ)]ˇξ (x)| ≤ C, (3.11)

with C independent of λ, x and |τ | > 1. We can use (3.9) to prove that this function
is bounded also for |τ | ≤ 1. To do this we will consider only the case j = n−1 = 2k,
the other cases being similar. Let us observe from (3.5) that

∣∣m2k −
in

ξ + iλ

∣∣ =
∣∣ (ξ + iλ)n−1

τ − (ξ + iλ)n
+

1
ξ + iλ

∣∣
=
∣∣ τ

(τ − (ξ + iλ)n)(ξ + iλ)

∣∣ ≤ 2
|ξ + iλ|n+1

which belongs to L1
ξ , since λ > 2 and |τ | ≤ 1. From the Fourier inversion formula

it can be seen that |[|ξ + iλ|−n−1 ]̌ (x)| ≤ C, with C independent of λ > 2. Thus,
by taking inverse Fourier transform with respect to the variable ξ and taking into
account that from (3.7) [(ξ + iλ)−1]ˇξ (x) is a bounded function of x, with bound
independent of λ, we see, together with the estimate already obtained for |τ | ≤ 1,
that (3.11) is valid for all x and all but a finite number of values of τ .

Hence, we can apply basic properties of convolution and Plancherel’s identity to
conclude that

‖T2kh‖L∞x L2
t
≤ C‖h‖L1

xL
2
t
,

which concludes the proof of Lemma 3.3. �

Proof of Theorem 3.1. We extend v to all t ∈ R with value zero in R − [0, 1], and
call this extension again v. For ε > 0, we consider a function η := ηε ∈ C∞(Rt)
such that ηε = 0 in R− [0, 1], ηε = 1 in [ε, 1− ε], η′ ≥ 0 in [0, ε], η′ ≤ 0 in [1− ε, 1],
and ηε′ ≤ ηε if ε′ < ε. Define g := ηε(·t)v. Then

eλx(∂t + (−1)k+1∂nx )g = eλxη′εv + ηεe
λx(∂t + (−1)k+1∂nx )v ≡ h1,ε + h2,ε ≡ h1 + h2.

Then, from (3.5),

eλx∂jxg = Tjh1 + Tjh2 for j = 0, . . . , n− 1. (3.12)

From Lemma 3.3,

‖Tjh2‖L∞x L2
t
≤ C‖h2‖L1

xL
2
t

= C‖ηεeλx(∂t + (−1)k+1∂nx )v‖L1
xL

2
t
. (3.13)

For Tjh1, we see from (3.5) that (Tjh1)̂ = C(ξ+iλ)j(T0h1)̂ , and apply the Sobolev
embedding from H1(R) to L∞(R), Plancherel’s identity, and Lemma 3.2 to conclude
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that
‖Tjh1‖L∞x L2

T
≤ C‖JTjh1‖L2

TL
2
x

≤ C‖(1 + |ξ|)(|ξ|j + λj)(T0h1)̂ x‖L2
TL

2
ξ

≤ C‖(1 + λ)j(1 + |ξ|)j+1(T0h1)̂ x‖L2
TL

2
ξ

≤ C(1 + λ)j‖T0J
j+1h1‖L∞t L2

x

≤ Cλj‖Jj+1h1‖L1
tL

2
x

= Cλj‖η′εJj+1(eλxv)‖L1
tL

2
x

≤ Cλn−1‖η′εJn(eλxv)‖L1
tL

2
x
.

(3.14)

Hence, from (3.12), (3.13), and (3.14) we have that

‖ηεeλx∂jxv‖L∞x L2
T
≤ Cλn−1‖η′εJn(eλxv)‖L1

tL
2
x

+ C‖ηεeλx(∂t + (−1)k+1∂nx )v‖L1
xL

2
t
.

We now make ε→ 0 in this inequality and apply Fatou’s Lemma on the left-hand
side and the monotone convergence theorem in the second term of the right-hand
side. For the first term on the right-hand side we use the fact that |η′ε| acts as an
approximation of the identity on each one of the time intervals (0, ε) and (1− ε, 1).
Thus, we obtain (3.2) after adding up in j.

The proof of (3.1) is similar but we use Lemma 3.2 instead of Lemma 3.3. This
completes the proof. �

4. Lower estimates

In this section we prove that the L2-norm of w in a small rectangle Q = [0, 1]×
[r, 1− r], with r ∈ (0, 1) can be bounded by a multiple of the Hn−1 norm of w in a
distant rectangle [R,R+ 1]× [0, 1].

Lemma 4.1. Let φ ∈ C∞([0, 1]) be a function with φ(0) = φ(1) = 0, and for
R > 1 and α > 0 define ψα(x, t) := ψ(x, t) := α( xR + φ(t))2, x ∈ R, t ∈ [0, 1].
For n = 2k + 1, suppose that g ∈ C([0, 1];Hn(R)) ∩ C1([0, 1];L2(R)) is such that
g(0) = g(1) = 0 and the support of g is contained in the set

A1,5 := {(x, t) : t ∈ [0, 1], 1 ≤ x

R
+ φ(t) ≤ 5}.

Then, there are constants C = C(n) > 0 and C = C(n, ‖φ′‖L∞ , ‖φ′′‖L∞) > 1 such
that
n−1∑
j=0

αn−j−
1
2

Rn−j
‖eψα∂jxg‖ ≤ C‖eψα(∂t+(−1)k+1∂nx )g‖ for all α > CRn/(n−1), (4.1)

where ‖ · ‖ := ‖ · ‖L2(D).

Proof. Let f := eψg and observe that eψ∂jxg = eψ∂jxe
−ψf = (∂x − ψx)jf , and

eψ∂tg = (∂t − ψt)f . Therefore, if we denote

T := eψ(∂t + (−1)k+1∂nx )e−ψ = (∂t − ψt) + (−1)k+1(∂x − ψx)n,

then, to prove the inequality in (4.1) we must prove that
n−1∑
j=0

αn−j−
1
2

Rn−j
‖(∂x − ψx)jf‖ ≤ C‖Tf‖. (4.2)
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Let B := −ψx = − 2α
R ϕ, where ϕ(x, t) := x

R + φ(t). We will study the operator
(∂x − ψx)n = (∂x +B)n in the following manner.

Each one of the terms in the expansion of this operator is of the form T1 . . . Tn,
where each Ti is either ∂x or B. For m and l with m+ l = n we will denote by [m, l]
the sum of the terms T1 . . . Tn in this expansion with Ti = ∂x for m values of i, and
Ti = B for l values of i. The number of terms of [m, l] in the binomial expansion of
(∂x +B)n is then given by

(
n
l

)
=
(
n
m

)
:= n!/m! l!. Applying integration by parts in

D, for the class of functions satisfying the hypotheses given for g, we observe that
[m, l] is a symmetric operator if m is even and is an antisymmetric operator if m is
odd.

In this way, we write

(−1)k+1T = (−1)k+1(∂t − ψt) +
∑

0≤m≤n
l+m=n

[m, l] := S +A, (4.3)

where
S = [n− 1, 1] + [n− 3, 3] + · · ·+ [2, n− 2] + [0, n] + (−1)kψt ≡ S1 + (−1)kψt,

A = [n, 0] + [n− 2, 2] + · · ·+ [3, n− 3] + [1, n− 1]− (−1)k∂t ≡ A1 − (−1)k∂t
.

(4.4)
Let us denote by 〈·, ·〉 the inner product in the (real) space L2(D). Then

‖Tf‖2 = 〈(S +A)f, (S +A)f〉 = ‖Sf‖2 + ‖Af‖2 + 2〈Sf,Af〉 ≥ 2〈Sf,Af〉. (4.5)

Now,

〈Sf,Af〉 = 〈S1f,A1f〉 − (−1)k〈S1f, ∂tf〉+ (−1)k〈ψtf,A1f〉 − 〈ψtf, ∂tf〉. (4.6)

We will now estimate each one of the four terms on the right hand side of (4.6).
To estimate 〈S1f,A1f〉 we observe that this product is a sum of terms of the

form 〈[m,n−m]f, [r, n− r]f〉, with m even and r odd, say m = 2k1, r = 2k2 + 1,
k1, k2 ∈ {0, . . . , k}. Using the fact that Bxx = ψxxx = 0, we can apply integration
by parts to obtain

〈[m,n−m]f, [r, n− r]f〉 =
k1+k2∑
j=0

∫
D

Pk1,k2,j(B,Bx)(∂jxf)2 (4.7)

where Pk1,k2,j(B,Bx) = ck1,k2,jB
(n−m)+(n−r)−νBνx , with ν + 2j = m + r. Since

B = −ψx = − 2α
R ϕ, Bx = −ψxx = − 2α

R2 , we have that

Pk1,k2,j(B,Bx) = −ck1,k2,j(2α)2n−m−r ϕ
2n−m−r−ν

R2n−m−r+ν

= −(2α)2n−2k1−2k2−1ck1,k2,j
ϕ2n−4k1−4k2+2j−2

R2n−2j

≡ α2n−2k1−2k2−1Qk1,k2,j

(4.8)

Therefore,

〈S1f,A1f〉 =
k∑

k1,k2=0

〈[2k1, n− 2k1]f, [2k2 + 1, n− 2k2 − 1]f〉

=
k∑

k1,k2=0

α2n−2k1−2k2−1
k1+k2∑
j=0

∫
Qk1,k2,j(∂

j
xf)2
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=
2k∑
j=0

∑
k1+k2≥j

0≤k1,k2≤k

α2n−2k1−2k2−1

∫
Qk1,k2,j(∂

j
xf)2. (4.9)

For each j in the former expression we will separate the term having the highest
power of α. Thus we write

〈S1f,A1f〉 =
2k∑
j=0

α2n−2j−1
∑

k1+k2=j
0≤k1,k2≤k

∫
Qk1,k2,j(∂

j
xf)2

+
2k∑
j=0

∑
k1+k2>j

0≤k1,k2≤k

α2n−2k1−2k2−1

∫
Qk1,k2,j(∂

j
xf)2

≡
2k∑
j=0

Ij +
2k∑
j=0

IIj .

(4.10)

We will concentrate upon the terms Ij and will refer to the terms IIj as lower order
terms (l.o.t.).

For each j we will now compute the term Ij . If m ≤ n and l = n−m, then [m, l]
is a sum of operators of the form T = T1T2 . . . Tn where Ti = ∂x for m indices i,
and Ti = B for the remaining l indices i. We apply the product rule for derivatives
to expand T and consider the terms in its expansion containing the derivatives of
highest order: ∂mx and ∂m−1

x . This leads to (see the illustration below)

T = T1 . . . Tn = Bl∂mx + [Br1(∂xBl−r1) +Br2(∂xBl−r2) + . . .

+Brm(∂xBl−rm)]∂m−1
x + l.d.t.,

(4.11)

where r1, r2, . . . rn depend upon the position of the m operators ∂x in the expression
of T , and the notation l.d.t. stands for “lower derivative terms”.

To illustrate this, let us take for example the case with n = 9, m = 3, l = 6, and
consider the operator T = B∂xB∂xBB∂xBB. Then,

T = B6∂3
x +B4(∂xB2)∂2

x +B2(∂xB4)∂2
x +B(∂xB5)∂2

x + l.d.t.

But, the operator T (∗) := Tn . . . T2T1, is also present in the expansion of [m, l], and

T (∗) = Tn . . . T1

= Bl∂mx + [Bl−r1(∂xBr1) +Bl−r2(∂xBr2) + . . .

+Bl−rm(∂xBrm)]∂m−1
x + l.d.t.

(4.12)

Therefore, if T 6= T ∗ we have from (4.11) and (4.12) that

T + T (∗) = 2Bl∂mx +m(∂xBl)∂m−1
x + l.d.t. (4.13)

It can be seen that if T = T (∗), then the same expression is valid. Since there are(
n
m

)
terms in the expansion of [m, l] we conclude from (4.13) that

[m, l] =
(
n

m

)
[Bl∂mx +

ml

2
Bl−1Bx∂

m−1
x ] + l.d.t. (4.14)

In this way, for m = 2k1, r = 2k2 + 1, j = k1 + k2 = 1
2 (m + r − 1), l = n −m,

s = n− r, we apply integration by parts to observe that

〈[m, l]f, [r, s]f〉



EJDE-2013/246 UNIQUE CONTINUATION PRINCIPLE 15

=
(
n

m

)(
n

r

)(∫
Bl+s∂mx f ∂

r
xf +

sr

2

∫
Bl+s−1Bx ∂

m
x f ∂

r−1
x f +

ml

2

×
∫
Bl+s−1Bx ∂

m−1
x f∂rxf

)
+ l.o.t.

=
1
2

(
n

m

)(
n

r

)
(−1)

1
2 (m+1−r)

(
(m− r)(l + s) + rs−ml

)
×
∫
Bl+s−1Bx(∂

1
2 (m+r−1)
x f)2 + l.o.t.

=
1
2

(
n

m

)(
n

r

)
(−1)k1−k2n(m− r)

∫
Bl+s−1Bx(∂jxf)2 + l.o.t.

= (2α)2n−2j−1 1
2

(
n

m

)(
n

r

)
(−1)jn(m− r)

∫
(
ϕ

R
)2n−2j−2 −1

R2
(∂jxf)2 + l.o.t.

According to the definition of Ij in (4.10), and from the first equality in (4.9),
to obtain Ij we add the high order terms terms in the former expression with
k1 + k2 = j and 0 ≤ k1, k2 ≤ k. In this way, we obtain that

Ij = Anj
n

2
(2α)2n−2j−1

R2n−2j

∫
ϕ2n−2j−2(∂jxf)2, (4.15)

Where

Anj := (−1)j
∑

k1+k2=j
0≤k1,k2≤k

(2k2 + 1− 2k1)
(
n

2k1

)(
n

2k2 + 1

)
. (4.16)

We will prove in Lemma 4.2 below that

Anj = n

(
n− 1
j

)
≥ n, for all integers n ≥ 3 odd and all j ≤ n− 1, (4.17)

and in particular all the coefficients Anj are positive.
Regarding the lower terms IIj , we see from (4.10) and (4.8) that

IIj = −
∑

k1+k2>j
0≤k1,k2≤k

ck1,k2,j
(2α)2n−2(k1+k2)−1

R2n−2j

∫
ϕ2n−4k1−4k2+2j−2(∂jxf)2, (4.18)

Thus, from (4.10), using (4.15) and (4.18) we have

〈S1f,A1f〉

=
2k∑
j=0

Anj
n

2
(2α)2n−2j−1

R2n−2j

∫
ϕ2n−2j−2(∂jxf)2

−
2k∑
j=0

∑
k1+k2>j

0≤k1,k2≤k

ck1,k2,j
(2α)2n−2(k1+k2)−1

R2n−2j

∫
ϕ2n−4k1−4k2+2j−2(∂jxf)2.

(4.19)

We now turn our attention to the product 〈ψtf,A1f〉 in (4.6). For r = 2k1 + 1,
k1 = 0, . . . , k and s = n− r, taking into account that ψtxx=0, and using integration
by parts we see that

〈[r, s]f, ψtf ]〉 =
k1∑
j=0

∫
Pk1,j(B,Bx, ψt, ψtx)(∂jxf)2, (4.20)
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where

Pk1,j(B,Bx, ψt, ψtx) = c′k1,jB
s−νBνxψt + c′′k1,jB

s−(ν−1)Bν−1
x ψtx (4.21)

with ν + 2j = r. Since ψt = 2α( xR + φ)φ′ = 2αϕφ′ and ψtx = 2αφ
′

R , we have that

Pk1,j(B,Bx, ψt, Bt) = (2α)s+1
(
c′k1,j

ϕs−ν

Rs−ν
1
R2ν

ϕφ′ + c′′k1,j
ϕs−ν+1

Rs−ν+1

1
R2ν−2

φ′

R

)
≡ ck1,j αs+1ϕ

s−ν+1

Rs+ν
φ′ = αn−2k1 ck1,j

ϕn−4k1+2j−1

Rn−2j
φ′

≡ αn−2k1Qk1,j .

In this way, from (4.20) and proceeding as we did to obtain (4.9),

〈ψtf,A1f〉

=
k∑

k1=0

〈[2k1 + 1, n− (2k1 + 1)]f, ψtf〉

=
k∑

k1=0

αn−2k1

k1∑
j=0

∫
Qk1,j(∂

j
xf)2 =

k∑
j=0

k∑
k1=j

αn−2k1

∫
Qk1,j(∂

j
xf)2

=
k∑
j=0

αn−2j

∫
Qj,j(∂jxf)2 +

k∑
j=0

k∑
k1=j+1

αn−2k1

∫
Qk1,j(∂

j
xf)2

=
k∑
j=0

cj,j
αn−2j

Rn−2j

∫
ϕn−2j−1φ′(∂jxf)2

+
k∑
j=0

k∑
k1=j+1

ck1,j
αn−2k1

Rn−2j

∫
ϕn−4k1+2j−1φ′(∂jxf)2.

(4.22)

To estimate the term 〈S1f, ∂tf〉 in (4.6) we notice that, since S1 is the sum of
operators of the form T1, . . . Tn as described above, from the product rule for differ-
entiation we see that ∂t[(S1f)] = S1tf +S1∂tf , where S1t is a sum of compositions
of the form Q1Q2 . . . Qn where one of the Q′is is Bt and the others are either B or
∂x. In this way, by applying integration by parts we conclude that

〈S1f, ∂tf〉 = −〈S1tf + S1∂tf, f〉 = −〈S1tf, f〉 − 〈∂tf, S1f〉.
Therefore, 〈S1f, ∂tf〉 = − 1

2 〈S1tf, f〉. Proceeding as we did to obtain (4.20) to
(4.22) we see that 〈S1tf, f〉 has the same form as the right hand side of (4.22).

To conclude the computation of (4.6) we see that

〈ψtf, ∂tf〉 = −1
2

∫
ψttf

2 = −α
∫

((φ′)2 + ϕφ′′)f2. (4.23)

We return to (4.6) and compare the terms of the form αN/RM (for diverse integer
powers N and M) in (4.19), (4.22), and (4.23), especially, we compare the highest
order terms

α2n−2j−1

R2n−2j
(in (4.19)) and

αn−2j

Rn−2j
(in (4.22)).

Since by the hypotheses in this lemma, 1 ≤ ϕ ≤ 5 in the support of f , there is a
constant C = C(n, ‖φ′‖L∞+‖φ′′‖L∞) > 1 such that if we take α > CRn/(n−1), then
the leading terms in (4.19) with coefficient 1

2nA
n
j (2α)2n−2j−1/R2n−2j absorb the
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other terms appearing in (4.19), as well as all terms in (4.22), and (4.23). Therefore,
from (4.6) and (4.5) we have

‖Tf‖2 ≥ 2〈Sf,Af〉 ≥ C
n−1∑
j=0

Anj
α2n−2j−1

R2n−2j

∫
(∂jxf)2, (4.24)

where C depends only upon n.
To prove (4.2) we must obtain an expression similar to (4.24) with the integrals∫

(∂jxf)2 replaced by
∫

((∂x + B)jf)2. To do that, using integration by parts, we
observe that for m = 1, . . . , n− 1,∫

((∂x +B)mf)2

=
∫

(∂mx f)2 +
m−1∑
j=0

∑
r,s≥0

r+2s+2j=2m

cm,s,j

∫
BrBsx(∂jxf)2

=
∫

(∂mx f)2 +
m−1∑
j=0

∑
r,s≥0

r+2s+2j=2m

cm,s,j
(2α)r+s

Rr+2s

∫
ϕr(∂jxf)2

=
∫

(∂mx f)2 +
m−1∑
j=0

m−j∑
s=0

cm,s,j
(2α)2m−2j−s

R2m−2j

∫
ϕ2m−2s−2j(∂jxf)2 .

(4.25)

Since α > CRn/(n−1) > 1, and in the support of f , 1 ≤ ϕ ≤ 5, from (4.25) it follows
that ∫ (

(∂x +B)mf
)2 ≤ ∫ (∂mx f)2 + C ′

m−1∑
j=0

α2m−2j

R2m−2j

∫
(∂jxf)2, (4.26)

where C ′ > 0 depends only on n. Now, from (4.24) we see that, if Kn−1 is a
constant with 0 < Kn−1 ≤ Ann−1 = An0 = n, then

‖Tf‖2 ≥ CKn−1
α

R2

∫
(∂n−1
x f)2 + C

n−2∑
j=0

Anj
α2n−2j−1

R2n−2j

∫
(∂jxf)2,

Thus, applying (4.26) with m = n− 1, we conclude that

‖Tf‖2

≥ CKn−1
α

R2

[ ∫
((∂x +B)n−1f)2 − C ′

n−2∑
j=0

α2n−2−2j

R2n−2−2j

∫
(∂jxf)2

]

+ C

n−2∑
j=0

Anj
α2n−2j−1

R2n−2j

∫
(∂jxf)2

= CKn−1
α

R2

∫
((∂x +B)n−1f)2 + C

n−2∑
j=0

(Anj −Kn−1C
′)
α2n−2j−1

R2n−2j

∫
(∂jxf)2.
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Therefore, by choosing Kn−1 = min{Ann−1,
1
2A

n
n−2/C

′, . . . , 1
2A

n
0/C

′}, we obtain
that

‖Tf‖2 ≥ CKn−1
α

R2

∫
((∂x +B)n−1f)2 + C

n−2∑
j=0

1
2
Anj

α2n−2j−1

R2n−2j

∫
(∂jxf)2, (4.27)

and in this way we obtain an expression similar to (4.24) with the first integral
term

∫
(∂n−1
x f)2 replaced by

∫
((∂x+B)n−1)f)2. Notice that from (4.17), Kn−1 > 0.

Proceeding in a similar manner, using (4.27), successively applying (4.26) with m =
n−2, n−3, . . . , 1, and taking adequate values of Kn−2, . . . ,K1 > 0, we can perform
the replacement of the remaining integrals. Since the min{K1, . . . ,Kn−1} > 0, (4.2)
follows and the proof is complete. �

We now prove that all the coefficients Anj defined in (4.16) are positive.

Lemma 4.2. For integer k ≥ 1, let n = 2k + 1. Then, for j = 0, . . . , n− 1,

Anj := (−1)j
∑

k1+k2=j
0≤k1,k2≤k

(2k2 + 1− 2k1)
(
n

2k1

)(
n

2k2 + 1

)
= n

(
n− 1
j

)
. (4.28)

Proof. Using the formula (1 + x)n =
∑n
r=0

(
n
r

)
xr we see that for x, β ∈ R, x 6= 0,

hβ(x) :=
1
4

(
(1 + βx)n + (1− βx)n

)(
(1 + β/x)n − (1− β/x)n

)
=

k∑
k1,k2=0

(
n

2k1

)(
n

2k2 + 1

)
β2k1+2k2+1x2k1−2k2−1

=
2k∑
j=0

∑
k1+k2=j

0≤k1,k2≤k

(
n

2k1

)(
n

2k2 + 1

)
β2j+1x2k1−2k2−1.

Therefore,

h′β(1) =
2k∑
j=0

β2j+1
∑

k1+k2=j
0≤k1,k2≤k

(2k1 − 2k2 − 1)
(
n

2k1

)(
n

2k2 + 1

)

=
2k∑
j=0

(−1)j+1Anj β
2j+1.

(4.29)

But
4
nβ

h′β(x) =
(

(1 + βx)n−1 − (1− βx)n−1
)(

(1 + β/x)n − (1− β/x)n
)

+
(

(1 + βx)n + (1− βx)n
)(

(1 + β/x)n−1 + (1− β/x)n−1
)(
− 1
x2

)
.

Therefore, with x = 1,
4
nβ

h′β(1) =
(

(1 + β)n−1 − (1− β)n−1
)(

(1 + β)n − (1− β)n
)

−
(

(1 + β)n + (1− β)n
)(

(1 + β)n−1 + (1− β)n−1
)

= −2(1 + β)n−1(1− β)n − 2(1 + β)n(1− β)n−1 = −4(1− β2)n−1.
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In this way,

h′β(1) =
n−1∑
j=0

(−1)j+1n

(
n− 1
j

)
β2j+1,

which, with together with (4.29), gives (4.28). �

In the following theorem we apply Lemma 4.1 to the difference w of two solutions
of equation (1.1) to obtain a bound of the L2-norm of w in a small rectangle with
the Hn−1 norm of w in a distant rectangle [R− 1, R]× [0, 1].

Theorem 4.3. Let ε > 0. For r ∈ (0, 1), R > 2 and u1, u2 ∈ C([0, 1];Hn(R))
solutions of equation (1.1) define w = u1 − u2, Q = [0, 1]× [r, 1− r], and

AR(w) =
∫ 1

0

∫ R+1

R

n−1∑
j=0

(∂jxw)2 dx dt . (4.30)

Suppose that ‖w‖L2(Q) ≥ δ > 0. Then there exist constants C > 0, C∗ = C∗(n, r) >
0, and R0 > 1 such that

‖w‖L2(Q) ≤ CeC∗R
γ

AR(w) for all R > R0 , (4.31)

where

γ ≡ γn,p =


n
n−1 if p = 0, . . . , k = n−1

2 ,

2(n−p)
2(n−p)−1 + ε if p = k + 1, . . . , n− 1.

(4.32)

Notice that for the KdV Hierarchy, p = n− 2, and thus we have an exponential
eC∗R

4/3+ in (4.31).

Proof. From (1.1), by a process similar to that used to obtain (2.11), it can be seen
that w is a solution of the equation

∂tw + (−1)k+1∂nxw = −[P (z1)− P (z2)] = −
p∑
j=0

Fj∂
j
xw , (4.33)

where each Fj is a polynomial in ∂j1x u1 and ∂j2x u2 with j1, j2 ≤ p ≤ n − 1. From
the embedding of H1(R) in L∞(R), the functions Fj = Fj(x, t) are bounded in
D = R× [0, 1]. Let φ ∈ C∞([0, 1]) be a function such that φ ≡ 0 in [0, r2 ]∪ [1− r

2 , 1],
φ ≡ 4 in [r, 1 − r], φ increasing in [ r2 , r], and decreasing in [1 − r, 1 − r

2 ]. Let
us choose functions µ̃, θ̃ ∈ C∞(R), such that µ̃ ≡ 0 in (−∞, 1], µ̃ ≡ 1 in [2,∞),
θ̃ ≡ 1 in (−∞, 0], θ̃ ≡ 0 in [1,∞), and define µR(x, t) ≡ µ(x, t) := µ̃( xR + φ(t)) and
θR(x) ≡ θ(x) := θ̃(x−R). Let g := µθw. Then, it can be seen that in the support
of µθ, 1 ≤ x

R + φ(t) ≤ 5. Besides g(0) = g(1) = 0. Thus g satisfies the hypotheses
of Lemma 4.1. With ψ = α( xR + φ(t))2, α > 0, as in the statement of Lemma 4.1,
we compute

eψ(∂tg + (−1)k+1∂nx g)

= eψ
(
µtθw + µθ∂tw + µθ(−1)k+1∂nxw +

n∑
r=1

cn,r∂
r
x(µθ)∂n−rx w

)
= eψ

(
−

p∑
j=0

Fjµθ∂
j
xw + µtθw +

n∑
r=1

cn,rµ∂
r
xθ∂

n−r
x w



20 P. ISAZA EJDE-2013/246

+
n∑
r=1

r∑
s=1

cn,rcr,s∂
s
xµ∂

r−s
x θ∂n−rx w

)
= eψ

(
−

p∑
j=0

Fj∂
j
x(µθw) +

p∑
j=1

Fj

j∑
r=1

cj,r∂
r
x(µθ)∂j−rx w

+ µtθw + µ

n∑
r=1

cn,r∂
r
xθ∂

n−r
x w +

n∑
r=1

r∑
s=1

cn,rcr,s∂
s
xµ∂

r−s
x θ∂n−rx w

)
= eψ

(
−

p∑
j=0

Fj∂
j
xg + µ

p∑
j=1

Fj

j∑
r=1

cj,r∂
r
xθ∂

j−r
x w

+
p∑
j=1

j∑
r=1

r∑
s=1

Fjcj,rcr,s∂
s
xµ∂

r−s
x θ∂j−rx w

+ µtθw + µ

n∑
r=1

cn,r∂
r
xθ∂

n−r
x w +

n∑
r=1

r∑
s=1

cn,rcr,s∂
s
xµ∂

r−s
x θ∂n−rx w

)
.

To obtain a bound for the L2-norm of the right-hand side of the former expression
we take into account the following facts: The derivatives ∂sxµ (s ≥ 1) are supported
in ⊆ {(x, t) | 1 < x

R + φ(t) < 2} and thus eψ ≤ e4α in this set whose area is of
order R. Also, ∂rxθ (r ≥ 1) is supported in [R,R+ 1]× [0, 1], and eψ ≤ e25α in this
rectangle. Besides, w, the functions Fj , and all the derivatives of µ, θ, and w, are
bounded by a constant independent of R. From this considerations, and applying
Lemma 4.1 we obtain

n−1∑
j=0

αn−j−1/2

Rn−j
‖eψ∂jxg‖

≤ C‖eψ(∂t + (−1)k+1∂nx )g‖

≤ C
p∑
j=0

‖eψ∂jxg‖+ Ce25α
n−1∑
j=0

‖∂jxw‖L2([R,R+1]×[0,1]) + CR1/2e4α.

Let C be the constant in Lemma 4.1. Then C = C(n, r). If we take α = (1+C)R1+s,
with s ≥ 1

n−1 , then α > CR
n
n−1 , and for j = 1, . . . , p

αn−j−1/2

Rn−j
= (1 + C)n−j−

1
2R−

1
2 +s(n−j− 1

2 ) ≥ Rs(n−p− 1
2 )− 1

2

and therefore, after discarding the terms with j > p on the left-hand side of (4.34),
and bearing in mind the definition of AR(w) given in (4.30), we have that

p∑
j=0

Rs(n−p−
1
2 )− 1

2 ‖eψ∂jxg‖ ≤ C
p∑
j=0

‖eψ∂jxg‖+ Ce25αAR(w) + CR1/2e4α. (4.34)

We will choose s ≥ 1
n−1 in such a way that s(n − p − 1/2) − 1/2 > 0; that is,

s > 1/(2n − 2p − 1). Then, by making R sufficiently large we can make the left-
hand side of (4.34) more than twice the first term on the right-hand side, allowing
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the absorsion of this last term to obtain that
p∑
j=0

Rs(n−p−
1
2 )− 1

2 ‖eψ∂jxg‖ ≤ Ce25αAR(w) + CR1/2e4α. (4.35)

To choose the appropriate value of s we see that if p ≤ (n− 1)/2 = k, then

1
(2n− 2p− 1)

≤ 1
n
<

1
n− 1

,

and we choose s = 1/(n− 1). Then with α = (1 + C)R1+s = (1 + C)R(n−1)/n, we
have (4.35) for large R.

If (n− 1)/2 ≤ p ≤ n− 1, that is if (n+ 1)/2 ≤ p ≤ n− 1, then, with ε > 0 and

s = 1/(2n− 2p− 1) + ε; that is, with α = (1 +C)R
2(n−p)

2(n−p)−1 +ε, we obtain (4.35) for
large R.

Since x
R + φ(t) ≥ 4 in Q := [0, 1] × [r, 1 − r] and µ ≡ 1, and θ ≡ 1 in Q, we

can replace the left-hand side of (4.35) by a smaller amount to conclude that for R
sufficiently large

e16α‖w‖L2(Q) ≤ Ce25αAR(w) + CR1/2e4α, (4.36)

Hence, with γ as in (4.32), and α = (1 + C)Rγ ,

e16(1+C)Rγ‖w‖L2(Q) ≤ Ce25(1+C)RγAR(w) + CR1/2e4(1+C)Rγ ,

Since ‖w‖L2(Q) ≥ δ > 0, by making R sufficiently large we can absorb the last term
on the right-hand side of the former inequality with the left-hand side to obtain
(4.31) with C∗ = 9(1 + C), which completes the proof of Theorem 4.3. �

5. Proofs of Theorems 1.1 and 1.2

For Theorem 1.1 we present a proof which can be adapted with minor changes
to prove Theorem 1.2.

Proof of Theorem 1.1. From hypothesis (1.6), ex
4/3+ε
+ w(0) ∈ L2(R), then it follows

that ‖eax
4/3+ε/2
+ w(0)‖L2(R ≤ Ca < ∞ for all a > 0. The same property holds for

w(1). Also, by an interpolation argument similar to that in (2.8),

‖eax
4/3+ε/2
+ ∂jxw(i)‖L2(R ≤ Ca <∞ for all a > 0, j = 1, . . . , n, i = 0, 1. (5.1)

Suppose that w does not vanish identically in D := R × [0, 1]. Then, there is a
rectangle Q := [x0, x0 + 1] × [r, 1 − r], for some x0 ∈ R and r ∈ (0, 1), such that
‖w‖L2(Q) > 0. If we consider translations ũi of ui, defined by ũi(x, t) := ui(x+x0, t),
i = 1, 2, then, it can be seen that ũ1, ũ2, and w̃ := ũ1 − ũ2, satisfy the hypotheses
of Theorem 1.1. In this way, making a translation if necessary, we can suppose
without loss of generality that Q = [0, 1]× [r, 1− r].

Let η ∈ C∞(R) be a function supported in (0, 1) and such that
∫
η = 1. For

R > 1 and N > 4R+ 1, define φR,N (x) ≡ φ(x) :=
∫ x
−∞ η(x′ −R)− η(x′ −N)) dx′.

Then φR,N = 1 in [R + 1, N ], suppφR,N ⊆ [R,N + 1] and |φ(j)
R,N | ≤ cj with cj

independent of R and N . We will apply Theorem 3.1 to the function vR,N ≡ v :=
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φR,N w. From (4.33) with p = n− 2, v satisfies

∂tv + (−1)k+1∂nx v

= φ(∂tw + (−1)k+1∂nxw) +
n∑
j=1

cn,jφ
(j)∂n−jx w

= −
p∑
j=0

φFj∂
j
xw +

n∑
j=1

cn,jφ
(j)∂n−jx w

= −
p∑
j=0

Fj∂
j
x(φw) +

p∑
j=1

Fj

j∑
r=1

cj,rφ
(r)∂j−rx w +

n∑
j=1

cn,jφ
(j)∂n−jx w.

(5.2)

For λ > 2 we now apply together (3.1) and (3.2) in Theorem 3.1 to v. We use
(5.2), Hölder’s inequality, and the fact that ‖ · ‖L2

TL
2
x
≤ ‖ · ‖L∞T L2

x
and ‖ · ‖L1

TL
2
x
≤

‖·‖L2
TL

2
x
, and take into account that φ is supported in [R,N +1] and its derivatives

φ(j) are supported in [R,R+ 1] ∪ [N,N + 1], to obtain

‖eλxφw‖L2
TL

2
x

+
n−1∑
j=1

‖eλx∂jx(φw)‖L∞x L2
T

≤ Cλn−1‖|Jn(eλxφw(1))|+ |Jn(eλxφw(0))|‖2L(R

+ C‖eλx(∂t + (−1)k+1∂nx )v‖L1
TL

2
x
∩L1

xL
2
T

≤ Cλ2n−1
1∑
j=0

‖eλx(|w(j)|+ |∂nxw(j)|)‖L2([R,∞))

+ C‖F0‖L2
TL
∞
x≥R
‖eλxφw‖L2

TL
2
x

+ C‖F0‖L2
x≥RL

∞
T
‖eλxφw‖L2

xL
2
T

+ C

p∑
j=1

‖Fj‖L2
x≥RL

∞
T
‖eλx∂jx(φw)‖L∞x L2

T

+ C

p∑
j=1

‖Fj‖L1
x≥RL

∞
T
‖eλx∂jx(φw)‖L∞x L2

T

+ Ceλ(R+1)
n−1∑
j=0

‖∂jxw‖L∞T L2
x

+ C

n−1∑
j=0

eλ(N+1)‖∂jxw‖L∞T L2
x≥N

=: I + II + III + IV.

(5.3)

where C does not depend on λ, N , and R.
Taking into account the specific form of the polynomial P in (1.2), and since∑n−1
j=0 Fj∂

j
xw = P (z1) − P (z2), we see from (2.9) and (2.11) that each Fj is a

polynomial in ∂j1x u1 and ∂j2x u2 with j1, j2 ≤ n− 3, except for F0 which has a term
∂n−2
x u1 coming from the quadratic term w∂n−2

x u1 in A2(z1)− A2(z2) (see (2.12)).
From (2.15) it follows that

‖(1 + x+)α(1− l+1
n+1 )∂lxui(t)‖L∞(R) ≤ C , for all t ∈ [0, 1], l = 0, . . . , n. (5.4)

For l ≤ n−3, α(1− j+1
n+1 ) > n+1

3 (1− n−2
n+1 ) = 1. Therefore, ‖(1+x+)1+

Fj‖L∞T L∞x <∞
for j = 1, . . . , p. In a similar way, with l = n − 2 in (5.4), we see that ‖(1 +
x+)2/3F0‖L∞T L∞x < ∞. From this decay of the functions Fj we conclude that, by
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taking R sufficiently large, the norms involving these functions in II and III of (5.3)
can be made small in such a way that II and III can be absorbed by the left-hand
side of (5.3).

After we perform this absorbtion, and taking into account that φ ≡ 1 in [4R, 4R+
1], we replace the left-hand side of (5.3) by a smaller amount to obtain

‖eλxw‖L2([4R,4R+1]×[0,1]) +
n−1∑
j=1

‖eλx∂jxw‖L2([4R,4R+1]×[0,1])

≤ Cλ2n−1
1∑
j=0

‖eλx(|w(j)|+ |∂nxw(j))|‖L2([R,∞))

+ Ceλ(R+1)
n−1∑
j=0

‖∂jxw‖L∞T L2
x

+ Ceλ(N+1)‖∂jxw‖L∞T L2
x≥N

=: I + IV.

(5.5)

From the decay hypothesis (1.6) of w and the exponential decay preservation
proved in Theorem 2.1, it follows that ‖eλxw(t)‖2L(R ≤ Cλ <∞, for all λ > 0 and
all t ∈ [0, 1]. From an interpolation argument similar to that in (2.8), we also have
that ‖eλx∂jxw(t)‖2L(R ≤ Cλ, for j = 1, . . . , n. Therefore,

IV ≤ Ceλ(R+1)
n−1∑
j=0

‖∂jxw‖L∞T L2
x

+ Ceλ(N+1)e−2λN‖e2λx∂jxw‖L∞T L2
x

≤ Ceλ(R+1) + Cλe
−λ(N−1) ,

Then, as N →∞, from (5.5) we conclude that

e4Rλ
n−1∑
j=0

‖∂jxw‖L2([4R,4R+1]×[0,1])

≤ Cλ2n−1
1∑
j=0

‖eλx(|w(j)|+ |∂nxw(j))|‖L2([R,∞)) + Ceλ(R+1).

(5.6)

For a > 0 to be determined later, we take λ = aR1/3+ε/2. Since λx = aR1/3+ε/2x ≤
ax4/3+ε/2 for x ≥ R, from (5.6) we have

e4aR4/3+ε/2
n−1∑
j=0

‖∂jxw‖L2([4R,4R+1]×[0,1])

≤ Ca2n−1R(2n−1)( 1
3 +ε/2)

1∑
j=0

‖eax
4/3+ε/2

(|w(j)|+ |∂nxw(j))|‖L2(R)

+ CeaR
1/3+ε/2(R+1),

and thus, from the definition of AR(w) given in (4.30) and from (5.1),

e4aR4/3+ε/2
AR(w) ≤ CaR(2n−1)(1/3+ε/2) + Ce2aR4/3+ε/2

≤ Cae2aR4/3+ε/2
. (5.7)

We now apply Theorem 4.3 with p = n− 2 to obtain

‖w‖L2(Q) ≤ CeC∗R
4/3+ε/2

AR(w)
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≤ CeC∗R
4/3+ε/2

Cae
−2aR4/3+ε/2

= Cae
(C∗−2a)R4/3+ε/2

,

Where C∗ = C∗(r). If we fix a > C∗/2, then by taking R → ∞ we conclude that
‖w‖L2(Q) = 0, which contradicts the original assumption ‖w‖L2(Q) 6= 0. Then we
conclude that w ≡ 0, and Theorem 1.1 is proved. �

Proof of Theorem 1.2. From Remark 2.2, w satisfies (2.23). With β = 1, after
applying Gronwall’s inequality and taking N → ∞, we can conclude that for t0 ∈
[0, 1], ∫

exw(t)2 ≤ C
∫
exw(t0)2 for all t ∈ [t0, 1]. (5.8)

By making the change of variables x 7→ −x and t 7→ 1− t, and taking into account
that w ∈ C([0, 1];Hn+1(R) ∩ L2((1 + x−)2α0 dx) we can also see that∫

e−xw(t)2 ≤ C
∫
e−xw(t0)2 for all t ∈ [0, t0]. (5.9)

Thus we can conclude that if w(t0) = 0, then w ≡ 0.
We will find a constant a > 0 such that if w(0), w(1) ∈ L2(eax

n/(n−1)
), then w ≡ 0.

We reason by contradiction. Suppose that w does not vanish identically in D := R×
[0, 1]. Then, by the uniqueness argument just given, w does not vanish identically
in D0 := R× [1/3, 2/3]. Therefore, there is a rectangle Q := [x0, x0 + 1]× [1/3, 2/3]
such that ‖w‖L2(Q) > 0. By making a translation if necessary, we can suppose
without loss of generality that Q = [0, 1] × [1/3, 2/3]. We now continue applying
the same arguments used to prove Theorem 1.1, using λ = aR1/(n−1) instead of
aR1/3+ε/2. In this case we apply Theorem 4.3 with p ≤ k, and C∗ = C∗(1/3) and
choose a = C∗

2 + 1 > C∗
2 , which gives a value of a which depends only on n. �
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