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OSCILLATION AND NONOSCILLATION FOR SECOND-ORDER
NONLINEAR NEUTRAL FUNCTIONAL DYNAMIC EQUATIONS

ON TIME SCALES

XUN-HUAN DENG, QI-RU WANG

Abstract. In this article, we investigate the oscillation and nonoscillation of

second order nonlinear neutral dynamic equations with retarded and advanced

arguments by means of the theory of upper and lower solutions for related
dynamic equations along with some additional estimates on positive solutions.

We also apply the Kranoselskii’s fixed point theorem to obtain nonoscillation

results. Some interesting examples are given to illustrate the versatility of our
results.

1. Introduction

Following Hilger’s pioneering work [11], a rapidly expanding body of literature
has sought to unify, extend and generalize ideas from continuous and discrete cal-
culus to arbitrary time-scale calculus, where a time scale is simply an arbitrary
nonempty closed subset of the real numbers R with the topology and ordering in-
herited form R. For some basic facts on time scale calculus and dynamic equations
on time scales, one may consult the excellent texts [6, 7] by Bohner and Peterson.

In recent years, there has been an increasing interest in studying the oscillation
and nonoscillation of solutions of dynamic equations on time scales. We refer the
readers to the monographs [4, 14], the papers [1-3,5,8-10,12-13,15-16] and the ref-
erences therein. Particularly, in 2010 Higgins [9] discussed the oscillation of the
second-order delay dynamic equation

[p(t)x∆(t)]∆ + f(t, xσ(t), x(τ1(t)), . . . , x(τn(t))) = 0.

In this article, we shall consider the second-order nonlinear neutral functional
dynamic equation with retarded and advanced arguments

[p(t)z∆(t)]∆ + f(t, xσ(t), x(τ1(t)), . . . , x(τn(t)), x(ξ1(t)), . . . , x(ξm(t))) = 0 (1.1)

on a time scale T, where n,m ∈ N, z(t) = x(t)+r(t)x(g(t)), f ∈ C(T×Rn+m+1,R),
and p ∈ Crd([t0,∞)T, (0,∞)) satisfies∫ ∞

t0

1
p(s)

∆s =∞.
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We shall also need the following hypothesis:
(A1) There exists constant 0 ≤ r0 < 1 such that r ∈ Crd(T, [0, r0]).
(A2) g ∈ Crd(T,T), g(t) ≤ t, limt→∞ g(t) =∞.
(A3) τ1, τ2, . . . , τn ∈ Crd(T,T), τi(t) ≤ t, limt→∞ τi(t) =∞, i = 1, 2, . . . , n.
(A4) ξ1, ξ2, . . . , ξm ∈ Crd(T,T), ξj(t) ≥ σ(t), j = 1, 2, . . . ,m.
(A5) xif(t, x0, x1, . . . , xn+m) > 0 if xixj > 0, 0 ≤ i, j ≤ n + m, i 6= j, and for

each t ∈ T, f(t, x0, x1, . . . , xn+m) is nondecreasing in xi, 0 ≤ i ≤ n+m.
Since we are interested in the oscillatory behavior of (1.1), we assume throughout
that the time scale T under consideration satisfies inf T = t0 and sup T = ∞. We
define the time scale interval [t0,∞)T := [t0,∞)∩T. A solution x(t) of (1.1) is said
to be oscillatory if it is neither eventually positive nor eventually negative, otherwise
it is nonoscillatory. The equation itself is called oscillatory if all its solutions are
oscillatory.

2. Preliminaries

To prove our main results in a straightforward manner, we establish some fun-
damental results in this section. Now we introduce the auxiliary functions

P (t, a) =
∫ t

a

∆s
p(s)

, ηi(t, a) =
P (τi(t), a)
P (σ(t), a)

, νj(t, a) =
P (ξj(t), a)
P (σ(t), a)

, (2.1)

where 1 ≤ i ≤ n, 1 ≤ j ≤ m, a ∈ [t0,∞)T. First of all, we give the following
lemma.

Lemma 2.1. If x(t) is an eventually positive solution of (1.1), then there exists
some T ≥ t0 such that

(i) for all t ≥ T , z(t) > 0, z∆(t) > 0, x(t) ≥ (1− r(t))z(t);
(ii) for each 1 ≤ i ≤ n and for t ≥ τi(t) ≥ T , we have

z(τi(t)) ≥ ηi(t, T )zσ(t);

(iii) if p(t) is nondecreasing, then for each 1 ≤ i ≤ n and for σ(t) ≥ t ≥ τi(t) ≥
T , we have

z(τi(t))
zσ(t)

≥ τi(t)− τi(T )
σ(t)− τi(T )

.

Proof. (i) Suppose that x(t) is an eventually positive solution of (1.1). In view
of the conditions (A1)–(A4), there exists T ∈ T such that x(t) > 0, x(g(t)) > 0,
x(τi(t)) > 0, 1 ≤ i ≤ n, x(ξj(t)) > 0, 1 ≤ j ≤ m, t ∈ [T,∞)T. It follows that
z(t) = x(t) + r(t)x(g(t)) > 0 and from (1.1) that [p(t)z∆(t)]∆ < 0 on [T,∞)T,
which means that p(t)z∆(t) is strictly decreasing on [T,∞)T.

Next, we claim that z∆(t) is eventually positive. Otherwise, if there exists t1 ∈ T
with t1 ≥ T such that z∆(t1) < 0, then

z∆(t) ≤ p(t1)z∆(t1)
p(t)

< 0, t ∈ [t1,∞)T. (2.2)

Integrating (2.2) from t1 to t (t ≥ t1), we obtain that limt→∞ z(t) = −∞, which
contradicts z(t) > 0. Hence, z∆(t) > 0 on [T,∞)T.

Since x(t) is a solution of (1.1) satisfying x(t) > 0 and z∆(t) > 0, we see that

x(t) = z(t)− r(t)x(g(t)) ≥ z(t)− r(t)z(g(t)) ≥ z(t)− r(t)z(t) = (1− r(t))z(t).
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(ii) For t ≥ τi(t) ≥ T ≥ t0 and 1 ≤ i ≤ n, we have

zσ(t)− z(τi(t)) =
∫ σ(t)

τi(t)

1
p(s)

p(s)z∆(s)∆s ≤ p(τi(t))z∆(τi(t))
∫ σ(t)

τi(t)

1
p(s)

∆s.

Dividing both sides of the above inequality by z(τi(t)), we obtain

zσ(t)
z(τi(t))

≤ 1 +
p(τi(t))z∆(τi)

z(τi(t))
P (σ(t), τi(t)). (2.3)

Likewise, we also have

z(τi(t))− z(T ) =
∫ τi(t)

T

1
p(s)

p(s)z∆(s)∆s ≥ p(τi(t))z∆(τi(t))
∫ τi(t)

T

1
p(s)

∆s,

and hence
p(τi(t))z∆(τi(t))

z(τi(t))
≤ 1
P (τi(t), T )

. (2.4)

Therefore, (2.3) and (2.4) imply

zσ(t)
z(τi(t))

≤ 1 +
p(τi(t))z∆(τi)

z(τi(t))
P (σ(t), τi(t)) ≤

P (σ(t), T )
P (τi(t), T )

.

This gives the desired result

z(τi(t)) ≥ ηi(t, T )zσ(t), 1 ≤ i ≤ n.

(iii) It is based on similar arguments developed in [5] and the corresponding
proof can be found in [1, Lemma 2.4]. The proof is complete. �

In addition to the above lemma, we need a method for studying separated bound-
ary value problems (SBVP) to prove our main results. Namely, we will define
functions called upper and lower solutions that, not only imply the existence of
a solution of a SBVP, but also provide bounds on the location of the solution.
Consider the SBVP

−(p(t)z∆(t))∆ + q(t)zσ = h(t, zσ), t ∈ [a, b]κ
2
, (2.5)

z(a) = A, z(b) = B, (2.6)

where functions h ∈ C([a, b]κ
2 ×R,R), p, q ∈ C([a, b]κ

2
) with p(t) > 0 and q(t) ≥ 0

on [a, b]κ
2
. We define the set

D1 := {z ∈ X : z∆ is continuous and (pz∆)∆ is rd-continuous on [a, b]κ
2
},

where the Banach space X = C([a, b]T) is equipped with the norm ‖ · ‖ defined by

‖z‖ := max
t∈[a,b]T

|z(t)| for all z ∈ X.

A function z is called a solution of the equation −(p(t)z∆(t))∆ + q(t)zσ = 0 on
[a, b]κ

2
if z ∈ D1 and solves this equation for all t ∈ [a, b]κ

2
. Next, we define for any

u, v ∈ D1 the sector [u, v]1 by

[u, v]1 := {w ∈ D1 | u ≤ w ≤ v}.
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Definition 2.2 ([7, Definition 6.1]). We call α ∈ D1 a lower solution of the SBVP
(2.5)-(2.6) on [a, b]T provided

−(p(t)α∆(t))∆ + q(t)ασ(t) ≤ h(t, ασ(t)) for all t ∈ [a, b]κ
2
,

α(a) ≤ A, α(b) ≤ B.

Similarly, β ∈ D1 is called an upper solution of the SBVP (2.5)-(2.6) on [a, b]
provided

−(p(t)β∆(t))∆ + q(t)βσ(t) ≥ h(t, βσ(t)) for all t ∈ [a, b]κ
2
,

β(a) ≥ A, β(b) ≥ B.

The following theorem is an extension of [7, Theorem 6.5] to [a,∞)T.

Theorem 2.3 ([10, Theorem 1.5]). Assume that there exists a lower solution α
and an upper solution β of (2.5) with α(t) ≤ β(t) for all t ∈ [a,∞)T. Then

− (p(t)z∆(t))∆ + q(t)zσ = h(t, zσ) (2.7)

has a solution z with z(a) = A and z ∈ [α, β]1 on [a,∞)T.

Our next preliminary result is a generalization of [9, Theorem 2.4]. When r(t) =
0, [9, Theorem 2.4] is still a special case of the following Theorem.

Theorem 2.4. Let h(t, x) be a continuous function of the variables t > t0 and
|x| < ∞. Assume that for all t > 0 and x 6= 0, xh(t, x) > 0, and for each fixed t,
h(t, x) is nondecreasing in x for x > 0. Then a necessary condition for equation

(p(t)z∆(t))∆ + h(t, xσ(t)) = 0, t ≥ t0 > 0 (2.8)

to have a bounded nonoscillatory solution is that∫ ∞
P (t, a)h(t, c)∆t <∞

for any fixed a ∈ [t0,∞)T and for some constant c > 0.

Proof. Suppose x(t) is a bounded eventually positive solution of (2.8). Then, there
exists T ∈ [t0,∞)T such that x(t) > 0 for t ≥ T . As h(t, x) > 0 for all x > 0,
(p(t)z∆(t))∆ is eventually negative. Hence, p(t)z∆(t) is decreasing and according
to Lemma 2.1, limt→∞ p(t)z∆(t) = L with 0 ≤ L <∞. Integrating (2.8) from s to
T1, we obtain

p(T1)z∆(T1)− p(s)z∆(s) +
∫ T1

s

h(θ, xσ(θ))∆θ = 0.

It follows that

z∆(s) ≥ 1
p(s)

∫ ∞
s

h(θ, xσ(θ))∆θ.

Integrating again for T ≤ t1 < t and by change of integration order [12, Lemma 1]∫ t

s

[ ∫ t

η

f1(η, ξ)∆ξ
]
∆η =

∫ t

s

[ ∫ σ(ξ)

s

f1(η, ξ)∆η
]
∆ξ,

we obtain

z(t)− z(t1) ≥
∫ t

t1

1
p(s)

∫ ∞
s

h(θ, xσ(θ))∆θ∆s ≥
∫ t

t1

∫ t

s

h(θ, xσ(θ))
p(s)

∆θ∆s
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=
∫ t

t1

∫ σ(θ)

t1

h(θ, xσ(θ))
p(s)

∆s∆θ ≥
∫ t

t1

P (θ, t1)h(θ, xσ(θ))∆θ.

Consequently, for t ≥ t1 ≥ T , we obtain

z(t) >
∫ t

t1

P (θ, t1)f(θ, xσ(θ))∆θ.

Since x(t) ≤M for some M > 0 and
∫ t
t1
P (θ, t1)f(θ, xσ(θ))∆θ is increasing function

of t, for r ∈ [0, 1), we have∫ ∞
t1

P (θ, t1)f(θ, (1− r(σ(θ)))zσ(θ))∆θ ≤
∫ ∞
t1

P (θ, t1)f(θ, xσ(θ))∆θ

< lim
t→∞

z(t) ≤ 2M <∞.

By the monotonicity of f , we have∫ ∞
a

P (θ, a)f(θ, (1− r(σ(T )))zσ(T ))∆θ <∞.

Letting c = (1− r(σ(T )))zσ(T ), we obtain the desired result. �

We end this section with time scale version of Arzerel-Ascoli theorem (see [16,
Lemma 4]) and Kranoselskii’s fixed point theorem (see [16]). These will be used in
the proof of Theorem 3.3.

For T0, T1 ∈ T, let [T0,∞)T := {t ∈ T : t ≥ T0} and [T0, T1]T := {t ∈ T : T0 ≤ t ≤
T1}. Further, let C([T0,∞)T,R) denote all continuous functions mapping [T0,∞)T
into R,

BC[T0,∞)T :=
{
x ∈ C([T0,∞)T,R) : sup

t∈[T0,∞)T

|x(t)| <∞
}
. (2.9)

which endowed with the norm ‖x‖ = supt∈[T0,∞)T
|x(t)|, (BC[T0,∞)T, ‖ · ‖) is a

Banach space. Let X ⊆ BC[T0,∞)T, we say X is uniformly Cauchy if for any given
ε > 0, there exists a T1 ∈ [T0,∞)T such that for any x ∈ X,

|x(t1 − x(t2)| < ε for all t1, t2 ∈ [T1,∞)T.

The set X is said to be equi-continuous on [a, b]T if for any given ε > 0, there
exists a δ > 0 such that for any x ∈ X and t1, t2 ∈ [a, b]T with |t1 − t2| < δ,
|x(t1)− x(t2)| < ε.

Lemma 2.5 ([16, Lemma 4]). Suppose that X ⊆ BC[T0,∞)T is bounded and
uniformly Cauchy. Further, suppose that X is equi-continuous on [T0, T1]T for any
T1 ∈ [T0,∞)T. Then X is relatively compact.

Lemma 2.6 (Kranoselskii’s fixed point theorem). Suppose that X is a Banach
space and Ω is a bounded, convex and closed subset of X. Suppose further that there
exist two operators U, S : Ω→ X such that

(i) Ux+ Sy ∈ Ω for all x, y ∈ Ω;
(ii) U is a contraction mapping;
(iii) S is completely continuous.

Then U + S has a fixed point in Ω.
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3. Main results

Theorem 3.1. Assume that conditions (A1)–(A5) hold, then any bounded solution
x(t) of (1.1) is oscillatory when∣∣ ∫ ∞ P (t, a)f(t, αwσ(t), αwτ1η1(t, a), . . . , αwτnηn(t, a), αwξ1 , . . . , αwξm)∆t

∣∣ =∞,

(3.1)
or ∣∣ ∫ ∞ P (t, a)f(t, α, αη1(t, a), . . . , αηn(t, a), α, . . . , α)∆t

∣∣ =∞ (3.2)

for all α 6= 0, where w(t) = 1 − r(t), wτi = w(τi(t)), 1 ≤ i ≤ n, wξj = w(ξj(t)),
1 ≤ j ≤ m, ηi(t, a), 1 ≤ i ≤ n, is given in (2.1).

Proof. First, we point out that (3.1) is equivalent to (3.2). In fact, by assumptions
(A1), (A5), and the monotonicity of f , we have∣∣ ∫ ∞

a

P (t, a)f(t, αm1, αm1η1(t, a), . . . , αm1ηn(t, a), αm1, . . . , αm1)∆t
∣∣

≤
∣∣ ∫ ∞
a

P (t, a)f(t, αwσ(t), αw(τ1(t))η1(t, a), . . . , αw(τn(t))ηn(t, a), αwξ1 ,

. . . , αwξm)∆t
∣∣

≤
∣∣ ∫ ∞
a

P (t, a)f(t, αm2, αm2η1(t, a), . . . , αm2ηn(t, a), αm2, . . . , αm2)∆t
∣∣,

where w(t) = 1− r(t), 0 < m1 = inft∈[a,∞)T w(t) and 0 < m2 = supt∈[a,∞)T
w(t).

Assume not and let u(t) be a bounded nonoscillatory solution of (1.1) which we
may assume satisfies

u(t) > 0, u(τi(t)) > 0, u(ξj(t)) > 0 t ≥ T ≥ t0, 1 ≤ i ≤ n, 1 ≤ j ≤ m.

For convenience, let z1(t) = u(t) + r(t)u(g(t)). Consequently,

[p(t)(u(t) + r(t)u(g(t)))∆]∆ = [p(t)z∆
1 (t)]∆

= −f(t, uσ(t), u(τ1(t)), . . . , u(τn(t)), u(ξ1(t)), . . . , u(ξm(t))) < 0

for all t ≥ T and so p(t)z∆
1 (t) is decreasing for t ≥ T .

By Lemma 2.1, we have

u(t) ≥ (1− r(t))z1(t), z1(τi(t)) ≥ ηi(t, T )zσ1 (t), t ≥ τi(t) ≥ T.

Define the function

F (t, θ1) := f(t, wσ(t)θ1, w
τ1η1θ1, . . . , w

τnηnθ1, w
ξ1θ1, . . . , w

ξmθ1),

where w(t) = 1 − r(t), wτi = w(τi(t)), ηi = ηi(t, T ) 1 ≤ i ≤ n, wξj = w(ξj(t)),
1 ≤ j ≤ m. Then by the monotonicity of f , for t ≥ T , we have

0 = [p(t)z∆
1 (t)]∆ + f(t, uσ(t), u(τ1(t)), . . . , u(τn(t)), u(ξ1(t)), . . . , u(ξm(t)))

≥ [p(t)z∆
1 (t)]∆ + F (t, zσ1 (t)).

Applying Theorem 2.3 with α(t) ≡ z1(T ) ≤ z1(t) ≡ β(t), we obtain the existence
of a solution y(t) of

(p(t)y∆(t))∆ + F (t, yσ(t)) = 0, y(T ) = z1(T )



EJDE-2013/234 OSCILLATION AND NONOSCILLATION 7

with z1(T ) ≤ y(t) ≤ z1(t) on [T,∞)T. However, by Theorem 2.4, it follows that∫ ∞
P (t, a)F (t, c)∆t <∞

for any fixed a ∈ [t0,∞)T and some c > 0, which contradicts (3.2). �

Theorem 3.2. Assume that conditions (A1)− (A5) hold and for each i, 1 ≤ i ≤ n,
there exists ρi > 0 such that

lim inf
t→∞

ηi(t, a) ≥ ρi for a ∈ T. (3.3)

If x(t) is a bounded nonoscillatory solution of (1.1), then for some α 6= 0, we have∫ ∞
a

P (σ(t), a)f(t, α, α, . . . , α)∆t <∞. (3.4)

Proof. By (2.1) and (3.3), we have

1 ≤ P (σ(t), a)
P (t, a)

≤ P (σ(t), a)
P (τi(t), a)

=
1

ηi(t, a)
≤ 1
ρi

for sufficiently large t ∈ T. So we conclude that P (σ(t), a)/P (t, a) is bounded on
T. Then for any β 6= 0,∫ ∞

a

P (σ(t), a)f(t, β, β, . . . , β)∆t <∞

if and only if ∫ ∞
a

P (t, a)f(t, β, β, . . . , β)∆t <∞.

Furthermore, observe that by (3.3), given any ε > 0 with ε < 1
2 min{ρi : 1 ≤ i ≤ n},

there exists Ti ≥ t0 such that 1 ≥ ηi(t, a) ≥ ρi−ε =: ρ̂i > 0 for t ≥ Ti and 1 ≤ i ≤ n.
Assume (1.1) has a bounded nonoscillatory solution. Then by Theorem 3.1, we

have ∣∣ ∫ ∞
a

P (t, a)f(t, α, αη1(t, a), . . . , αηn(t, a), α, . . . , α)∆t
∣∣ <∞

for all α 6= 0. Let ρ̂ := min{ρi : 1 ≤ i ≤ n}. Consequently, αρ̂ ≤ αηi(t, a) ≤ α for
all 1 ≤ i ≤ n, and so by the monotonicity of f , we obtain∣∣ ∫ ∞

a

P (t, a)f(t, αρ̂, αρ̂, . . . , αρ̂)∆t
∣∣ <∞.

We obtain (3.4) as desired with ν = αρ̂. �

Note that in Theorem 3.2, we do not assume that P (σ(t), a)/P (t, a) is bounded
on T; thus we improve [9, Theorem 3.2]. The previous result says the condition
(3.3) is sufficient in order to replace the auxiliary functions ηi(t, a), 1 ≤ i ≤ n with
upper bounds. Our next result gives a sufficient condition for (1.1) to have bounded
nonoscillatory solutions.

Theorem 3.3. Assume that conditions (A1)-(A5) hold. If for some α 6= 0,∫ ∞
a

P (σ(t), a)f(t, α, α, . . . , α)∆t <∞, (3.5)

then (1.1) has a bounded nonoscillatory solution.
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Proof. Assume that (3.5) holds. According to (A5), without loss of generality, we
may assume that α > 0. Since p(t) > 0 and f(t, α, α, . . . , α) > 0 on T, by the
change of integration order [12, Lemma 1], we obtain∫ ∞

a

∫ ∞
s

f(t, α, α, . . . , α)
p(s)

∆t∆s

= lim
u→+∞

∫ u

a

∫ u

s

f(t, α, α, . . . , α)
p(s)

∆t∆s

= lim
u→+∞

∫ u

a

∫ σ(t)

a

f(t, α, α, . . . , α)
p(s)

∆s∆t

=
∫ ∞
a

[ ∫ σ(t)

a

1
p(s)

∆s
]
f(t, α, α, . . . , α)∆t

=
∫ ∞
a

P (σ(t), a)f(t, α, α, . . . , α)∆t <∞.

(3.6)

By (A1) and (3.6), we can choose T0 ∈ T large enough such that∫ ∞
T0

∫ ∞
s

f(t, α, α, . . . , α)
p(s)

∆t∆s ≤ (1− r0)α
2

. (3.7)

According to (A2) and (A3), we see that there exists T1 ∈ T with T1 > T0 such
that g(t) ≥ T0 and τi(t) ≥ T0, 1 ≤ i ≤ n, for t ∈ [T1,∞)T.

Define the Banach space BC[t0,∞)T as in (2.9), and let

Ω =
{
x = x(t) ∈ BC[t0,∞)T :

(1− r0)α
2

≤ x(t) ≤ α
}
. (3.8)

It is easy to verify that Ω is a bounded, convex and closed subset of BC[t0,∞)T.
For the sake of convenience, set

F (t) := f(t, xσ(t), x(τ1(t)), . . . , x(τn(t)), x(ξ1(t)), . . . , x(ξm(t))).

By (A5), for any x ∈ Ω and t ∈ [T0,∞)T, we have

F (t) ≤ f(t, α, α, . . . , α).

Now we define two operators U and S : Ω→ BC[t0,∞)T as follows

(Ux)(t) =

{
−r(t)x(g(t)), t ∈ [T1,∞)T,

(Ux)(T1), t ∈ [T0, T1]T,

and

(Sx)(t) =

{
α−

∫∞
t

∫∞
s

F (u)
p(s) ∆u∆s, t ∈ [T1,∞)T,

α−
∫∞
T1

∫∞
s

F (u)
p(s) ∆u∆s, t ∈ [T0, T1]T.

Next, we will show that U and S satisfy the conditions in Lemma 2.6.
(i) We first prove that Ux+Sy ∈ Ω for any x, y ∈ Ω. Note that for any x, y ∈ Ω,

α/2 ≤ x, y ≤ α by (3.8). For any x, y ∈ Ω and t ∈ [T1,∞)T, by (3.7), we have

(Ux)(t) + (Sy)(t) = α− r(t)x(g(t))−
∫ ∞
t

∫ ∞
s

F (u)
p(s)

∆u∆s

≥ (1− r0)α− (1− r0)α
2

≥ (1− r0)α
2

,
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and

(Ux)(t) + (Sy)(t) = α− r(t)x(g(t))−
∫ ∞
t

∫ ∞
s

F (u)
p(s)

∆u∆s ≤ α.

Similarly, we can show that α/2 ≤ Ux+ Sy ≤ α for any x, y ∈ Ω and t ∈ [T0, T1]T.
(ii) It is not difficult to check that U is a contraction mapping.
(iii) We will prove that S is a completely continuous mapping. It is easy to check

that S maps Ω into Ω.
Again, for the sake of convenience, let

Fl(t) := f(t, xσl (t), xl(τ1(t)), . . . , xl(τn(t)), xl(ξ1(t)), . . . , xl(ξm(t))).

Next, we show that the continuity of S. Let xl ∈ Ω and ‖xl− x‖ → 0 as l→∞,
then x ∈ Ω and xl → x as l → ∞. By the monotonicity and continuity of f , we
have

|Fl(t)− F (t)| → 0, as l→∞,
|Fl(t)− F (t)| ≤ 2f(t, α, . . . , α).

For t ∈ [T1,∞)T, we have

|(Sxl)(t)− (Sx)(t)| ≤
∫ ∞
t

∫ ∞
s

|Fl(u)− F (u)|
p(s)

∆u∆s,

and for t ∈ [T0, T1]T,

|(Sxl)(t)− (Sx)(t)| ≤
∫ ∞
T1

∫ ∞
s

|Fl(u)− F (u)|
p(s)

∆u∆s.

Employing Lebegues’s dominated convergence theorem [7, Chapter 5], we obtain

‖(Sxl)− (Sx)‖ → 0 as l→∞.
Thus S is continuous.

Third, we show that SΩ is relatively compact. According to Lemma 2.5, it
suffices to show that SΩ is bounded, uniformly Cauchy and equi-continuous. The
boundedness is obvious. For any x ∈ Ω, by (3.6), we have∫ ∞

T1

∫ ∞
s

F (u)
p(s)

∆u∆s <∞.

Then for any given ε > 0, there exists T2 ∈ [T1,∞)T large enough such that∫ ∞
T2

∫ ∞
s

F (u)
p(s)

∆u∆ < ε/2.

Hence, for any x ∈ Ω and t1, t2 ∈ [T2,∞)T, we have

|(Sx)(t1)− (Sx)(t2)| =
∣∣ ∫ ∞
t1

∫ ∞
s

F (u)
p(s)

∆u∆s−
∫ ∞
t2

∫ ∞
s

F (u)
p(s)

∆u∆s
∣∣

≤ 2
∫ ∞
T2

∫ ∞
s

F (u)
p(s)

∆u∆s < ε.

So SΩ is uniformly Cauchy.
Finally, we will prove that SΩ is equi-continuous. For T1 ≤ t1 < t2 ≤ T2 + 1, we

have

|(Sx)(t1)− (Sx)(t2)| =
∣∣ ∫ ∞
t1

∫ ∞
s

F (u)
p(s)

∆u∆s−
∫ ∞
t2

∫ ∞
s

F (u)
p(s)

∆u∆s
∣∣
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≤
∫ t2

t1

∫ ∞
s

F (u)
p(s)

∆u∆s.

For T0 ≤ t1 < T1 ≤ t2 ≤ T2 + 1, we have

|(Sx)(t1)− (Sx)(t2)| ≤
∫ t2

T1

∫ ∞
s

F (u)
p(s)

∆u∆s.

For t1, t2 ∈ [T0, T1]T, |(Sx)(t1)− (Sx)(t2)| = 0.
Then there exists 0 < δ < 1 such that |(Sx)(t1) − (Sx)(t2)| < ε if t1, t2 ∈

[T0, T2 + 1) and |t2 − t1| < δ. This means that SΩ is equi-continuous. It follows
from Lemma 2.5 that SΩ is relatively compact, and then S is completely continuous.

By Lemma 2.6, there exists x ∈ Ω such that (U + S)x = x, which indicates that
x(t) is a solution of (1.1). In particular, for t ∈ [T1,∞)T, we have

x(t) = α− r(t)x(g(t))−
∫ ∞
t

∫ ∞
s

F (u)
p(s)

∆u∆s.

Let t→∞, we obtain the desired result. �

To extend Theorems 3.1 and 3.2 to unbounded solutions, we introduce the class Φ
of functions φ such that φ(u) is a nondecreasing continuous function of u satisfying
uφ(u) > 0 (u 6= 0) with ∫ ±∞

±1

du

φ(u)
<∞.

Definition 3.4. We say that f(t, u, v1, . . . , vn) satisfies condition (C) provided for
some φ ∈ Φ there exists c 6= 0 such that for all t ≥ T , ηi = ηi(t, T ), 1 ≤ i ≤ n,

inf
|u|→∞

f(t, u, η1u, . . . , ηnu, u, . . . , u)
φ(u/m1)

≥ k|f(t, c, η1c, . . . , ηnc, c, . . . , c)|,

for some positive constant k and m1 = inft∈[T0,∞)T{1− r(t)}.

We continue with a generalization of [9, Theorem 3.4].

Theorem 3.5. Suppose φ ∈ Φ. Let h(t, x) be a continuous function of the variables
t ≥ t0 and |x| < ∞ such that for all t > 0 xh(t, x) > 0, x 6= 0 and satisfies with
respect to φ(x) the following conditions: there is a c 6= 0 such that

inf
|x|→∞

h(t, x)
φ(x/m1)

≥ k|h(t, c)| for r(t) ∈ [0, 1), (3.9)

for some positive constant k, m1 = inft∈[T0,∞)T{1 − r(t)} and for all t ≥ T , and
that

lim
|x|→∞

∣∣ ∫ ∞ 1
φ(u)

du
∣∣ <∞. (3.10)

If ∫ ∞
P (t, a)h(t, c)∆t =∞ (3.11)

holds for all c 6= 0, then (2.8) is oscillatory.
In addition, if P (σ(t), a)/P (t, a) is bounded on T, then (3.11) is also a necessary

condition for (2.8) to be oscillatory.
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Proof. Assume (3.11) holds and let x(t) be an eventually positive solution of (2.8).
It follows from Theorem 2.4 that x(t) cannot be bounded. By Lemma 2.1 we see
that limt→∞ x(t) =∞. Also, as in the proof of Theorem 2.4,∫ t

T

z∆(s)∆s ≥
∫ t

T

P (θ, T )h(θ, xσ(θ))∆θ (3.12)

for sufficiently large T .
Next we define the continuously differentiable real-valued function

G(u) :=
∫ u

u0

ds

φ(s)
.

Observe that G′(u) = 1/φ(u). For r(t) ∈ [0, 1), by the Pötzsche Chain Rule [6,
Theorem 1.90],

(G(z(t)))∆ =
(∫ 1

0

dh

φ(zh(t))

)
z∆(t) ≥

(∫ 1

0

dh

φ(zσ(t))

)
z∆(t)

=
z∆(t)
φ(zσ(t))

≥ z∆(t)
φ(xσ(t)/m1)

,

where zh(t) := z(t) + hµ(t)z∆(t) ≤ zσ(t). Now multiplying (3.12) by [φ(zσ(s))]−1,
we obtain∫ t

T

z∆(s)
φ(zσ(s))

∆s ≥
∫ t

T

P (θ, T )
h(θ, xσ(θ))
φ(xσ(θ)/m1)

∆θ ≥
∫ t

T

kP (θ, T )h(θ, c)∆θ

for sufficiently large T by (3.9), where c := x(T ) > 0. Since limt→∞ x(t) = ∞, we
have

lim
t→∞

G(z(t)) = lim
t→∞

∫ z(t)

T

du

φ(u)
=
∫ ∞
T

du

φ(u)
<∞.

Therefore, ∫ t

T

(G(z(s)))∆∆s ≥
∫ t

T

z∆(s)
φ(zσ(s))

∆s ≥
∫ t

T

kP (θ, T )h(θ, c)∆θ.

However, letting t → ∞ in above inequality, the left side is bounded whereas the
right side is unbounded by assumption (3.11). This contradiction shows that (3.11)
is sufficient condition for all solutions of (2.8) to be oscillatory.

Conversely, suppose that (2.8) is oscillatory and
∣∣ ∫∞ P (t, a)h(t, c)∆t

∣∣ < ∞ for
some c 6= 0. Since P (σ(t),a)

P (t,a) is bounded on T, we see that for all c 6= 0,∣∣ ∫ ∞ P (t, a)h(t, c)∆t
∣∣ <∞ if and only if

∣∣ ∫ ∞ P (σ(t), a)h(t, c)∆t
∣∣ <∞.

It follows from Theorem 3.3 that (2.8) has a bounded nonoscillatory solution. This
contradiction shows that (3.11) is necessary. �

Now we give our last result.

Theorem 3.6. Assume that conditions (A1)–(A5) hold and f satisfies condition
(C). Then (1.1) is oscillatory when∣∣∣ ∫ ∞ P (t, a)f(t, α, αη1(t, a), . . . , αηn(t, a), α, . . . , α)∆t

∣∣∣ =∞ (3.13)

holds for all α 6= 0. In addition, if inequality (3.3) holds, then (3.13) is also
necessary.
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Proof. Assume that (3.13) holds for all α 6= 0 and let u(t) be a nonoscillatory
solution of (1.1) which we may assume satisfies

u(t), u(τi(t)), z∆
1 (t) := (u(t) + r(t)u(g(t)))∆ > 0, [p(t)z∆

1 (t)]∆ ≤ 0,

for t ≥ T ≥ t0, 1 ≤ i ≤ n. For r(t) ∈ [0, 1), according to Lemma 2.1, we have

u(t) ≥ (1− r(t))z1(t), z1(τi(t)) ≥ ηi(t, T )zσ1 (t), t ≥ τi(t) ≥ T.

By the monotonicity of f , for t ≥ T , we have

0 = [p(t)z∆
1 (t)]∆ + f(t, uσ(t), u(τ1(t)), . . . , u(τn(t)), u(ξ1(t)), . . . , u(ξm(t)))

≥ [p(t)z∆
1 (t)]∆ + f(t, wσzσ1 , w

τ1η1z
σ
1 (t), . . . , wτnηnz

σ
1 (t), wξ1zσ1 (t), . . . , wξmzσ1 (t))

≥ [p(t)z∆
1 (t)]∆ + f(t,m1z

σ
1 ,m1η1z

σ
1 (t), . . . ,m1ηnz

σ
1 (t),m1z

σ
1 (t), . . . ,m1z

σ
1 (t)),

where w(t) = 1 − r(t), wτi = w(τi(t)), ηi = ηi(t, T ) 1 ≤ i ≤ n, wξj = w(ξj(t)),
1 ≤ j ≤ m.

As in the proof of Theorem 3.1, we obtain the existence of a solution y(t) of

(p(t)y∆(t))∆ + F (t, yσ(t)) = 0, y(T ) = z1(T )

with z1(T ) ≤ y(t) ≤ z1(t) on [T,∞)T. By Theorem 3.5, it immediately follows that∣∣ ∫ ∞
a

P (t, a)f(t, c, cη1(t, a), . . . , cηn(t, a), c, . . . , c)∆t
∣∣ <∞

for some c 6= 0, which contradicts (3.13).
Conversely, assume that (3.3) holds and (3.13) does not hold for some α 6= 0;

i.e., ∣∣ ∫ ∞ P (t, a)f(t, α, αη1(t, a), . . . , αηn(t, a), α, . . . , α)∆t
∣∣ <∞. (3.14)

Noting that (3.3) implies that P (σ(t), a)/P (t, a) is bounded on T, (3.14) holds if
and only if∣∣∣ ∫ ∞ P (σ(t), a)f(t, α, αη1(t, a), . . . , αηn(t, a), α, . . . , α)∆t

∣∣∣ <∞.
It follows that for any ε > 0 with ε < 1

2 min{ρi | 1 ≤ i ≤ n}, there exists Ti ≥ t0 such
that ηi(t, a) ≥ ρi − ε =: ρ̂i for t ≥ Ti and 1 ≤ i ≤ n. Let ρ̂ := min{ρi | 1 ≤ i ≤ n}.
It follows that αηi(t, a) ≥ αρ̂ for t ≥ Ti. Then by the monotonicity of f and the
fact that ηi(t, a) ≤ 1 for t ≥ Ti, we have∣∣∣ ∫ ∞

a

P (σ(t), a)f(t, αρ̂, αρ̂, . . . , αρ̂)∆t
∣∣∣ <∞,

which gives (3.5). Therefore, by Theorem 3.3, Equation (1.1) has a bounded
nonoscillatory solution. This contradiction shows that (3.13) is necessary. �

4. Examples

We would like to illustrate our main results by three examples. We begin with
the following example that extends some results of Higgins [9] and [10, Example
3.2].
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Example 4.1. Let Φ∗(u) = |u|∗−1u and P (σ(t), a)/P (t, a) is bounded on T. Con-
sider the dynamic equation

[p(t)z∆(t)]∆ + q0(t)Φγ(xσ(t))

+
2∑
i=1

qi(t)Φγi
(x(τi(t)) + s(t)Φγ3(x(ξ(t)) + |Φγ(xσ(t))| = 0,

(4.1)

where z(t) = x(t) + r(t)x(g(t)). We assume that q0(t) ≥ 1, q1(t), q2(t) and s(t) are
rd-continuous and eventually positive on [t,∞)T, γ > 1, γi, i = 1, 2, 3, are positive
real numbers and p(t), g(t), r(t), τ1(t), τ2(t), ξ(t) satisfy conditions (A1)–(A4). It is
not difficult to check that f(t, x0, x1, x2, x3) = q0(t)Φγ(x0) +

∑2
i=1 qi(t)Φγi

(xi) +
s(t)Φγ3(x3) + |Φγ(xσ(t))| satisfies condition (A5). By Theorem 3.1, all bounded
solution of (4.1) are oscillatory in case∣∣∣ ∫ ∞ P (t, a)(q0(t)Φγ(α) +

2∑
i=1

qi(t)Φγi
(αηi(t, a)) + s(t)Φγ3(α) + |Φγ(α)|)∆t

∣∣ =∞

for all α 6= 0. Now suppose γi > 1, i = 1, 2, 3 and let φ(u) = uγ0 , where 1 < γ0 ≤
min{γ, γ1, γ2, γ3}. It is easy to show that f(t, x0, x1, x2, x3) satisfies condition (C).
Moreover, if one of γ, γ1, γ2, γ2 is larger than 1, f(t, x0, x1, x2, x3) still satisfies
condition (C). Therefore, according to Theorem 3.6, we conclude that all solution
of (4.1) are oscillatory in case∣∣ ∫ ∞ P (t, a)(q0(t)Φγ(α)+

2∑
i=1

qi(t)Φγi
(αηi(t, a))+s(t)Φγ3(α)+α2η1(t, a))∆t

∣∣ =∞

(4.2)
for all α 6= 0. Furthermore, if ηi(t, a) ≥ ρi > 0, i = 1, 2, (4.2) becomes a sufficient
and necessary condition.

In [9, 10], it is assumed that f(t, x0, x1, x2, x3) = −f(t,−x0,−x1,−x2,−x3) if
xi > 0, i = 0, 1, 2, 3. However, we only need f satisfies condition (A5) which relaxes
the hypothesis in [9, 10].

Example 4.2. Assume P (σ(t), a)/P (t, a) is bounded on T. Consider the dynamic
equation

[p(t)(x(t) + r(t)x(g(t)))∆]∆ + q0(t)xσ(t) + q1(t)x(τ1(t)) + q2(t)x(ξ1(t)) = 0. (4.3)

We assume that p∆(t) ≥ 0 and q0(t), q1(t), q2(t) are rd-continuous and eventually
positive on [t0,∞)T, and g(t), r(t) ≥ 0, τ1(t), ξ1(t) satisfy conditions (A1)–(A4). If
we set

Q(t) := q0(t) + η1(t, a)q1(t) + q2(t)

for t ≥ T ≥ t0, where η1(t, a) = τ1(t)−τ1(a)
σ(t)−τ1(a) ∼

τ1(t)
σ(t) , then (4.3) is oscillatory in case

[p(t)z(t)∆]∆ + λQ(t)zσ(t) = 0 (4.4)

is oscillatory for some 0 < λ < 1, where z(t) = x(t)+r(t)x(g(t)). If not, we suppose
that u is a nonoscillatory solution of (4.3) with u > 0, t ≥ T . By Lemma 2.1, we
have

z(t) > 0, z(τ1(t)) > 0, z(ξ1(t)) > 0, z∆ > 0, [p(t)z(t)∆]∆ < 0, t ≥ T,
and then

[p(t)z1(t)∆]∆ + (q0(t) + η1(t, a)q1(t) + q2(t))z1(σ(t)) ≤ 0, t ≥ T, (4.5)



14 X.-H. DENG, Q.-R. WANG EJDE-2013/234

where z1(t) = u(t) + r(t)u(g(t)). Let y(t) := p(t)z∆
1

z1(t) , using (4.5) we see that z1(t)
satisfies the Riccati dynamic inequality

z1(t)∆ +Q(t) +
z1(t)2

p(t) + µ(t)z1(t)
≤ 0.

This implies that the equation

[p(t)z(t)∆]∆ +Q(t)zσ(t) = 0

is nonoscillatory and so by the Sturm comparison theorem [3, Theorem 6.1], (4.4)
is also nonoscillatory. This contradiction shows that (4.3) is oscillatory.

We can apply a variety of oscillatory criteria, such as an extension of the well-
know Leighton-Wintner criteria [3, Theorem 8.1], a generalization of the Hinton-
Lewis criteria [3, Theorems 8.2-8.3] and Hille-Nehari criteria [13, Theorem 3.1], to
obtain oscillatory results of (4.4). In particular, when r(t) = 0, [10, Example 3.1]
is a special case of Example 4.2.

Example 4.3. Let Φ∗(u) = |u|∗−1u. Consider the dynamic equation

[x(t) + r(t)x(g(t))]∆∆ + q0(t)Φγ(xσ(t)) +
n∑
i=1

qi(t)Φγi(x(τi(t)) = 0, (4.6)

where q0(t), q1(t), . . . , qn(t) are continuous and eventually positive on [t0,∞)T, γ >
1, γ1 > γ2 > · · · > γm > γ > γm+1 > · · · > γn > 0 and g(t), r(t), τ1(t), . . . , τn(t)
satisfy conditions (A1)–(A3).

We need the following two lemmas to prove Corollary 4.6.

Lemma 4.4 ([1, Lemma 2.2]). For any given n-tuple {γ1, . . . , γn} satisfying

γ1 > γ2 > · · · > γm > γ > γm+1 > · · · > γn > 0,

there corresponds an n-tuple {ξ1, . . . , ξn} such that
n∑
i=1

γiξi = γ,

n∑
i=1

ξi = 1, 0 < ξ1, . . . , ξn < 1. (4.7)

When n = 2, it turns out that

ξ1 =
γ − γ2

γ1 − γ2
, ξ2 =

γ1 − γ
γ1 − γ2

.

Next we have the Arithmetic-Geometric Mean Inequality, see [1].

Lemma 4.5. If ξ1, . . . , ξn > 0 satisfy
∑n
i=1 ξi = 1, and u1, . . . , un ≥ 0, then

n∑
i=1

uiξi ≥
n∏
i=1

uξi

i . (4.8)

By the property of the convex function ϕ(t) = − ln t, it is easy to get (4.8).

Corollary 4.6. Assume that µ(t)/t is bounded, then all solutions of (4.6) are
oscillatory provided∫ ∞ [

tq0(t) +
n∑
i=1

qi(t)(τi(t))γit1−γi

]
∆t =∞, (4.9)
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ξ

n∏
i=1

[qi(t)]ξi [ηi(t, a)]γiξi ≥
n∑
i=1

qi(t)|Φγi
(c)|, (4.10)

for some c 6= 0, where ξ =
∏n
i=1( 1

ξi
)ξi ,

∑n
i=1 ξi = 1, 0 < ξ1, . . . , ξn < 1, as in

Lemma 4.4.

Proof. Assume (4.9)–(4.10) hold. Define φ(u) = Φγ(u) = |u|γ−1u. Then it is easy
to check that

uφ(u) > 0,
∫ ±∞
±1

du

φ(u)
<∞, for u 6= 0.

Let f(t, u, v1, . . . vn) = q0(t)Φγ(u) +
∑n
i=1 qi(t)Φγi

(vi) and c 6= 0 to be determined.
By (A5) and uφ(u) > 0, without loss of generality, we may assume u > 0. Note
that 0 < ηi(t, a) ≤ 1, 1 ≤ i ≤ n, and Φ∗(u) = |u|∗−1u is an increasing function.
Then according to Lemmas 4.4 and 4.5, we have

f(t, u, η1(t)u, . . . , ηn(t)u)
φ(u)

=
q0(t)Φγ(u) +

∑n
i=1 qi(t)Φγi

(ηi(t, a)u)
Φγ(u)

= q0(t) +
n∑
i=1

qi(t)Φγi(ηi(t, a))Φγi−γ(u)

≥ q0(t) +
n∏
i=1

(
1
ξi

)ξi(qi(t))ξi(ηi(t, a))γiξiΦ(γi−γ)ξi
(u)

= q0(t) + ξ

n∏
i=1

[qi(t)]ξi [ηi(t, a)]γiξi

≥ kq0(t)|Φγ(c)|+ k

n∑
i=1

qi(t)|Φγi
(c)|

≥ kq0(t)|Φγ(c)|+ k

n∑
i=1

qi(t)|Φγi
(ηi(t)c)|

≥ k|f(t, c, η1(t, a)c, . . . , ηn(t, a)c)|

for kΦγ(c) ≤ 1, 0 < k ≤ 1 and all t ≥ t0. Thus f(t, u, v1, . . . , vn) satisfies condition
(C).

According to Lemma 2.1 and that µ(t)/t is bounded, we have

ηi(t, a) =
τi(t)− τi(a)
σ(t)− τi(a)

∼ τi(t)
σ(t)

∼ τi(t)
t
, as t→∞, 1 ≤ i ≤ n.

For any α 6= 0, we have

|f(t, α, αη1(t, a), . . . , αηn(t, a))|

= |q0(t)Φγ(α) +
n∑
i=1

qi(t)Φγi
(αηi(t, a))|

= q0(t)Φγ(|α|) +
n∑
i=1

qi(t)Φγi
(|α|ηi(t, a))

≥ δ[q0(t) +
n∑
i=1

qi(t)Φγi
(ηi(t, a))] ≥ 0,
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where δ = min{Φγ(|α|),Φγ1(|α|), . . . ,Φγn
(|α|)}. It immediately follows that∣∣ ∫ ∞ tf(t, α, αη1(t), . . . , αηn(t))∆t

∣∣
≥
∫ ∞ [

δ[tq0(t) +
n∑
i=1

tqi(t)Φγi
(ηi(t, a))]

]
∆t =∞.

Hence, by Theorem 3.6, Equation (4.6) is oscillatory. �

In particular, for T = R,T = Z, pi(t) = ci is constant and τi(t) = ait+bi, ai > 0,
1 ≤ i ≤ n. It is easy to check that (4.10) holds as c = 1. By (4.9), (4.6) is oscillatory
in case ∫ ∞

tq0(t)∆t =∞.

Remark 4.7. If q0(t) ≥ qi(t), i = 1, 2, . . . , n, it is easy to check that Condition (C)
holds and (4.10) can be removed.
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