Bixiang Wang, Boling Guo
Abstract:
We prove the existence and uniqueness of random attractors
for the p-Laplace equation driven simultaneously by
non-autonomous deterministic and stochastic forcing.
The nonlinearity of the equation is allowed to have a polynomial
growth rate of any order which may be greater than p.
We further establish the upper semicontinuity of random attractors
as the intensity of noise approaches zero.
In addition, we show the pathwise periodicity of random attractors
when all non-autonomous deterministic forcing terms are time periodic.
Submitted May 20, 2013. Published August 30, 2013.
Math Subject Classifications: 35B40, 35B41, 37L30.
Key Words: Pullback attractor; periodic random attractor; p-Laplace equation;
upper semicontinuity.
Show me the PDF file (377 KB), TEX file, and other files for this article.
Bixiang Wang Department of Mathematics New Mexico Institute of Mining and Technology Socorro, NM 87801, USA email: bwang@nmt.edu |
Boling Guo Institute of Applied Physics and Computational Mathematics P.O. Box 8009, Beijing 100088, China email:gbl@iapcm.ac.cn |
Return to the EJDE web page