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QUASILINEAR SYSTEMS ASSOCIATED WITH
SUPERCONDUCTIVITY

JUNICHI ARAMAKI

Abstract. In a previous article, Aramaki [4] considered a semilinear system

with general nonlinearity in a three dimensional domain which arises in the

mathematical theory of superconductivity. There the problem is reduced to
the study of a quasilinear system. There it is assumed that the domain is

simply-connected and without holes, and that the normal component of the

curl of the boundary data vanishes. In this article, we these conditions are
removed, and the analysis relies heavily on the recent work by Lieberman and

Pan [16].

1. Introduction

In this artile, we consider the regularity of weak solutions for a quasilinear system
arising from superconductivity theory. More precisely, to understand the nucleation
of instability in the mathematical theory of superconductors, many authors consid-
ered a semilinear system

−λ2 curl2 A = (1− |A|2)A in Ω,

λ(curl A)T = HeT on ∂Ω
(1.1)

where Ω is a bounded smooth domain in R3, He is a given vector field on ∂Ω, and
λ > 0 is a parameter which means the penetration depth physically. Throughout
this paper, for any vector field v, vT denotes the tangent component of v on ∂Ω.
If the solution A(x) = (A1(x), A2(x), A3(x)) of (1.1) satisfies

‖A‖L∞(Ω) <
1√
3
, (1.2)

then it can be seen that A is locally stable. For any solution A of (1.1) satisfying
(1.2), if we define H = λ curl A, then it is known that H satisfies the quasilinear
system

−λ2 curl[F0(λ2| curl H|2) curl H] = H in Ω,

HT = HeT on ∂Ω,
(1.3)

and

λ‖ curl H‖L∞(Ω) <

√
4
27
. (1.4)
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The function F0 in (1.3) is constructed implicitly by the equivalence relation

v = F0(t2)t⇔ t = (1− v2)v, (1.5)

and F0(0) = 1. It is elementary to show that F0 is uniquely defined for 0 ≤ t ≤√
4/27, or equivalently for 0 ≤ v ≤ 1/

√
3.

For two dimensional superconductors, a system of type (1.1) was derived by
Chapman [8], and studied by Berestycki et al [6], Chapman [9], Pan and Kwek [21].
For three dimensional case, (1.1) and (1.3) were studied by Monneau [18] (with
λ = 1), Bates and Pan [5]. Aramaki [2, 3, 4] studied the semilinear system with
more general nonlinearity:

−λ2 curl2 A = f0(|A|2)A in Ω,

λ(curl A)T = HeT in ∂Ω,
(1.6)

and the associated quasilinear system (1.3) where F0 is a function constructed
by f0. In [5], the authors considered the regularity of weak solutions of (1.3)
under the hypotheses that the domain is simply-connected and has no holes, and
ν · curlHeT = 0 on ∂Ω. Recently Lieberman and Pan [16] succeeded to remove the
hypotheses.

In the case of anisotropic superconductors, the superconductivity is described
by the anisotropic Ginzburg-Landau system

−λ2 curl2 A = [1− gQ(A)]QA in Ω,

λ(curl A)T = HeT on ∂Ω
(1.7)

where Q = M−1 and M is a diagonal matrix called an effective mass tensor,
gQ(A) = 〈QA,A〉. Hereafter, for any vectors a,b, 〈a,b〉 = a · b denotes the
Euclidean inner product in R3. If A is a solution of (1.7) satisfying the condition

gQ(A) <
1
3
, (1.8)

then A is also locally stable. If A is a solution of (1.7) satisfying (1.8), and if we
define H = λ curl A, then H satisfies a quasilinear system

−λ2 curl[F0(λ2gM (curl H))M curl H] = H in Ω,

HT = HeT on ∂Ω
(1.9)

where F0 is defined by the relation (1.5). For the theory of anisotropic supercon-
ductors, see Pan [19, 20]. Of course in the special case where M is the identity
matrix, (1.7) and (1.9) reduce to (1.1) and (1.3), respectively.

In this paper, we consider the existence and regularity of weak solutions for the
following quasilinear system

− curl[F (gM (curl H))M curl H] = H in Ω,

HT = µHeT on ∂Ω
(1.10)

where Ω ⊂ R3 is a regular bounded domain, M = M(x) is a matrix valued function,

gM (curl H)(x) = 〈M(x) curl H(x), curl H(x)〉,
the function F is defined on a bounded interval [0, bf ] and µ is a real parameter.
Throughout this paper, we denote gM (a,b) = 〈Ma,b〉 and gM (a) = gM (a,a). We
look for the solution of (1.10) satisfying

‖gM (curl H)‖L∞(Ω) < bf . (1.11)
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The system (1.11) comes from the mathematical theory of anisotropic superconduc-
tor, where one wishes to understand the nucleation of instability of the Meissner
states when the applied magnetic field increases to a critical magnetic field HS .
The author of [19, 20] considered the existence and regularity of weak solution
of (1.10) under the hypotheses that Ω is simply-connected and has no holes, and
ν · curlHeT = 0 on ∂Ω where ν is the normal outer unit vector field on ∂Ω.

We assume that the function F and the matrix valued function M = M(x)
satisfy the following conditions: for some 0 < bf <∞, F ∈ C2([0, bf ))∩C0([0, bf ])
and

F (u) > 0 for 0 ≤ u ≤ bf ,
F ′(u) > 0, F ′′(u) > 0 for 0 < u < bf ,

lim
u→bf−0

F ′(u) = +∞,
(1.12)

and M ∈ C(Ω, S+(3)) where S+(3) denotes the set of all positive definite symmetric
matrices, that is to say, there exists a constant β(M) > 0 such that

gM (ξ) = 〈M(x)ξ, ξ〉 ≥ β(M)|ξ|2 (1.13)

for all ξ ∈ Rn and x ∈ Ω.
The existence and uniqueness of solutions of (1.9) for small boundary data were

given in [18]. He showed that if Ω is smooth and homeomorphic to a ball, and if
µ is small, the equation (1.9) has a unique solution H ∈ C2+α(Ω; R3), and if µ is
large, then (1.9) has no solution. The authors of [5] found the optimal bound of
boundary data for solvability of (1.9). They assumed the additional assumptions
that Ω is simply-connected and has no holes, and boundary data HeT satisfies

ν · curlHeT = 0 on∂Ω (1.14)

where ν denotes the unit exterior normal vector field on ∂Ω.
Recently, for the regularity of weak solution of (1.3), [16] succeeded to remove

the assumptions that Ω is simply-connected and has no holes, and the condition
(1.14). For the quasilinear system (1.3) corresponding to (1.6), see Aramaki [1].

In this paper, we report that for regularity of weak solutions of the system (1.10)
we can also remove the assumptions that Ω is simply-connected and has no holes,
and condition (1.14). Thus we shall prove the following main theorems on the
regularity of weak solutions for the system (1.10) where F satisfies (1.12).

Theorem 1.1. Let Ω be a bounded domain in R3 with C3+α boundary for some
0 < α < 1. Assume that M ∈ C1+α(Ω, S+(3)) satisfies (1.13) and F is a func-
tion satisfying (1.12). Moreover, assume that HeT 6≡ 0 is a given vector fields in
C2+α(∂Ω,R3). If H ∈ H1(Ω,R3) is a weak solution (in the sense of section 3)
satisfying (1.11), then Hµ ∈ C2+α(Ω,R3). If furthermore F ∈ C2+α([0, bf )), then
Hµ ∈ C3(Ω,R3) ∩ C2+α(Ω,R3).

The proof is given in section 4. We are also interested in the continuity of
‖Hµ‖C2+α(Ω) with respect to µ. For the purpose we must leave the condition
(1.14). However, this condition (1.14) is rather natural physically. We note that
these topological assumptions were only used to prove the Hölder estimates of weak
solution H of the quasilinear system (1.10). We get the following theorem.
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Theorem 1.2. Let Ω be a bounded domain in R3 with C3+α boundary for some
0 < α < 1. Assume that M ∈ C1+α(Ω, S+(3)) satisfies (1.13) and F is a func-
tion satisfying (1.12). Moreover, assume that HeT 6≡ 0 is a given vector fields in
C2+α(∂Ω,R3) and (1.14) holds. Then there exists µ∗(HeT ) > 0 such that

(i) If 0 < µ < µ∗(HeT ), then (1.10) has a unique solution Hµ which satisfies
(1.11), and Hµ ∈ C2+α(Ω,R3).

(ii) The mapping [0, µ∗(HeT )) 3 µ 7→ Hµ ∈ C2+α(Ω,R3) is continuous.
(iii) If µ is large, then (1.10) has no solution.

The proof is given in section 6.

2. Preliminaries

2.1. Properties of the function F . Let F be the function satisfying (1.12). If
we define Φ(u) := [F (u)]2u, then Φ′(u) > 0 for 0 < u < bf , so v = Φ(u) is strictly
increasing function on [0, bf ]. Therefore v = Φ(u) has an inverse function u = Ψ(v)
for 0 ≤ v ≤ bψ where bψ = Φ(bf ). Moreover, we note that since Φ′′(u) > 0 for
0 < u < bf , and so Ψ′′(v) < 0 for 0 < v < bψ, Φ′(u) is strictly increasing on [0, bf ]
and Ψ′(v) is strictly decreasing on [0, bψ]. Define

f(v) =
1

F (Ψ(v))
for 0 ≤ v ≤ bψ. (2.1)

Then by simple computations, f has the following properties.
(i) f ∈ C2

loc([0, bψ)) ∩ C0([0, bψ]), f(v) > 0 and strictly decreasing on [0, bψ].
(ii) We have 1/F (bf ) ≤ f(v) ≤ 1/F (0) for 0 ≤ v ≤ bf .

(iii) f(v) =
√

Ψ(v)/v for 0 < v ≤ bψ.
(iv) For any l so that 0 < l < bψ, there exists c(l) > 0 such that

inf
0<v<l

[f(v)− 2|f ′(v)|v] ≥ c(l) := F (0)Ψ′(l).

Note that limv→bψ−0 Ψ′(v) = 0.
(v) Furthermore, if F ∈ C2+α

loc ([0, bf )), then f ∈ C2+α
loc ([0, bψ)).

If the function f ∈ C2([0, bψ)) ∩ C0([0, bψ]) is first given such that f(0) > 0 and
f ′(v) < 0 for 0 < v < bψ and f ′′(v) ≤ 0 for 0 < v < bψ, then Ψ(v) = [f(v)]2v
satisfies Ψ′(v) > 0 for 0 < v < bψ, so u = Ψ(v) has the inverse function v = Φ(u)
for 0 ≤ u ≤ bf where bf = Ψ(bψ). If we put F (u) = 1/f(Φ(u)), we see that F
satisfies (1.12). Thus we can study the semilinear system

− curl2 A = f(|A|2)A in Ω,

(curl A)T = HeT on ∂Ω.
(2.2)

The problem is considered by [2, 3, 21]. In the particular case where f(t) = 1− u,
it is an original problem, see [8, 18]. For more general setting, see Pan [19, 20].

2.2. Local estimates of vector fields. To prove the regularity of weak solutions,
we need some local estimates of vector fields, so we list up them which borrowed
from [16]. For the proof, see [16] (cf. also Bolik and Wahl [7] and Wahl [22]).

For x0 ∈ R3 and R > 0, define

B(x0, R) = {x ∈ R3; |x− x0| < R}, B(x0, R) = {x ∈ R3; |x− x0| ≤ R}.

For the interior regularity, we will use the following lemma.
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Lemma 2.1. Let u ∈ H1(B(x0, R); R3).

(i) If curl u ∈ Lq(B(x0, R); R3) and div u ∈ Lq(B(x0, R)) for some q > 1, then
u ∈W 1,q(B(x0, 3R/4); R3) and

‖u‖W 1,q(B(x0,3R/4))

≤ C(q,R){‖u‖H1(B(x0,R)) + ‖ curl u‖Lq(B(x0,R)) + ‖ div u‖Lq(B(x0,R))}.

(ii) Let k ≥ 0 be an integer and α ∈ (0, 1). If curl u ∈ Ck+α(B(x0, R); R3) and
div u ∈ Ck+α(B(x0, R)), then u ∈ Ck+1+α(B(x0, 3R/4); R3) and

‖u‖Ck+1+α(B(x0,3R/4))

≤ C(α, k,R){‖u‖H1(B(x0,R)) + ‖ curl u‖Ck+α(B(x0,R)) + ‖ div u‖Ck+α(B(x0,R))}.

(iii) If curl u ∈ L∞(B(x0, R); R3) and div u ∈ L∞(B(x0, R)), then we see that
u ∈ Cδ(B(x0, 3R/4); R3) for any δ ∈ (0, 1), and

‖u‖Cδ(B(x0,3R/4))

≤ C(δ,R){‖u‖H1(B(x0,R)) + ‖ curl u‖L∞(B(x0,R)) + ‖div u‖L∞(B(x0,R))}.

For the estimates near the boundary, let x0 ∈ ∂Ω. Then since Ω is C2 class,
there exist R = R(Ω) > 0 and a function g ∈ C2(B(x0, R)) such that B(x0, R) ∩Ω
is contractible, B(x0, R)∩Ω = {x ∈ B(x0, R); g(x) > 0} and B(x0, R)∩ ∂Ω = {x ∈
B(x0, R); g(x) = 0}.

Lemma 2.2. Let g ∈ C1(B(x0, R)) such that ∇g · b > 0 for some unit vector b
and g(x0) = 0. Define ν = ∇g/|∇g| and

B = {x ∈ B(x0, R); g(x) > 0}, B′ = {x ∈ B(x0, 3R/4); g(x) > 0},
Σ = {x ∈ B(x0, R); g(x) = 0}.

Let u ∈ H1(B; R3). Then the following holds.
(i) Let g ∈ C2(B(x0, R)). If curl u ∈ Lq(B; R3), div u ∈ Lq(B) and uT ∈

W 1−1/q,q(Σ; R3) for some q > 1, then u ∈W 1,q(B′; R3) and

‖∇u‖W 1,q(B′) ≤ C(q, g, R)
{
‖u‖H1(B) + ‖ curl u‖Lq(B)

+ ‖div u‖Lq(B) + ‖uT ‖W 1−1/q,q(Σ)

}
.

(ii) Let k ≥ 0 be an integer and α ∈ (0, 1), and g ∈ Ck+1+α(B(x0, R)). If
curl u ∈ Ck+α(B; R3) and div u ∈ Ck+α(B) and u · ν ∈ Ck+1+α(Σ), then u ∈
Ck+1+α(B′; R3) and

‖∇u‖Ck+α(B′) ≤ C(g, α, k,R)
{
‖u‖H1(B) + ‖ curl u‖Ck+α(B)

+ ‖div u‖Ck+α(B) + ‖u · ν‖Ck+1+α(Σ)

}
.

(iii) Let k ≥ 0 be an integer and α ∈ (0, 1). Suppose that g ∈ Ck+1+α(B(x0, R)).
If curl u ∈ Ck+α(B; R3) and div u ∈ Ck+α(B) and uT ∈ Ck+1+α(Σ), then u ∈
Ck+1+α(B′; R3) and

‖∇u‖Ck+α(B′) ≤ C(g, α, k,R)
{
‖u‖H1(B) + ‖ curl u‖Ck+α(B)

+ ‖div u‖Ck+α(B) + ‖uT ‖Ck+1+α(Σ)

}
.
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(iv) Suppose that g ∈ C2(B) and δ ∈ (0, 1). If curl u ∈ L∞(B; R3) and div u ∈
L∞(B) and uT ∈ C0,1(Σ,R3), then u ∈ Cδ(B′; R3) and

‖u‖Cδ(B′) ≤ C(δ,R){‖u‖H1(B) + ‖ curl u‖L∞(B) + ‖ div u‖L∞(B) + ‖uT ‖C0,1(Σ)}.

2.3. Lifting operator of the boundary values. We state important properties
on “lifting” of the boundary data.

Lemma 2.3. Let Ω be a Lipschitz continuous domain in R3 and HeT ∈ H1/2(∂Ω).
Then there exists He ∈ H1(Ω) such that (He)T = HeT on ∂Ω and divHe = 0 in Ω,
and

‖He‖H1(Ω) ≤ C(Ω)‖HeT ‖H1/2(∂Ω).

Here He is unique up to an additive function of V := {v ∈ H1
0 (Ω,R3); div v =

0 in Ω}. We note that in [19], he assumed that Ω is C2 domain and has no holes.
But since we follows Girault and Raviart [13], we only assume that Ω is Lipschitz
continuous.

Proof of Lemma 2.3. Let w be any vector field in H1(Ω,R3) such that w = HeT on
∂Ω. By the Green formula, we have∫

Ω

div w dx =
∫
∂Ω

w · ν dS =
∫
∂Ω

HeT · ν dS = 0.

Thus div w ∈ L2
0(Ω) := {v ∈ L2(Ω);

∫
Ω

v dx = 0}. We consider V to be a Banach
space with norm ‖∇v‖L2(Ω) which is equivalent to H1

0 (Ω) norm according to the
Poincaré inequality. Then since V is a closed subspace of H1

0 (Ω,R3), we can write
H1

0 (Ω) = V ⊕V ⊥ in H1
0 (Ω). Then it follows from [13, Corollary 2.4] that there exists

a unique v ∈ V ⊥ such that div v = div w in Ω, and ‖∇v‖L2(Ω) ≤ C1‖div w‖L2(Ω).
If we define u = w − v, then u|∂Ω = w|∂Ω = HeT on ∂Ω, and div u = 0 in Ω. Thus
we obtain

‖u‖H1(Ω) ≤ ‖w‖H1(Ω) + ‖v‖H1(Ω)

≤ ‖w‖H1(Ω) + C(Ω)‖∇w‖L2(Ω) ≤ C‖w‖H1(Ω).

If we take lower limit of both side and taking the definition of H1/2(∂Ω) into
consideration, we obtain

inf
v∈V
‖u + v‖H1(Ω) ≤ C‖HeT ‖H1/2(∂Ω).

By the standard arguments of variational problem, we see that the left hand side
is achieved. If we choose a minimizer v and define He = u + v, this He satisfies
the conclusion. �

Lemma 2.4. Let Ω ⊂ R3 be a bounded domain with C3+α boundary for some
0 < α < 1 and HeT ∈ C2+α(∂Ω). Then there exists He ∈ C2+α(Ω,R3) such that
divHe = 0 in Ω, (He)T = HeT on ∂Ω, and

‖He‖C2+α(Ω) ≤ C(Ω)‖HeT ‖C2+α(∂Ω).

Note that we do not assume that Ω is simply-connected and has no holes.

Proof. It follows from the Gilbarg and Trudinger [12, Lemma 6.38] that there exist
an open set Ω′ ⊃ Ω and He1 ∈ C2+α

0 (Ω′) such that He1|∂Ω = HeT on ∂Ω, so (He1)T =
HeT on ∂Ω, and satisfies

‖He1‖C2+α(Ω′) ≤ C(α,Ω)‖HeT ‖C2+α(∂Ω).
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Choose φ ∈ C3+α(Ω) satisfying

∆φ = divHe1 in Ω,
φ = 0 on ∂Ω.

Since divHe1 ∈ Lq(Ω) for any q > 1, we have

‖φ‖W 2,q(Ω) ≤ C‖ divHe1‖Lq(Ω) ≤ C‖HeT ‖C2+α(Ω).

By the Sobolev imbedding theorem, we have

‖φ‖C1+(1−3/q)(Ω) ≤ C‖φ‖W 2,q(Ω) ≤ C ′‖HeT ‖C2+α(∂Ω).

Define He = He1 − ∇φ ∈ C2+α(Ω,R3). Then clearly divHe = 0 in Ω. Then
‖He‖C0(Ω) ≤ C‖HeT ‖C2+α(∂Ω). Thus He satisfies the system

∆He = − curl2He = − curl2He1 ∈ Cα(Ω),

(He)T = (He1)T − (∇φ)T = (He1)T = HeT ∈ C2+α(∂Ω,R3),

divHe = 0 in C1+α(∂Ω).

(2.3)

We note that ∆He ∈ Cα(Ω) ⊂ Lq(Ω) for any q > 1 and the boundary condition
of (2.3) satisfies the complementing condition. Thus it follows from Morrey [17,
Theorem 6.3.8 and 6.3.9], we obtain He ∈ C2+α(Ω,R3), and

‖He‖C2+α(Ω) ≤ C{‖H
e
1‖Cα(Ω) + ‖HeT ‖C2+α(∂Ω) + ‖He‖C0(Ω)}

≤ C(α,Ω)‖HeT ‖C2+α(∂Ω).

�

3. Weak solutions and an approximation of F

3.1. Weak solution of (1.10). In this subsection we give the notion of weak so-
lutions of (1.10). (cf. [5]). Define the function spaces.

H1(Ω,R3,div 0) = {u ∈ H1(Ω,R3); div u = 0 a.e. in Ω},
H1
t0(Ω,R3,div 0) = {u ∈ H1(Ω,R3,div 0); uT = 0 on ∂Ω}.

Here we note that H1
t0(Ω,R3,div 0) is a Hilbert space with the norm

{‖ curl u‖2L2(Ω) + ‖u‖2L2(Ω)}
1/2,

which is equivalent to the standard H1(Ω) norm. Then we define weak solutions of
(1.10).

Definition 3.1. Let HeT ∈ H1/2(∂Ω,R3) be a given vector field on ∂Ω which is
tangent to ∂Ω. Then H ∈ H1(Ω,R3,div 0) is called a weak solution of (1.10) if the
following conditions are satisfied:

(i) ‖gM (curl H)‖L∞(Ω) < bf .
(ii) HT = µHeT on ∂Ω in the sense of trace in H1/2(∂Ω,R3).

(iii) For all B ∈ H1(Ω,R3),∫
Ω

{F (gM (curl H))M curl H · curl B + H ·B} dx

+
∫
∂Ω

F (gM (curl H))((M curl H)T ×BT ) · ν dS = 0.
(3.1)
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If B ∈ H1(Ω,R3), then BT ∈ H1/2(∂Ω,R3). Therefore, the surface integral in
(3.1) is well defined.

3.2. An approximation of F . Let F be the given function as in (1.12) and δ > 0
small enough. Then we can find a function Wδ(u) ∈ C2([0,∞)) (cf. [19]) such that

(i) Wδ(0) > 0 and W ′δ(u) = F (u) for 0 ≤ u ≤ bf − 2δ.
(ii) W ′′δ (u) ≥ 0 for u > 0, and W ′′δ (u) = 0 for u > bf − δ. Thus we can write

Wδ(u) = cδu+ b for u > bf − δ for some cδ > 0 and real b.
(iii) If we define Fδ = W ′δ and Φδ(u) = [Fδ(u)]2u, then v = Φδ(u) is strictly

increasing in [0,∞).
(iv) Let u = Ψδ(v) is the inverse function of v = Φδ(u) defined for v ≥ 0 and

define
fδ(v) =

1
Fδ(Ψδ(v))

,

then fδ ∈ C2
loc([0,∞)) and there exist c1(δ), c2(δ), ε2(δ) > 0 such that

c1(δ) ≤ fδ(v) ≤ c2(δ),

fδ(v)− 2|f ′δ(v)|v ≥ c1(δ), for 0 ≤ v <∞,
and fδ(v) = 1/cδ if v ≥ bψ − ε2(δ).

(v) Furthermore, if F ∈ C2+α
loc ([0, bf )), then fδ ∈ C2+α

loc ([0,∞)).

3.3. Weak solutions and unique existence of an approximate system. We
set a quasilinear system (called Fδ-system).

− curl[Fδ(gM (curl H))M curl H] = H in Ω,

HT = µHeT on ∂Ω.
(3.2)

Definition 3.2. H ∈ H1(Ω,R3,div 0) is called a weak solution of (3.2) if HT =
µHeT on ∂Ω and satisfy∫

Ω

{Fδ(gM (curl H))〈M curl H, curl B〉+ 〈H,B〉} dx

+
∫
∂Ω

Fδ(gM (curl H))((M curl H)T ×BT ) · ν dS = 0
(3.3)

for all B ∈ H1(Ω,R3).

Since Fδ(u) is defined for all u ≥ 0 and constant for large u, and (M curl H)T ∈
H−1/2(∂Ω), BT ∈ H1/2(∂Ω), the surface integral of (3.3) makes sense.

We shall study the existence of unique weak solution of (3.2).

Proposition 3.3. Let Ω be a bounded domain in R3 with C2 boundary, and M ∈
C(Ω, S+(3)) satisfies that there exists β(M) > 0 such that

gM (ξ) = 〈M(x)ξ, ξ〉 ≥ β(M)|ξ|2 for all x ∈ Ω, ξ ∈ R3. (3.4)

If we assume that HeT ∈ H1/2(∂Ω) and Fδ is the function defined in subsection 3.2,
then (3.2) has a unique weak solution H ∈ H1(Ω,R3).

Proof. From Lemma 2.3, there exists He ∈ H1(Ω,R3) such that divHe = 0 in Ω
and (He)T = HeT on ∂Ω. We write H = He + u. Then (3.2) becomes

− curl[Fδ(gM (curl(He + u)))M curl(He + u)] = He + u in Ω,
uT = 0 on ∂Ω.

(3.5)
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For brevity of notation, we write Y = H1
t0(Ω,R3,div 0). We define

E [u] =Wδ[He + u] =
∫

Ω

{Wδ(gM (curl(He + u))) + |He + u|2} dx. (3.6)

Then it is clear that E is well defined on Y and continuous. Put c =
√
bf/β(M).

If | curl(He(x) + u(x))| ≥ c, then

gM (curl(He(x) + u(x)) ≥ β(M)| curl(He(x) + u(x))|2 ≥ β(M)c2 = bf .

Therefore, it follows from the properties of Wδ that

Wδ(gM (curl(He(x) + u(x)))) = cδg
M (curl(He(x) + u(x))) + b

≥ cδβ(M)| curl(He(x) + u(x))|2 + b.

Define Γ(He + u) = {x ∈ Ω; | curl(He(x) + u(x))| ≥ c}. Then we have∫
Ω

Wδ(gM (curl(He + u))) dx

≥
∫

Γ(He+u)

Wδ(curl(He + u))) dx

≥ cδβ(M)
∫

Γ(He+u)

| curl(He + u)|2 dx+ b|Γ(He + u)|

= cδβ(M)
∫

Ω

| curl(He + u)|2 dx

− cδβ(M)
∫

Ω\Γ(He+u)

| curl(He + u)|2 dx+ b|Γ(He + u)|

≥ cδβ(M)
∫

Ω

| curl(He + u)|2 dx− cδβ(M)c2|Ω \ Γ(He + u)|+ b|Γ(He + u)|

≥ cδβ(M)
∫

Ω

| curl(He + u)|2 dx− c′|Ω|.

Thus we see that

Eδ[u] ≥ cδβ(M)
∫

Ω

| curl(He + u)| dx− c′|Ω|+
∫

Ω

|He + u|2 dx.

It follows from Dautray and Lions [10, p.212] that for any vector field v ∈ H1(Ω,R3),
‖v‖2H1(Ω) is equivalent to

‖ curl v‖2L2(Ω) + ‖ div v‖2L2(Ω) + ‖v‖2L2(Ω) + ‖vT ‖2H1/2(∂Ω). (3.7)

Therefore, we see that lim‖u‖Y→∞ Eδ[u] = +∞. Since clearly Eδ[u] is strictly convex
on Y , Eδ has a unique minimizer u ∈ Y and u is a weak solution of (3.5). Then
H = He + u is a weak solution of (3.2). Since Eδ is strictly convex, any critical
point of Eδ is a global minimizer. Thus Eδ has at most one global minimizer, and
so (3.2) has exactly one weak solution. �

4. Regularity of the weak solutions of the approximate system

In this section, we shall show the regularity of weak solutions for the approximate
system (Fδ-system) (3.2). For brevity of notation, we consider the system (3.2) with
µ = 1.
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Theorem 4.1. Let Ω ⊂ R3 be a bounded domain with C3+α boundary for some
0 < α < 1, and M ∈ C1+α(Ω, S+(3)) satisfies (3.4), and let Fδ be as in subsection
3.2. For given 0 6≡ HeT ∈ C2+α(∂Ω,R3), if H ∈ H1(Ω,R3) is a weak solution
of (3.2) (with µ = 1), then H ∈ C2+α(Ω,R3), and

‖H‖C2+α(Ω) ≤ C(Ω, ‖M‖C1+α(Ω), β(M), ‖HeT ‖C2+α(∂Ω), α, δ). (4.1)

The constant also depends on the behavior of Fδ.

The authors of [16] considered the regularity of F0-system (1.3). For the purpose
they assumed the condition (1.4). However, as we consider the Fδ-system, we need
not to assume the condition (1.4).

Lemma 4.2. Let Ω ⊂ R3 be a bounded domain with C2 boundary and let HeT ∈
H1/2(∂Ω). If H is a weak solution of (3.2) with µ = 1, then we have

‖H‖H1(Ω) ≤ C(Ω, β(M), ‖M‖C0(Ω),Wδ, ‖HeT ‖H1/2(∂Ω)).

Proof. Let He be a lifting of HeT . Then the weak solution of (3.2) is of the form
H = He + u where u is the minimizer of (3.6). Therefore E [u] ≤ E [0]. Since Wδ is
strictly increasing and Wδ(0) > 0, using (3.4), we see that∫

Ω

{Wδ(0)β(M)| curl(He + u)|2 + |He + u|2} dx

≤ E [0] =
∫

Ω

{Wδ(gM (curlHe)) + |He|2} dx.

Since u ∈ H1
t0(Ω,R3.div 0), it follows from [10, p.212] that ‖u‖H1(Ω) is equivalent to

‖ curl u‖L2(Ω) +‖u‖L2(Ω). Therefore from the above estimate, we have the estimate

‖u‖H1(Ω) ≤ C(Ω, β(M), ‖M‖C0(Ω),Wδ, ‖He‖H1(Ω)).

Thus we have

‖H‖H1(Ω) ≤ C1(Ω, β(M), ‖M‖C0(Ω),Wδ, ‖He‖H1(Ω)).

Taking Lemma 2.3 into consideration, we complete the proof. �

Remark 4.3. If HeT ∈ C0,1(∂Ω,R3), it follows from Lemmas 2.1 and 2.2 that
H ∈ Cδ(Ω) for any 0 < δ < 1.

Along the idea of [16] we shall show that the regularity of weak solutions of the
approximate Fδ-system. We only consider the boundary regularity. For the proof of
Theorem 4.1, it suffices to prove the next proposition. For the purpose, let x0 ∈ ∂Ω
and 0 < α < 1. Since Ω is C2 class, we can choose R(Ω) > 0 such that B(x0, R(Ω))
is contractible. For 0 < R < R(Ω), let g ∈ C2+α(B(x0, R)) such that g(x0) = 0.
Define for r ∈ (0, R],

Ω[r] = {x ∈ B(x0, r); g(x) > 0}, Ω[r] = {x ∈ B(x0, r); g(x) ≥ 0},
Σ[r] = {x ∈ B(x0, r); g(x) = 0}, Σ[r] = {x ∈ B(x0, r); g(x) = 0}.

Proposition 4.4. Let H ∈ H1(Ω[R],R3) be a weak solution of the following Fδ-
system

− curl[Fδ(gM (curl H)))M curl H] = H in Ω[R],

HT = HeT on Σ[R].
(4.2)
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If HeT ∈ C2+α(Σ[R],R3), then H ∈ C2+α(Ω[R/8],R3), and the following estimate
holds.

‖H‖C2+α(Ω[R/8]) ≤ C(g,R,M,α, δ, ‖HeT ‖C2+α(Σ[R]), ‖H‖H1(Ω[R])).

We note that if H is the weak solution of (4.2), it follows from Lemma 4.2 that
‖H‖H1(Ω[R]) is controlled by C(Ω,M, ‖HeT ‖H1/2(∂Ω)).

Since we treat the approximate system, it is not necessary to assume the bound-
edness of curl H as in [16] in which the authors proved the regularity for the system
associated with F0. Though the proof look like the proof of [16], we have to modify
it for our general setting. Therefore we give a complete proof despite the redun-
dancy.

Proof. Step 1. We can find a vector field B such that

curl B = H, div B = 0 in Ω[3R/4],

ν ·B = 0 on Σ[3R/4].
(4.3)

In fact, according to the contractibility of Ω[7R/8], we can choose a C2 contractible
domain Ω∗ such that Ω[3R/4] ⊂ Ω∗ ⊂ Ω[7R/8]. From the contractibility of Ω∗ and
the fact that div H = 0 in Ω[R], we can see from [5] that there exists B ∈ H2(Ω∗,R3)
such that

curl B = H, div B = 0 in Ω∗,

ν ·B = 0 on ∂Ω∗.

By the Sobolev imbedding theorem, we see that B ∈ Cτ (Ω∗,R3) for any 0 < τ <
1/2. Since H is a weak solution, for any v ∈ Y = H1

t0(Ω∗,R3,div 0),∫
Ω∗
Fδ(gM (curl H))M curl H + B) · curl v dx = 0.

If we put w = Fδ(gM (curl H))M curl H + B, since Fδ(u) = cδ for u ≥ bf , we see
that w ∈ L2(Ω∗,R3), and w⊥ curlH1

t0(Ω∗,R3,div 0) in L2(Ω∗,R3). Since it follows
from [10, p. 226] that

(curlY )⊥ = Z = {z ∈ L2(Ω∗,R3); curl z = 0 in Ω∗}.
Since Ω∗ is contractible, we can write Z = {∇φ;φ ∈ H1(Ω∗)}. Therefore, there
exists ϕ ∈ H1(Ω∗) such that

Fδ(gM (curl H))M curl H + B = ∇ϕ in Ω∗. (4.4)

Applying Q = M−1,

Fδ(gM (curl H)) curl H = Q(∇ϕ−B). (4.5)

From (4.4) and (4.5), we see that

Fδ(gM (curl H))2gM (curl H) = gQ(∇ϕ−B).

Putting u(x) = gM (curl H(x)), v(x) = gQ(∇ϕ(x)−B(x)), from the properties (iii)
and (iv) in subsection 3.2, Φδ(u(x)) = v(x). Therefore,

gM (curl H(x)) = u(x) = Ψδ(gQ(∇ϕ(x)−B(x)) = Ψδ(v(x)),

and
fδ(v) =

1
Fδ(Ψδ(v))

.
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Define
A(x,p) = fδ(gQ(p−B))Q(p−B).

From (4.5), we can see that

curl H =
1

Fδ(gM (curl H))
Q(∇ϕ−B)

=
1

Fδ(u)
Q(∇ϕ−B)

= fδ(gQ(∇ϕ−B))Q(∇ϕ−B)

= A(x,∇ϕ).

(4.6)

If we write H = He + u where He ∈ C2+α(Ω[3R/4]; R3) as in Lemma 2.4, then
u ∈ H1

t0(Ω[3R/4],R3,div 0), and

ν ·Q(∇ϕ−B) = Fδ(gM (curl H))ν · curl H

= Fδ(gM (curl H))ν · curlHeT on Σ[3R/4].

Here we used the fact that ν · curl H depends only on the tangent trace HT of H.
Thus we can see

ν · A(x,∇ϕ) = fδ(gQ(∇ϕ−B))ν ·Q(∇ϕ−B)

= fδ(gQ(∇ϕ−B))Fδ(gM (curl H))ν · curlHeT
= ν · curlHeT on Σ[3R/4].

Hence taking (4.6) into consideration, we can see that ϕ is a weak solution of the
co-normal derivative problem

div[A(x,∇ϕ)] = 0 in Ω[3R/4],

ν · A(x,∇ϕ) = ν · curlHeT on Σ[3R/4].
(4.7)

Step 2. W 1,p regularity of ϕ. Let ϕ be a weak solution of (4.7). Since
A(x,∇ϕ) = fδ(gQ(∇ϕ−B))Q(∇ϕ−B), if gQ(∇ϕ−B) > bψ−ε2, then fδ(gQ(∇ϕ−
B) = 1/cδ. Thus we can write

Ai(x,∇ϕ) =
1
cδ

3∑
j=1

qij(
∂ϕ

∂xj
−Bj)

where A = (A1,A2,A3),B = (B1, B2, B3) and Q = (qij). Define f = (f1, f2, f3)
such that

f i(x) = Ai(x,∇ϕ(x))− 1
cδ

3∑
j=1

qij(x)
∂ϕ

∂xj
− (curlHe)i

where curlHe = ((curlHe)1, (curlHe)2, (curlHe)3). Then we can write A(x,∇ϕ) =
1
cδ
Q∇ϕ+ f . Therefore, (4.7) becomes the system

div
( 1
cδ
Q∇ϕ+ f

)
= 0 in Ω[3R/4],

ν ·
( 1
cδ
Q∇ϕ+ f

)
= 0 in Σ[3R/4].

(4.8)
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Since B ∈ Cτ (Ω[3R/4],R3) for any 0 < τ < 1/2, in particular, B is bounded on
Ω[3R/4]. On {x ∈ Ω[3R/4]; gQ(∇ϕ− b) > bψ − ε2},

f i(x) = − 1
cδ

3∑
j=1

qij(x)Bj(x)− (curlHe)i(x).

If gQ(∇ϕ − B) ≤ bψ − ε2, then β(Q)|∇ϕ − B|2 ≤ bψ − ε2. Therefore, |∇ϕ| is
bounded, so A(x,∇ϕ) = fδ(gQ(∇ϕ − B))Q(∇ϕ − B) is bounded. Hence we see
that f ∈ L∞(Ω[3R/4],R3), and

‖f‖L∞(Ω[3R/4]) ≤ C(1 +
1
cδ
‖B‖C0(Ω[3R/4]))

where C = C(Ω[3R/4], ‖Q‖C0(Ω[3R/4]), ‖He‖C1(Ω[3R/4])). Thus we see that f ∈
Lp(Ω[3R/4],R3) for any 1 < p <∞. By the classical Lp Schauder theory, it follows
that (4.8) has a weak solution in W 1,p(Ω[3R/4]). The system

div(Q∇ϕ) = 0 in Ω[3R/4],

ν ·Q∇ϕ = 0 on Σ[3R/4]

has only constant solution. Therefore the weak solution of (4.8) is unique up to an
additive constant. Thus we see that ϕ ∈ W 1,p(Ω[3R/4]) for any 1 < p < ∞, and
there exists a constant C1 = C1(Ω, ‖Q‖C1(Ω[3R/4]), β(Q), p) such that

‖∇ϕ‖Lp(Ω[3R/4]) ≤ C1cδ‖f‖Lp(Ω[3R/4]) ≤ C2(cδ + ‖B‖Lp(Ω[3R/4])).

By the Sobolev imbedding theorem, ϕ ∈ Cτ (Ω[3R/4]) for any 0 < τ < 1/2. We
can choose ϕ so that

∫
Ω[3R/4]

ϕdx = 0. Hence we obtain

‖ϕ‖Cτ (Ω[3R/4]) ≤ C‖ϕ‖W 1,p(Ω[3R/4])

≤ C(cδ, ‖B‖Lp(Ω[3R/4]))

≤ C(cδ, ‖H‖H1(Ω[3R/4]))

Let I = Qtν whereQt is the transpose matrix ofQ. Then the boundary condition
of (4.7) is written in the form

fδ(gQ(∇ϕ−B))(∇ϕ−B) · I = ν · curlHeT
on Σ[3R/4]. Since I = Qtν ∈ C1(Σ[3R/4],R3), I · B ∈ Cτ (Σ[3R/4],R3) for any
0 < τ < 1/2. If we define γ = I·ν, then γ = Qtν ·ν = ν ·Qν ≥ β(Q) > 0. Therefore,
we can write I = γ(ν + t), where t is tangent vector. Then the boundary condition
of (4.7) is rewritten in the form

∂ϕ

∂ν
+ t · ∇ϕ =

I ·B
γ

+
1

γfδ(gQ(∇ϕ−B))
ν · curlHeT . (4.9)

However, in this stage we do not have the Cα regularity of the right hand side of
(4.9). According to this reason, we shall use the arguments of [16] for the system
(4.7). In order to do so, we remember A(x,p) = fδ(gQ(p − B))Q(p − B) where
p = (p1, p2, p3) and B ∈ Cτ (Ω∗,R3) for any 0 < τ < 1/2. Then simple calculation
leads to

∂Ai
∂pj

= fδ(gQ(p−B))qij(x) + 2f ′δ(g
Q(p−B))

3∑
k,m=1

qikqjm(pk −Bk)(pm −Bm).
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Therefore, using the Schwarz inequality and the property (iv) of Fδ,
3∑

i,j=1

∂Ai
∂pj

ξiξj = fδ(gQ(p−B))gQ(ξ) + 2fδ(gQ(p−B))gQ(p−B, ξ)2

≥ fδ(gQ(p−B))gQ(ξ)− 2|fδ(gQ(p−B))|gQ(p−B)gQ(ξ)

≥ c1(δ)gQ(ξ)

≥ c1(δ)β(Q)|ξ|2.

Since c1(δ) ≤ fδ(v) ≤ 1/F (0) from the property (iv) of Fδ, we see that

2|f ′δ(v)|v ≤ fδ(v)− c1(δ) ≤ fδ(v) ≤ 1
F (0)

.

Therefore,
3∑

i,j=1

∂Ai
∂pj

ξiξj ≤ fδ(gQ(p−B))gQ(ξ) + 2|f ′δ(gQ(p−B))|gQ(p−B)gQ(ξ)

= {fδ(gQ(p−B)) + 2|f ′δ(gQ(p−B))|gQ(p−B)}gQ(ξ)

≤ 2
F (0)

gQ(ξ)

≤ 1
F (0)

‖M‖C0(Ω)|ξ|
2.

Thus there exist λ,Λ > 0 such that the eigenvalues of the matrix
(
∂Ai
∂pj

)
is contained

in the interval [λ,Λ]. Next, we estimate |Ai(x,p)−Ai(y,p)|. We have

|Ai(x,p)−Ai(y,p)|

= |{fδ(gQ(y)(p−B(y))

+ (fδ(gQ(x)(p−B(x))− fδ(gQ(y)(p−B(y))}Q(x)(p−B(x))

− fδ(gQ(y)(p−B(y))Q(y)(p−B(y))|

≤ |fδ(gQ(y)(p−B(y)){Q(x)(p−B(x)−Q(y)(p−B(y))}|

+ |{fδ(gQ(x)(p−B(x)))− fδ(gQ(y)(p−B(y))}Q(x)(p−B(x))|.

Since Q ∈ C1+α, we have |Q(x)p − Q(y)p| ≤ C|x − y||p|. Moreover, since B ∈
Cτ (Ω[3R/4],R3), we have |Q(x)B(x)−Q(y)B(y)| ≤ C|x− y|τ . Therefore, we have
for some 0 < θ < 1,

|fδ(gQ(x)(p−B(x))− fδ(gQ(y)(p−B(y))|

≤ |x− y||f ′δ(gQ(y)(p−B(y) + θ(gQ(x)(p−B(x))− gQ(y)(p−B(x)))|
≤ C|x− y|.

If we note that |fδ| ≤ 1/F (0), we have for some m > 0

|Ai(x,p)−Ai(y,p)| ≤ m|x− y|τ (1 + |p|).

Since ∂Ai
∂pj

is continuous with respect to p and |ϕ| is bounded, we can apply Lieber-

man [15, Theorem 5.1 and the remark]. Hence ϕ ∈ C1(Ω[3R/4]) and

|∇ϕ(x)−∇ϕ(y)| ≤ C(τ,m,Λ, λ, g, ‖ϕ‖C0(Ω([3R/4]))|x− y|
τ .
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That is to say, ϕ ∈ C1+τ (Ω[3R/4]).
Step 3. Improvement of regularity of B and ϕ. Since ∇ϕ ∈ Lp(Ω[3R/4],R3) for

any 1 < p <∞ and B ∈ Cτ (Ω[3R/4],R3), we see that ∇ϕ−B ∈ Lp(Ω[3R/4],R3).
Since Q is continuous on Ω, Q(∇ϕ − B) ∈ Lp(Ω[3R/4],R3). If gQ(∇ϕ − B) ≥
bψ − ε2, we have fδ(gQ(∇ϕ−B)) = 1/cδ. Therefore A(x, ϕ) ∈ Lp(Ω[3R/4],R3), so
curl H = A(x, ϕ) ∈ Lp(Ω[3R/4],R3). Since div H = 0 in Ω[3R/4] and HT =
HeT ∈ C2+α(Σ[3R/4],R3), it follows from Lemma 2.2 (i) (cf. [16]) that H ∈
W 1,p(Ω[R/2],R3) for any 1 < p < ∞. By the Sobolev imbedding theorem, we
see that H ∈ Cτ (Ω[R/2],R3) for any 0 < τ < 1. From these arguments, we see
that curl B = H ∈ Cτ (Ω[R/2],R3) for any 0 < τ < 1 and div B = 0 in Ω[R/2] and
B · ν = 0 on Σ[R/2]. Using Lemma 2.2 (ii), we see B ∈ C1+τ (Ω[3R/8],R3) for any
0 < τ < 1, and

‖B‖C1+τ (Ω[3R/8]) ≤ C(R, τ){‖ curl B‖Cτ (Ω[R/2]) + ‖ div B‖Cτ (Ω[R/2])

+ ‖B‖H1(Ω[R/2]) + ‖B · ν‖C1+τ (Σ[R/2])}
= C(R, τ){‖H‖Cτ (Ω[R/2]) + ‖B‖H1(Ω[R/2])}.

In particular, we have B ∈ C1+τ (Ω[R/2],R3). Thus we can return to the arguments
of Step 1 with τ = α. So we have ϕ ∈ C1+α(Ω[R/2]), and

‖ϕ‖C1+α(Ω[R/2]) ≤ C(g, λ,M,α, ‖B‖Cα(Ω[3R/4]), ‖H
e
T ‖C2+α(Σ[3R/r])))

≤ C(g, λ,M,α, ‖HeT ‖C2+α(Σ[R]), ‖H‖H1(Ω[R])).

Step 4. C2+α regularity of ϕ. We use the arguments [16, Step 5 in the Proof
of Theorem 4.1]. We rewrite the co-normal derivative problem

div[A(x,∇ϕ) = 0 in Ω[R/2],

ν · A(x,∇ϕ) = ν · curlHeT on Σ[R/2]

into the form of a linear system with nonlinear boundary condition
3∑

i,j=1

aij(x)
∂2ϕ

∂xi∂xj
+ f(x) = 0 in Ω[R/2],

h(x,∇ϕ) = 0 on Σ[R/2],

where

aij = fδ(gQ(∇ϕ−B))qij

+ 2f ′δ(g
Q(∇ϕ−B))

3∑
l,m=1

qilqjm(
∂ϕ

∂xm
−Bm)(

∂ϕ

∂xl
−Bl),

(4.10)

f =
3∑

i,j=1

{
−fδ(gQ(∇ϕ−B)qij

∂Bj
∂xi

+ fδ(gQ(∇ϕ−B))
∂qij
∂xi

(
∂ϕ

∂xj
−Bj)

+ f ′δ(g
Q(∇ϕ−B))qij

3∑
l,m=1

∂qlm
∂xi

(
∂ϕ

∂xl
−Bl)(

∂ϕ

∂xm
−Bm)(

∂ϕ

∂xj
−Bj)

− 2f ′δ(g
Q(∇ϕ−B))

3∑
l,m=1

qijqlm
∂Bl
∂xi

(
∂ϕ

∂xm
−Bm)(

∂ϕ

∂xj
−Bj)

}
,
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h(x,∇ϕ) = ν · A(x,∇ϕ)− ν · curlHeT
= ν · fδ(gQ(∇ϕ−B))Q(∇ϕ−B)− ν · curlHeT .

Here we note that aij , f ∈ Cα(Ω[R/2]), h(x,p) ∈ C1+α(Σ[R/2] × R3). By the
Schwarz inequality, we have

3∑
i,j=1

aij(x)ξiξj = fδ(gQ(∇ϕ−B))gQ(ξ) + 2f ′δ(g
Q(∇ϕ−B))gQ(∇ϕ−B, ξ)2

≥
{
fδ(gQ(∇ϕ−B))− 2|f ′δ(gQ(∇ϕ−B))|gQ(∇ϕ−B)

}
gQ(ξ)

≥ c1(δ)gQ(ξ)

≥ c1(δ)β(Q)|ξ|2.

Moreover, we have
3∑
i=1

∂h

∂pi
νi =

3∑
i,j,l=1

fδ(gQ(p−B))gQ(ν) + 2f ′δ(g
Q(p−B))gQ(p−B,ν)2

≥ fδ(gQ(p−B)gQ(ν)− 2|f ′δ(gQ(p−B))|gQ(p−B,ν)2

≥ {fδ(gQ(p−B))− 2|f ′δ(gQ(p−B))|}gQ(ν)

≥ c1(δ)β(Q) > 0.

Thus it follows from Lieberman [14, Lemma 4.2] that ϕ ∈ C2+α(Ω[R/4]), and

‖ϕ‖C2+α(Ω[R/4]) ≤ C(Ω, α, ‖aij‖Cα(Ω[R/2]), ‖f‖Cα(Ω[R/2]), ‖h‖C1+α(Σ[R/2]×R3)).

Step 5. Regularity of H. We again borrow the arguments of [16]. By the facts
that B,∇ϕ ∈ C1+α(Ω[R/4],R3), we can see that

J := fδ(gQ(∇ϕ−B))(∇ϕ−B) ∈ C1+α(Ω[R/4],R3)

and ‖J‖C1+α(Ω[R/4]) is controlled by ‖ϕ‖C2+α(Ω[R/4]) and ‖B‖C1+α(Ω[R/4]), so by
‖H‖Cα(Ω[R]). Thus curl H = QJ ∈ C1+α(Ω[R/4],R3), div H = 0 in Ω[R/4] and
HT = HeT on Σ[R/4]. Since H ∈ H1(Ω[R/4]), it follows from Lemma 2.2 (iii) that
H ∈ C2+α(Ω[R/8],R3) and satisfies

‖H‖C2+α(Ω[R/8]) ≤ C(g, α){‖J‖C1+α(Ω[R/4]) + ‖HeT ‖C2+α(Σ[R/4]) + ‖H‖H1(Ω[R/4]))

≤ C(g,R,M,α, ‖HeT ‖C2+α(Σ[R]), ‖H‖H1(Ω[R])).

This completes the proof. �

Corollary 4.5 ([19]). In addition to the condition of Theorem 4.1, if furthermore
Fδ ∈ C2+α

loc ([0, bf )) and M ∈ C2+α(Ω, S+(3)), then H ∈ C3+α
loc (Ω,R3).

Proof. Under the hypotheses, Q ∈ C2+α(Ω, S+(3)), fδ ∈ C2+α
loc ([0,∞)). Therefore

we have aij , h ∈ C1+α(Ω). Repeating the proof of Theorem 4.1, we see that ϕ ∈
C3+α(Ω[R/4]) and B ∈ C2+α(Ω[R/4],R3). Therefore curl H ∈ C2+α(Ω[R/4]). Let
η ∈ C3+α be a cut-off function. Then H, curl(ηH) ∈ C2+α(Ω[R/4]), div(ηH) ∈
C2+α(Ω[R/4]) and (ηH)T = 0 on Σ[R/4]. Thus it follows from Lemma 2.2 (iii)
that ηH ∈ C3+α(Ω[R/8],R3), so H ∈ C3+α

loc (Ω[R/8],R3). Thus we see that H ∈
C2+α(Ω,R3) ∩ C3+α

loc (Ω,R3). �
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Proof of Theorem 1.1. If Hµ is a weak solution of (1.10) satisfying (1.11), choose
δ > 0 small so that ‖gM (curl H)‖L∞(Ω) < bf − 2δ. Then Hµ is also a weak solution
of (3.2). Therefore the conclusion follows from Theorem 4.1 and Corollary 4.5. �

5. Continuity in the parameter of the weak solutions of
approximate system

In this section, we consider the continuity of the following Fδ-system with respect
to a parameter µ,

− curl[Fδ(gM (curl H))M curl H] = H in Ω,

HT = µHeT on ∂Ω.
(5.1)

When µ = 0, it is trivial that (5.1) has only one solution H = 0.

Lemma 5.1. Let Ω,M,HeT , δ, Fδ be as in Theorem 4.1, and let Hµ be a unique
solution of (5.1). In addition, we assume that ν · curlHeT = 0 on ∂Ω. Then

[0,∞) 3 µ 7→ Hµ ∈ C2+α(Ω,R3)

is continuous. In particular, limµ→0 ‖Hµ‖C2+α(Ω) = 0.

Proof. Suppose the conclusion were false. Then there exist µ0 ≥ 0, ε0 > 0 and a
sequence {µk} converging to µ0 as k →∞ such that

‖Hµk −Hµ0‖C2+α(Ω) ≥ ε0

for all k. By Theorem 4.1, {Hµk} is bounded in C2+α(Ω,R3). Passing to a subse-
quence, we may assume that Hµk → H̃ in C2+τ (Ω,R3) for any τ ∈ (0, α). There-
fore, H̃ is a solution of (5.1) with µ = µ0. By the uniqueness of solution, H̃ = Hµ0 .
That is ‖Hµk −Hµ0‖C2+τ (Ω) → 0. We can write Ω = ∪Nl=1Ωl where Ωl is of the
form of B(x0, R) or Ω[R] which is simply-connected and without holes. For ev-
ery k, there exists lk such that ‖Hµk − Hµ0‖C2+α(Ωlk ) ≥ ε0. Thus there exist a
subsequence (still denoted by {Hµk}) and l0 such that

‖Hµk −Hµ0‖C2+α(Ωl0 ) ≥ ε0.

We consider only the case where Ωl0 is of the form Ω[R]. Let Bk = (Bk,1, Bk,2, Bk,3)
be in C2+α(Ω[R]) and be the solution of

curl Bk = Hµk in Ω[R],

div Bk = 0 in Ω[R],

Bk · ν = 0 on Σ[R].

Since Ω[R] is simply-connected and without holes, it follows from Lemma 2.2 that
Bk → B0 in C2+τ (Ω[R],R3) as k → ∞. Here we note that B0 is a solution of
curl B0 = Hµ0 , div B0 = 0 in Ω[R] and B0 · ν = 0 on Σ[R]. Next, there exists
ϕk ∈ C2+α(Ω[R]) such that

∇ϕk = Fδ(gM (curl Hµk))M curl Hµk + Bk

in Ω[R] and
∫

Ω[R]
ϕk dx = 0. Then we have ϕk is bounded in C2+α(Ω[R]), and

‖ϕk − ϕ0‖C2+τ (Ω[R]) → 0. Thus ϕk is a solution of the system

−
3∑

i,j=1

ak,ij(x)
∂2ϕ

∂xi∂xj
= hk(x) in Ω[R],
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∂ϕ

∂ν
+ t · ∇ϕ =

1
γ

I ·Bk on Σ[R]

where ak,ij is defined by (4.10) with ϕ = ϕk and B = Bk. If ψk = ϕk − ϕ0, then
ψk satisfies

−
3∑

i,j=1

ak,ij(x)
∂2ψk
∂xi∂xj

= (hk(x)− h0(x)) + ĥk in Ω[R],

∂ψk
∂ν

+ t · ∇ψk =
1
γ

I · (Bk −B0) on Σ[R],

where

ĥk =
3∑

i,j=1

(ak,ij − a0,ij)
∂2ψk
∂xi∂xj

.

Since vk := gQ(∇ϕk − Bk) → v0 := gQ(∇ϕ0 − B0) in C1+τ (Ω[R]), ak,ij →
a0,ij , hk → h0 in C1(Ω[R]) and ‖ϕk‖C2+α(Ω[R]) is uniformly bounded, so we see
that ‖ψk‖C2+α(Ω[R]) is uniformly bounded. Thus we have

‖ĥk‖Cα(Ω[R]) ≤
3∑

i,j=1

‖ak,ij − a0,ij‖Cα(Ω[R])‖ψk‖C2+α(Ω[R]) → 0

as k →∞. By the Fiorenza Schauder estimate [11] (cf. [12, Theorem 6.30]),

‖ψk‖C2+α(Ω[R])

≤ C{‖hk − h0‖Cα(Ω[R]) + ‖ĥk‖Cα(Ω[R]) +
1
γ
‖I · (Bk −B0)‖C1+α(Σ[R])} → 0

where C depends on α, λ,Λ,Ω[R]. Therefore, ϕk → ϕ0 in C2+α(Ω[R]), and so

curl Hµk = fδ(vk)Q(∇ϕk −Bk)→ fδ(v0)Q(∇ϕ0 −B0) = curl Hµ0

in C1+α(Ω[R]). We also have div Hµk = 0 in Ω[R]. Moreover, we see that (Hµk)T =
µkHeT on Σ[R]. Thus we see that Hµk → Hµ0 in C2+α(Ωl0 ,R3). This leads to a
contradiction. �

6. Regularity of weak solutions of the F -system (1.10)

In this section we shall prove Theorem 1.2.

Lemma 6.1. Let Ω, F,M,HeT be as in Theorem 1.2. Then there exist 0 < µ1 < µ2

depending on Ω, ‖M‖C1+α(Ω), β(M),HeT , α, F such that

(i) If 0 ≤ µ < µ1, (1.10) has a solution Hµ ∈ C2+α(Ω,R3) satisfying

‖gM (curl Hµ)‖C0(Ω) < bf .

Such solution is unique.
(ii) If µ > µ2, (1.10) has no C2+α solution.

Proof. We choose δ > 0 small enough and define Fδ as in subsection 3.2. From
Lemma 5.1, if µ > 0 is small, then (5.1) has a solution Hµ and ‖Hµ‖C2+α(Ω) is
small. Therefore, ‖gM (curl Hµ)‖C0(Ω) < bf −2δ, so we see that Fδ(gM (curl Hµ)) =
F (gM (curl Hµ)). Thus Hµ is a solution of (1.10). Hence µ1 exists. It is clear that
from Proposition 3.3, a solution satisfying ‖gM (curl Hµ)‖C0(Ω) < bf is unique.
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Next, we show that (1.10) has no C2+α solution for large µ > 0. Consider the
following functional

T [H] =
∫

Ω

{gM (curl H) + |H|2} dx.

Define
c(HeT ) = inf{T [H]; H ∈ H1(Ω,R3,div 0),HT = HeT on ∂Ω}. (6.1)

By a standard arguments, it is clear that (6.1) has a minimizer. By the hypothesis
HeT 6≡ 0, we see that c(HeT ) > 0. We can also see that c(µHeT ) = µ2c(HeT ). If (1.10)
has a solution H, then it follows from the definition of F that gM (curl H) ≤ bf .
Therefore,

min{1, F (0)}µ2c(HeT ) ≤
∫

Ω

{F (gM (curl H))gM (curl H) + |H|2} dx

=
∫

Ω

{curl[F (gM (curl H))M curl H] + H} ·H dx

+
∫
∂Ω

(ν ×H) · F (gM (curl H))M curl H dS.

Here using the facts that H is a solution of (1.10),

β(M)| curl H|2 ≤ gM (curl H) ≤ bf
and ‖ν ×H‖C0(∂Ω) = µ‖HeT ‖C0(∂Ω), we can see that

min{1, F (0)}µ2c(HeT ) ≤ µF (bf )‖M‖C0(Ω)

( bf
β(M)

)1/2‖HeT ‖C0(∂Ω)|∂Ω|.

Thus µ2 exists, and

µ2 ≤
1

min{1, F (0)}µ2c(HeT )
µF (bf )‖M‖C0(Ω)

( bf
β(M)

)1/2‖HeT ‖C0(∂Ω)|∂Ω|.

This completes the proof. �

We define an optimal bound for the existence of solutions for (1.10).

µ∗(HeT ) = sup
{
b > 0; (1.10) has a unique C2+α solution Hµ

for any µ ∈ (0, b), and sup
0<µ≤b

‖gM (curl Hµ)‖C0(Ω) < bf
}
. (6.2)

Theorem 6.2. Let Ω, F,M,HeT be as in Theorem 1.2. Then the following holds.
(i) 0 < µ∗(HeT ) <∞.
(ii) [0, µ∗(HeT )) 3 µ 7→ Hµ ∈ C2+α(Ω,R3) is continuous.

(iii) limµ→µ∗(HeT ) ‖gM (curl H)‖C0(Ω) = bf .
(iv) For any b ∈ (0, µ∗(HeT )), we have

sup
0≤µ≤b

‖Hµ‖C2+α(Ω) ≤ C(Ω, ‖M‖C1+α(Ω), β(M), ‖HeT ‖C2+α(∂Ω), α, b).

The constant also depends on the behavior of F .

Proof. For brevity of notation, we write µ∗(HeT ) = µ∗.
(i) From Lemma 6.1, µ∗ < ∞. We show µ∗ > 0. From Lemma 6.1, there

exists b > 0 such that (1.10) has a C2+α solution Hµ for any µ ∈ [0, b], and
‖gM (curl Hµ)‖C0(Ω) ≤ bf − 2δ for some δ > 0. Then Hµ is also the solution of
(5.1). Thus µ∗ > 0.
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(ii) Let b ∈ (0, µ∗). Then

sup
0<µ≤b

‖gM (curl Hµ)‖C0(Ω) < bf .

If we choose δ > 0 small enough, we have

sup
0<µ≤b

‖gM (curl Hµ)‖C0(Ω) ≤ bf − 2δ.

For µ ∈ [0, b], Hµ is the solution of (5.1), and so from Lemma 5.1, µ 7→ Hµ is
continuous from [0, b] to C2+α(Ω,R3). Since b ∈ (0, µ∗) is arbitrary, we see that (ii)
holds.

(iii) Suppose the conclusion of (iii) were false. Then there exists 0 < L < bf such
that

sup
0≤µ<µ∗

‖gM (curl Hµ)‖C0(Ω) ≤ L.

Choose δ > 0 so that L < bf − 4δ. Then for any 0 ≤ µ < µ∗, Hµ is also a solution
of (5.1). Let Hδ

µ be a solution of (5.1). Then Hδ
µ = Hµ for 0 ≤ µ ≤ µ∗. We claim

that
sup

0<µ<∞
‖gM (curl Hµ)‖C0(Ω) ≥ bf − 2δ.

In fact, if sup0<µ<∞ ‖gM (curl Hµ)‖C0(Ω) < bf − 2δ, Hδ
µ is a solution of (1.10) for

any µ ∈ (0,∞) satisfying

‖gM (curl Hδ
µ)‖C0(Ω) < bf .

Therefore, µ∗(HeT ) = ∞. This is a contradiction. Thus there exists µ0 > µ∗ such
that ‖gM (curl Hµ)‖C0(Ω) < bf−2δ if 0 < µ < µ0 and ‖gM (curl Hµ)‖C0(Ω) = bf−2δ
if µ = µ0. Then for any 0 < µ ≤ µ0, (1.10) has a solution Hµ = Hδ

µ. By Lemma
5.1, since [0, µ0] 3 µ 7→ Hµ = Hδ

µ ∈ C2+α(Ω,R3) is continuous, we have

sup
0<µ<µ0

‖gM (curl Hµ)‖C0(Ω) < bf − 2δ < bf .

This is a contradiction to the definition of µ∗.
(iv) For any 0 < b < µ∗, using the conclusion of (ii) and the definition of µ∗, we

have
sup

0≤µ≤b
‖gM (curl Hµ)‖C0(Ω) ≤ L(b) < bf .

If we choose δ > 0 small enough so that L(b) < bf − 2δ, Hµ is a solution of (1.10).
Thus (iv) follows from Theorem 4.1. �

Now the proof of Theorem 1.2 follows from Lemma 6.1 and Theorem 6.2.

Theorem 6.3. Let Ω,M, F be as in Theorem 1.2. Then there exists µ∗ > 0 such
that for any HeT ∈ C2+α(∂Ω) with ‖HeT ‖C2+α(∂Ω) = 1, we have µ∗(HeT ) ≥ µ∗.

Proof. Suppose the conclusion were false. Then there exists {Hej,T } satisfying µ∗j :=
µ∗(Hej,T )→ 0 as j →∞. By Theorem 6.2, for any ε > 0 small and any j, there exist
µj ∈ (0, µ∗j ) and the solution Hµj with the boundary condition Hµj ,T = µjHej,T
such that

bf − 2ε ≤ ‖gM (curl Hµj )‖C0(Ω) < bf − ε.
By Theorem 6.2 (iv), since we may assume that µj ≤ b, we have

‖Hµj‖C2+α(Ω) ≤ C(Ω, ‖M‖C1+α(Ω), β(M), α, b).
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Therefore {Hµj} is uniformly bounded in C2+α(Ω). Thus passing to a subsequence,
we may assume that Hµj → H0 in C2+τ (Ω,R3) as j →∞ for any 0 < τ < α. Here
H0 is a solution of (1.10) with the boundary condition (H0)T = 0. Therefore
H0 = 0. However

‖gM (curl H0)‖C0(Ω) = lim
j→∞

‖gM (curl Hµj )‖C0(Ω) ≥ bf − 2ε.

This is a contradiction. �

Now we consider the semilinear problem

− curl2 A = f(gQ(A))QA in Ω,

(curl A)T = HeT on ∂Ω
(6.3)

satisfying the condition ‖gQ(A)‖L∞(Ω) < bψ where the function f is defined in
(2.1). The corresponding quasilinear problem becomes

− curl[F (gM (curl H))M curl H] = H in Ω,

HT = HeT on ∂Ω
(6.4)

satisfying the condition ‖gM (curl H)‖L∞(Ω) < bf .
Finally, we can prove as in [16, Remark 4.4] that (6.2) and (6.4) is equivalent

without topological restriction for Ω and (1.14) in the general setting.

Proposition 6.4. Problem (6.2) with the condition ‖gQ(A)‖L∞(Ω) < bψ is equiv-
alent to problem (6.4) with the condition ‖gM (curl H)‖L∞(Ω) < bf .

Proof. Let A be a solution of (6.2) satisfying ‖gQ(A)‖L∞(Ω) < bψ. If we define
H = curl A, then − curl H = f(gQ(A))QA. Here we note that

F (gM (curl H)) = F (gM (curl2 A))

= F (gM (−f(gQ(A))QA))

= F (f(gQ(A)))2〈MQA, QA〉
= F (f(gQ(A)))2gQ(A))

= F (Ψ(gQ(A)))

=
1

f(gQ(A))
.

Therefore, −A = −F (gM (curl H))M curl H. Thus

H = curl A = − curl[F (gM (curl H))M curl H],

and HT = (curl A)T = HeT on ∂Ω.
Conversely, let H be a solution of (6.4) satisfying ‖gM (curl H)‖L∞(Ω) < bf .

Define A = −F (gM (curl H))M curl H. Then − curl H = f(gQ(A))QA. From
(6.4), curl A = H. Therefore, − curl2 A = f(gQ(A))QA, and (curl A)T = HT =
HeT on ∂Ω. In both case, since − curl H = f(gQ(A))QA, so

gM (curl H) = f(gQ(A))2gQ(A) = Φ(gQ(A)),

and Ψ(gM (curl H)) = gQ(A). Therefore, ‖gQ(A)‖L∞(Ω) < bψ is equivalent to

‖gM (curl H)‖L∞(Ω) < Φ(bψ) = bf .

�
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