Electron. J. Diff. Equ., Vol. 2013 (2013), No. 180, pp. 1-8.

Existence of positive solutions for Kirchhoff type equations

Ghasem A. Afrouzi, Nguyen Thanh Chung,Saleh Shakeri

Abstract:
In this article, we are interested in the existence of positive solutions for the Kirchhoff type problems
$$\displaylines{
 -M\Big(\int_{\Omega}|\nabla u|^p\,dx\Big)\Delta_pu
 = \lambda f(u) \quad \hbox{in } \Omega,\cr
 u > 0 \quad \hbox{in } \Omega, \quad u =0 \quad \hbox{on }  \partial\Omega,
 }$$
where $ 1<p< N $, $M : \mathbb{R}^+\to \mathbb{R}^+$ is a continuous and increasing function, $ \lambda $ is a parameter, $ f: [0,+\infty) \to \mathbb{R} $ is a $ C^1 $ nondecreasing function satisfying $ f(0)<0 $ (semipositone). Our proof is based on the sub- and super-solutions techniques.

Submitted April 23, 2013. Published August 07, 2013.
Math Subject Classifications: 35D05, 35J60.
Key Words: Kirchhoff type problems; semipositone; positive solution; sub-supersolution method.

Show me the PDF file (218 KB), TEX file, and other files for this article.

Ghasem Alizadeh Afrouzi
Department of Mathematics
Faculty of Mathematical Sciences
University of Mazandaran, Babolsar, Iran
email: afrouzi@umz.ac.ir
Nguyen Thanh Chung
Dept. Science Management and International Cooperation
Quang Binh University, 312 Ly Thuong Kiet
Dong Hoi, Quang Binh, Vietnam
email: ntchung82@yahoo.com
Saleh Shakeri
Department of Mathematics
Faculty of Mathematical Sciences
University of Mazandaran, Babolsar, Iran
email: s.shakeri@umz.ac.ir

Return to the EJDE web page