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EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS TO
A FOURTH-ORDER TWO-POINT BOUNDARY-VALUE

PROBLEM

MOHAMED JLELI, BESSEM SAMET

Abstract. In this article, we study the existence and uniqueness of positive
solutions for a class of semi-linear, fourth order two point boundary value

problems. Some examples are presented to illustrate our main results.

1. Introduction

In this article, we consider the fourth-order two-point boundary-value problem

u(4)(t) = f(t, u(t), u(t)) + g(t, u(t)), 0 < t < 1,

u(0) = u′(0) = 0,

u′′(1) = 0, u(3)(1) = −ζ,
(1.1)

where f : C([0, 1]× R× R), g ∈ C([0, 1]× R) are real functions, and ζ > 0.
The existence of solutions for fourth-order boundary-value problems have been

studied extensively; see for example [1, 2, 4, 5, 6, 7, 8, 11, 12, 13] and the references
therein. Note that in practice, only positive solutions are significant. These results
are obtained by the use of the Leray-Schauder method, the topological degree the-
ory, the critical point theory, or the lower and upper solution method. But in the
existing literature, there are few papers concerned with the uniqueness of positive
solutions. Different from the above works mentioned, in this paper we will use some
recent tools on fixed point theory to establish under some hypotheses existence and
uniqueness results of positive solutions to (1.1). We present also some examples to
illustrate our main results.

2. Preliminaries

Before stating and proving our main theorems, we need some preliminary results.

Lemma 2.1 ([3]). Problem (1.1) has an integral formulation given by

u(t) =
∫ 1

0

G(t, s)[f(s, u(s), u(s)) + g(s, u(s))] ds+ ζΦ(t),
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where G : [0, 1]× [0, 1]→ R is the corresponding Green’s function

G(t, s) =
1
6

{
s2(3t− s) if s ≤ t,
t2(3s− t) if t ≤ s,

and Φ(t) = t2

2 −
t3

6 .

Lemma 2.2 ([10]). For any t, s ∈ [0, 1], we have

1
3
s2t2 ≤ G(t, s) ≤ 1

2
st2,

1
3
t2 ≤ Φ(t) ≤ 1

2
t2,

1
2
s2t ≤ ∂G(t, s)

∂t
≤ st, 1

2
t ≤ Φ′(t) ≤ 2t.

Suppose that (E, ‖ · ‖) is a real Banach space which is partially ordered by a
cone P ⊂ E; i.e.,

x, y ∈ E, x � y ⇔ y − x ∈ P.
If x � y and x 6= y, then we denote x ≺ y or y � x. By θE we denote the zero
element of E. Recall that a nonempty closed convex set P ⊂ E is a cone if it
satisfies

(1) x ∈ P, λ ≥ 0 implies λx ∈ P ;
(2) −x, x ∈ P implies x = θE .

Putting int(P ) = {x ∈ P : x is an interior point of P}, a cone P is said to be solid
if its interior int(P ) is nonempty. Moreover, P is called normal if there exists a
constant N > 0 such that, for all x, y ∈ E, θE � x � y implies ‖x‖ ≤ N‖y‖. in this
case, the best constant satisfying this inequality is called the normality constant of
P .

For all x, y ∈ E, the notation x ∼ y means that there exist λ > 0 and µ > 0
such that

λy � x � µy.
Clearly, the relation ∼ is an equivalence relation. Given h � θE , we denote by Ph
the set

Ph = {x ∈ E : x ∼ h}.
It is easy to see that Ph ⊂ P .

Definition 2.3. An operator A : E → E is said to be increasing (resp. decreasing)
if for all x, y ∈ E, x � y implies Ax � Ay (resp. Ax � Ay).

Definition 2.4. An operator A : P × P → P is said to be a mixed monotone
operator if A(x, y) is increasing in x and decreasing in y; i.e.,

(x, y), (u, v) ∈ P × P, x � u, y � v ⇒ A(x, y) � A(u, v).

An element x∗ ∈ P is called a fixed point of A if A(x∗, x∗) = x∗.

Definition 2.5. An operator A : P → P is said to be sub-homogeneous if it
satisfies

A(tx) � tAx, ∀t ∈ (0, 1), x ∈ P.

Recently, Zhai and Hao [14] established the following fixed point result.
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Lemma 2.6 ([14]). Let β ∈ (0, 1). Let A : P × P → P be a mixed monotone
operator that satisfies

A(tx, t−1y) � tβA(x, y), t ∈ (0, 1), x, y ∈ P. (2.1)

Let B : P → P be an increasing sub-homogeneous operator. Assume that
(i) there is h0 ∈ Ph such that A(h0, h0) ∈ Ph and Bh0 ∈ Ph;
(ii) there exists a constant δ0 > 0 such that A(x, y) � δ0Bx, for all x, y ∈ P .

Then
(I) A : Ph × Ph → Ph, B : Ph → Ph;

(II) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 � u0 ≺ v0, u0 � A(u0, v0) +Bu0 � A(v0, u0) +Bv0 � v0;

(III) there exists a unique x∗ ∈ Ph such that x∗ = A(x∗, x∗) +Bx∗;
(IV) for any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = A(xn−1, yn−1) +Bxn−1, yn = A(yn−1, xn−1) +Byn−1, n = 1, 2, . . .

we have xn → x∗ and yn → x∗ as n→∞.

Let (X,�) be a partially ordered set endowed with a metric d and F : X×X → X
be a given mapping.

Definition 2.7. We say that (X,�) is directed if for every (x, y) ∈ X2, there exist
(z, w) ∈ X2 such that x � z, y � z and x � w, y � w.

Definition 2.8. We say that (X,�, d) is regular if the following conditions hold:
(C1) if {xn} is a nondecreasing sequence in X such that xn → x ∈ X, then

xn � x for all n;
(C2) if {yn} is a decreasing sequence in X such that yn → y ∈ X, then yn � y

for all n.

Example 2.9. Let X = C([0, T ]), T > 0, be the set of real continuous functions
on [0, T ]. We endow X with the standard metric d given by

d(u, v) = max
0≤t≤T

|u(t)− v(t)|, u, v ∈ X.

We define the partial order � on X by

u, v ∈ X, u � v ⇔ u(t) ≤ v(t) for all t ∈ [0, T ].

Let x, y ∈ X. For z = max{x, y}, that is, z(t) = max{x(t), y(t)} for all t ∈ [0, T ],
and w = min{x, y}, that is, w(t) = min{x(t), y(t)} for all t ∈ [0, T ], we have x � w
and y � w. This implies that (X,�) is directed. Now, let {xn} be a nondecreasing
sequence in X such that d(xn, x) → 0 as n → ∞, for some x ∈ X. Then, for all
t ∈ [0, T ], {xn(t)} is a nondecreasing sequence of real numbers converging to x(t).
Thus we have xn(t) ≤ x(t) for all n; that is, xn � x for all n. Similarly, if {yn} is
a decreasing sequence in X such that d(yn, y)→ 0 as n→∞, for some y ∈ X, we
get that yn � y for all n. Then we proved that (X,�, d) is regular.

Denote by Σ the set of functions ϕ : [0,+∞)→ [0,+∞) satisfying:
• ϕ is continuous;
• ϕ is nondecreasing;
• ϕ−1({0}) = {0}.
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Recently, Harjani, López and Sadarangani [9] established the following fixed
point theorem.

Lemma 2.10 (see [9]). Let (X,�) be a partially ordered set and suppose that
there exists a metric d on X such that (X, d) is a complete metric space. Let
F : X ×X → X be a mapping having the mixed monotone property on X such that

ψ(d(F (x, y), F (u, v))) ≤ ψ(max{d(x, u), d(y, v)})− ϕ(max{d(x, u), d(y, v)}) (2.2)

for all x, y, u, v ∈ X with x � u and y � v, where ψ,ϕ ∈ Σ. Suppose also that
(X,�, d) is regular, (X,�) is directed, and there exist x0, y0 ∈ X such that

x0 � F (x0, y0), y0 � F (y0, x0).

Then F has a unique fixed point x∗ ∈ X, that is, there is a unique x∗ ∈ X such
that x∗ = F (x∗, x∗). Moreover, if {xn} and {yn} are the sequences in X defined by

xn+1 = F (xn, yn), yn+1 = F (yn, xn), n = 0, 1, . . . ,

then
lim
n→∞

d(xn, x∗) = lim
n→∞

d(yn, x∗) = 0. (2.3)

Now, we are ready to state and prove our main results.

3. Main results

Let E = C([0, 1]) be the Banach space of continuous functions on [0, 1] with the
norm

‖y‖ = max{|y(t)| : t ∈ [0, 1]}. (3.1)
Let P ⊂ E be the cone defined by

P = {y ∈ C([0, 1]) | y(t) ≥ 0, t ∈ [0, 1]}.
Our first main result uses the following assumptions:

(H1) the functions f : [0, 1] × [0,+∞) × [0,+∞) → [0,+∞) and g : [0, 1] ×
[0,+∞)→ [0,+∞) are continuous with∫ 1

0

s2g(s, 0) ds > 0;

(H2) f(t, x, y) is increasing in x ∈ [0,+∞) for fixed t ∈ [0, 1] and y ∈ [0,+∞),
decreasing in y ∈ [0,+∞) for fixed t ∈ [0, 1] and x ∈ [0,+∞), and g(t, x) is
increasing in x ∈ [0,+∞) for fixed t ∈ [0, 1];

(H3) g(t, λx) ≥ λg(t, x) for all λ ∈ (0, 1), t ∈ [0, 1], x ∈ [0,+∞), and there
exists a constant β ∈ (0, 1) such that f(t, λx, λ−1y) ≥ λβf(t, x, y) for all
λ ∈ (0, 1), t ∈ [0, 1], x, y ∈ [0,+∞);

(H4) there exists a constant δ0 > 0 such that f(t, x, y) ≥ δ0g(t, x) for all t ∈ [0, 1],
x, y ∈ [0,+∞).

Theorem 3.1. Assumptions (H1)–(H4) hold. Then
(1) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 � u0 ≺ v0 and

u0(t) ≤
∫ 1

0

G(t, s)[f(s, u0(s), v0(s)) + g(s, u0(s))] ds+ ζΦ(t), t ∈ [0, 1],

v0(t) ≥
∫ 1

0

G(t, s)[f(s, v0(s), u0(s)) + g(s, v0(s))] ds+ ζΦ(t), t ∈ [0, 1],

where h(t) = t2, t ∈ [0, 1];
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(2) Problem (1.1) has a unique positive solution x∗ ∈ Ph;
(3) for any x0, y0 ∈ Ph, constructing successively the sequences

xn(t) =
∫ 1

0

G(t, s)[f(s, xn−1(s), yn−1(s)) + g(s, xn−1(s))] ds+ ζΦ(t),

yn(t) =
∫ 1

0

G(t, s)[f(s, yn−1(s), xn−1(s)) + g(s, yn−1(s))] ds+ ζΦ(t),

for n = 1, 2, . . . , we have ‖xn − x∗‖ → 0 and ‖yn − x∗‖ → 0 as n→∞.

Proof. Consider the operators A : P × P → E and B : P → E defined by

A(u, v)(t) =
∫ 1

0

G(t, s)f(s, u(s), v(s)) ds+ ζΦ(t),

(Bu)(t) =
∫ 1

0

G(t, s)g(s, u(s)) ds.

From Lemma 2.1, u is a solution to (1.1) if and only if A(u, u) + Bu = u. From
(H1), we show that A : P × P → P and B : P → P . Further, it follows from
(H2) that A is mixed monotone and B is increasing. On the other hand, for any
λ ∈ (0, 1), u, v ∈ P , we have from (H3) that

A(λu, λ−1v)(t) =
∫ 1

0

G(t, s)f(s, λu(s), λ−1v(s)) ds+ ζΦ(t)

≥ λβ
∫ 1

0

G(t, s)f(s, u(s), v(s)) ds+ ζΦ(t)

≥ λβ
(∫ 1

0

G(t, s)f(s, u(s), v(s)) ds+ ζΦ(t)
)

= λβA(u, v)(t).

Thus we have for all λ ∈ (0, 1), u, v ∈ P ,

A(λu, λ−1v) � λβA(u, v).

Then condition (2.1) of Lemma 2.6 is satisfied.
From (H3), it follows that for all λ ∈ (0, 1), u ∈ P ,

B(λu)(t) =
∫ 1

0

G(t, s)g(s, λu(s)) ds

≥ λ
∫ 1

0

G(t, s)g(s, u(s)) ds

= λBu(t).

Thus, for all λ ∈ (0, 1) and u ∈ P , we have

B(λu) � λBu.

Then B is a sub-homogeneous operator.
Next, we shall prove that A(h, h) ∈ Ph and Bh ∈ Ph. Using Lemma 2.2 and

(H2), for all t ∈ [0, 1], we have

A(h, h)(t) =
∫ 1

0

G(t, s)f(s, h(s), h(s)) ds+ ζΦ(t)
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≥
∫ 1

0

G(t, s)f(s, h(s), h(s)) ds

≥ t2

3

∫ 1

0

s2f(s, 0, 1) ds

=
(1

3

∫ 1

0

s2f(s, 0, 1) ds
)
h(t).

Again, using Lemma 2.2 and (H2), we have

A(h, h)(t) =
∫ 1

0

G(t, s)f(s, h(s), h(s)) ds+ ζΦ(t)

≤ t2

2

∫ 1

0

sf(s, 1, 0) ds+ ζ
t2

2

=
h(t)

2

(∫ 1

0

sf(s, 1, 0) ds+ ζ
)
.

Thus, for all t ∈ [0, 1], we have(1
3

∫ 1

0

s2f(s, 0, 1) ds
)
h(t) ≤ A(h, h)(t) ≤ 1

2

(∫ 1

0

sf(s, 1, 0) ds+ ζ
)
h(t).

On the other hand, from (H4) and (H1),we have∫ 1

0

s2f(s, 0, 1) ds ≥ δ0
∫ 1

0

s2g(s, 0) ds > 0.

Thus we proved that A(h, h) ∈ Ph. Similarly, for all t ∈ [0, 1], we have(1
3

∫ 1

0

s2g(s, 0) ds
)
h(t) ≤ Bh(t) ≤

(1
2

∫ 1

0

sg(s, 1) ds
)
h(t),

which implies that Bh ∈ Ph.
In the following we show the condition (ii) of Lemma 2.6 is satisfied. Let u, v ∈ P .

From (H4), we have

A(u, v)(t) =
∫ 1

0

G(t, s)f(s, u(s), v(s)) ds+ ζΦ(t)

≥
∫ 1

0

G(t, s)f(s, u(s), v(s)) ds

≥ δ0
∫ 1

0

G(t, s)g(s, u(s)) ds

= δ0Bu(t).

Hence, for all u, v ∈ P , we have A(u, v) � δ0Bu. So the conclusion of Theorem 3.1
follows from Lemma 2.6. �

Example 3.2. Consider the fourth-order two-point boundary-value problem

u(4)(t) = 2
(
t2 +

√
u(t)

)
+

1√
u(t) + 1

, 0 < t < 1,

u(0) = u′(0) = 0,

u′′(1) = 0, u(3)(1) = −ζ,

(3.2)
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where ζ > 0. Consider the functions f : [0, 1]× [0,+∞)× [0,+∞) → [0,+∞) and
g : [0, 1]× [0,+∞)→ [0,+∞) defined by

f(t, x, y) = t2 +
√
x+

1√
y + 1

, g(t, x) =
√
x+ t2,

for all t ∈ [0, 1], x, y ∈ [0,+∞). Then (3.2) is equivalent to

u(4)(t) = f(t, u(t), u(t)) + g(t, u(t)), 0 < t < 1,

u(0) = u′(0) = 0,

u′′(1) = 0, u(3)(1) = −ζ.

Clearly, f : [0, 1]× [0,+∞)× [0,+∞)→ [0,+∞) and g : [0, 1]× [0,+∞)→ [0,+∞)
are continuous functions. Moreover, we have∫ 1

0

s2g(s, 0) ds =
∫ 1

0

s4 ds =
1
5
> 0.

Condition (H1) of Theorem 3.1 is satisfied, and Condition (H2) can be checked
immediately. Now, let λ ∈ (0, 1), t ∈ [0, 1] and x ≥ 0. We have

g(t, λx) =
√
λx+ t2 =

√
λ
√
x+ t2 ≥ λ(

√
x+ t2) = λg(t, x).

Let λ ∈ (0, 1), t ∈ [0, 1] and x, y ≥ 0. We have

f(t, λx, λ−1y) = t2 +
√
λx+

1√
λ−1y + 1

= t2 +
√
λx+

√
λ√

y + λ

≥
√
λ
(
t2 +

√
x+

1√
y + 1

)
= λ1/2f(t, x, y).

Then condition (H3) of Theorem 3.1 is satisfied with β = 1/2. Let t ∈ [0, 1] and
x, y ∈ [0,+∞). We have

f(t, x, y) = t2 +
√
x+

1√
y + 1

≥ t2 +
√
x = 1 · g(t, x).

Then condition (H4) is also satisfied with δ0 = 1.
Finally, it follows from Theorem 3.1 that Problem (3.2) has a unique positive

solution x∗ ∈ Ph, where h(t) = t2, t ∈ [0, 1].

Our second main result uses the following assumptions: is the following.
(H5) the functions f : [0, 1] × [0,+∞) × [0,+∞) → [0,+∞) and g : [0, 1] ×

[0,+∞)→ [0,+∞) are continuous;
(H6) there exist two positive constants kf and kg with kf + kg ∈ (0, 4) such that

for all x ≥ u, y ≤ v, t ∈ [0, 1],

0 ≤ f(t, x, y)− f(t, u, v) ≤ kf max{x− u, v − y}, (3.3)

0 ≤ g(t, x)− g(t, u) ≤ kg(x− u); (3.4)

(H7) there exist x0, y0 ∈ P such that

x0(t) ≤
∫ 1

0

G(t, s)[f(s, x0(s), y0(s)) + g(s, x0(s))] ds+ ζΦ(t), t ∈ [0, 1],
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y0(t) ≥
∫ 1

0

G(t, s)[f(s, y0(s), x0(s)) + g(s, y0(s))] ds+ ζΦ(t), t ∈ [0, 1].

Theorem 3.3. Assume (H5)–(H7) ar satisfied. Then
(1) Problem (1.1) has a unique positive solution x∗ ∈ P ;
(2) the sequences {xn} and {yn} defined by

xn(t) =
∫ 1

0

G(t, s)[f(s, xn−1(s), yn−1(s)) + g(s, xn−1(s))] ds+ ζΦ(t),

yn(t) =
∫ 1

0

G(t, s)[f(s, yn−1(s), xn−1(s)) + g(s, yn−1(s))] ds+ ζΦ(t),

for n = 1, 2, . . ., converge uniformly to x∗.

Proof. Define the mapping F : P × P → P by

F (u, v)(t) =
∫ 1

0

G(t, s)[f(s, u(s), v(s)) + g(s, u(s))] ds+ ζΦ(t).

Clearly, from (H5), the mapping F is well defined. We endow P with the metric

d(u, v) = ‖u− v‖, (u, v) ∈ P × P,
where ‖ · ‖ is given by (3.1). We consider the partial order � on P given by

u, v ∈ P, u � v ⇐⇒ v − u ∈ P.
In Example 2.9, we proved that (P,�) is directed and (P,�, d) is regular.

From (H6), we show easily that the mapping F has the mixed monotone property
(with respect to �).

Now, let (x, y), (u, v) ∈ P ×P such that x � u and y � v. Again, from (H6), for
all t ∈ [0, 1], we have

|F (x, y)(t)− F (u, v)(t)|

=
∫ 1

0

G(t, s)[(f(s, x(s), y(s))− f(s, u(s), v(s))) + (g(s, x(s))− g(s, u(s)))] ds

≤
∫ 1

0

G(t, s)(kf + kg) max{x(s)− u(s), v(s)− y(s)} ds

≤ (kf + kg) max{d(x, u), d(y, v)}
∫ 1

0

G(t, s) ds

≤ kf + kg
4

max{d(x, u), d(y, v)}.

The above inequality follows from Lemma 2.2. Thus, for all (x, y), (u, v) ∈ P × P
such that x � u and y � v, we have

d(F (x, y), F (u, v)) ≤ kf + kg
4

max{d(x, u), d(y, v)}.

Taking ψ(r) = r and ϕ(r) =
(
1 − kf +kg

4

)
r for all r ≥ 0, since kf + kg ∈ (0, 4), we

have ψ,ϕ ∈ Σ. Moreover, from the above inequality, we have

ψ(d(F (x, y), F (u, v))) ≤ ψ(max{d(x, u), d(y, v)})− ϕ(max{d(x, u), d(y, v)}),
for all x � u and y � v.

On the other hand, from (H7), we have x0 � F (x0, y0) and y0 � F (y0, x0). Now,
the desired result follows immediately from Lemma 2.10. �
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We end this article we the following example.

Example 3.4. Consider the fourth-order two-point boundary-value problem

u(4)(t) = u(t) +
1

u(t) + 1
+ q(t), 0 < t < 1,

u(0) = u′(0) = 0,

u′′(1) = 0, u(3)(1) = −ζ,

(3.5)

where ζ > 0 and q : [0, 1] → [0,+∞) is a continuous function. Consider the
functions f : [0, 1]×[0,+∞)×[0,+∞)→ [0,+∞) and g : [0, 1]×[0,+∞)→ [0,+∞)
defined by

f(t, x, y) = x+
1

y + 1
+ q(t), g(t, x) = 0,

for all t ∈ [0, 1], x, y ∈ [0,+∞). Then (3.5) is equivalent to

u(4)(t) = f(t, u(t), u(t)) + g(t, u(t)), 0 < t < 1,

u(0) = u′(0) = 0,

u′′(1) = 0, u(3)(1) = −ζ.

Clearly, f is a continuous function. Let t ∈ [0, 1], x, y, u, v ∈ [0,+∞) such that
x ≥ u and y ≤ v. We have

0 ≤ f(t, x, y)− f(t, u, v) = (x− u) +
v − y

(y + 1)(v + 1)
≤ (x− u) + (v − y) ≤ 2 max{x− u, v − y}.

Then condition (H6) is satisfied with kf = 2 and kg = 0. Now, we shall prove that
condition (H7) is satisfied with

x0 ≡ 0, y0 ≡ ζ + 1 +
∫ 1

0

q(s) ds.

Clearly, we have

x0(t) = 0 ≤
∫ 1

0

G(t, s)f(s, 0, y0(s)) ds+ ζΦ(t), for all t ∈ [0, 1].

Now, using Lemma 2.2, for all t ∈ [0, 1], we have∫ 1

0

G(t, s)f(s, y0(s), 0) ds+ ζΦ(t) ≤ 1
2

(∫ 1

0

sf(s, y0(s), 0) ds+ ζ
)

≤ 1
2

(∫ 1

0

f(s, y0(s), 0) ds+ ζ
)

=
1
2

(∫ 1

0

(y0 + 1 + q(s)) ds+ ζ
)

=
y0 + 1

2
+

1
2

(∫ 1

0

q(s) ds+ ζ
)

= y0.

Thus, for all t ∈ [0, 1], we have

y0(t) ≥
∫ 1

0

G(t, s)f(s, y0(s), 0) ds+ ζΦ(t).
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Finally, all the hypotheses of Theorem 3.3 are satisfied. Then, we deduce that
Problem (3.5) has a unique positive solution.
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