
Electronic Journal of Differential Equations, Vol. 2013 (2013), No. 166, pp. 1–7.

ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu

ftp ejde.math.txstate.edu

EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR
SEMILINEAR DIFFERENTIAL EQUATIONS WITH

SUBQUADRATIC POTENTIALS

CHENGYUE LI, MENGMENG WANG, ZHIWEI XIAO

Abstract. Existence and multiplicity of nontrivial solutions of a class of semi-

linear differential equations with subquadratic potentials are studied using
Clark’s theorem. As an application of the above results, periodic solutions for

a second Hamiltonian systems are studied.

1. Introduction

In physical, chemical and biological sciences, many models can be set as equation
of the form

Lu = Vu(t, u), t ∈ R, (1.1)

where L is a linear differential operator which is self-adjoint and positive in some
suitable space, and the potential V (t, q) : R × Rn → R is a C1-function, with
Vu(t, q) = ∂V

∂u ; see for example the references in this article. If V satisfies

lim
u→∞

V (t, u)/|u|
2
6 c <∞,

then we say that (1.1) is subquadratic. If lim|u|→∞ V (u)/|u|2 =∞, then (1.1) is su-
perquadratic. Our main goal is to find periodic solutions of (1.1) with subquadratic
potentials by variational methods; that is, periodic solutions of (1.1) are critical
points of the corresponding functional in an appropriate Hilbert space (X, ‖ · ‖),
given by

ϕT (u) =
1
2
‖u‖2 − J(u), u ∈ X, (1.2)

where 〈Lu, u〉 = 1
2‖u‖

2, 〈, 〉 denotes the inner product of X. Under some assump-
tions, we have an abstract result as follows.

Theorem 1.1. Let (X, ‖ · ‖) ⊂ L2 ≡ L2([0, T ],Rn) be a Hilbert space such that

‖u‖L2(0,T ) 6
(T
π

)k‖u‖, ∀u ∈ X (1.3)
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for some k ∈ N, and {ej(t)}∞j=1 be an orthogonal sequence in X and L2 such that
|ej(t)| 6 1, for all j > 1, t ∈ [0, T ] and

‖ej(t)‖2L2(0,T ) > µ, ‖ej(t))‖
2
6 µ(

jπ

T
)2k, ∀j > 1 (1.4)

for some µ > 0, the functional ϕT (u) in (1) is defined in X such that J(u) ∈
C1(X,R), J(0) = 0 and J ′(u) is completely continuous. Furthermore, we assume
that J(u) satisfies:

(J1) J(u) = J(−u) for all u ∈ X,
(J2) there exist m > 0 and b > 0 such that for all u ∈ X, T < π/ 2k

√
m, and

J(u) 6 b+ 1
2m‖u‖

2
L2(0,T ),

(J3) there exist p ∈ N and M > 0, ρ > 0such that T > pπ/ 2k
√
M , M > mp2k,

and

J(u) >
1
2
M‖u‖2L2(0,T ), ∀u ∈ X with ‖u‖L∞(0,T ) 6 ρ

√
p.

Then, for each T ∈ (pπ/ 2k
√
M,π/ 2k

√
m), there exist at least p distinct critical point

pairs (ui,−ui) of ϕT (u) such that ϕT (ui) < 0(1 6 i 6 p).

In section 2, we will give the proof of Theorem 1.1. For this, we recall a com-
pactness condition introduced by Palais and Smale.

Palais-Smale condition. Let X be a Banach space and ϕ ∈ C1(X,R) is said to
satisfy Palais-Smale condition if any sequence {uj} ⊂ X such that ϕ(uj) is bounded
and ϕ′(uj)→ 0 possesses a convergent subsequence.

We also need the following theorem.

Theorem 1.2 (Clark Theorem [2]). Let Xbe a Banach space and ϕ ∈ C1(X,R)
be even satisfying the Palais-Smale condition. Suppose that (i) ϕ is bounded from
below; (ii) there exist a closed, symmetric set K ⊂ X and p ∈ N such that K is
homeomorphism to Sp−1 by an odd map, and sup{ϕ(x) : x ∈ K} < ϕ(0). Then ϕ
possesses at least pdistinct pairs (u,−u) of critical point with corresponding critical
values less than ϕ(0).

In section 3, we will apply Theorem 1.1 to Hamiltonian systems and fourth-
order differential equations with bi-even subquadratic potentials. First, we consider
second order Hamiltonian systems

ü(t) + Vu(t, u(t)) = 0, t ∈ R (1.5)

where V (t, u) ∈ C1(R×Rn,R) is a T -periodic function in the variable t,V (t, 0) ≡ 0.
The existence of periodic solutions is one of the most important problems in the
theory of Hamiltonian systems. In the past thirty years, many authors studied pe-
riodic solutions for Hamiltonian systems via the critical point theory. Here we only
mention some results for subquadratic Hamiltonian systems. Clarke and Ekeland [3]
studied a family of convex subquadratic Hamiltonian systems where V (t, u) = V (u)
satisfies lim|u|→∞ V (u)/|u|2 = 0, lim|u|→0 V (u)/|u|2 = ∞, and they used the dual
variational method to obtain the first variational result on periodic solutions hav-
ing a prescribed minimal period. Later, Mawhin and Willem [6] made an improve-
ment, they supposed that V (u) is convex, also satisfies lim|u|→∞ V (u)/|u|2 = 0,
lim|u|→0 V (u)/|u|2 =∞, and proved that there is a T0 > 0 such that for all T > T0,
(1.5) has a periodic solution with minimal period T . Rabinowitz [7, 8], Tang [10]
and others proved the existence, where authors used the subquadratic condition:
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uVu(t, u) 6 αV (t, u)(0 < α < 2), which plays an important role. Schechter [9]
assumed that V (t, u) is subquadratic, and 2V (t, u)− uVu(t, u)→ −∞(|u| → ∞) or
2V (t, u) − uVu(t, u) 6 W (t), then he proved that (1.5) has one non-constant pe-
riodic solution. Long [5] studied this problem for bi-even subquadratic potentials,
and get the existence of one odd T -periodic solution. Inspired by the above papers,
using Theorem 1.1, we give a multiplicity result for (1.5) as follows.

Theorem 1.3. Let V (t, u) ∈ C1(R× Rn,R) be τ -periodic in t and satisfy
(V1) V (t, u) = V (t,−u) = V (−t,−u), for all t ∈ R, u ∈ Rn;
(V2) there exist m > 0, b > 0 such that τ < 2π/

√
m and V (t, u) 6 b + 1

2m|u|
2,

for all t ∈ R, u ∈ Rn;
(V3) there exist p ∈ N and constants M > 0, ρ > 0 such that τ > 2pπ/

√
M ,

M > mp2 and

V (t, u) >
1
2
M |u|2, ∀t ∈ R, |u| 6 ρ√p.

Then, for τ ∈ (2pπ/
√
M, 2π/

√
m),(1.5) has p distinct pairs (u(t),−u(t)) of non-

trivial odd τ -periodic solutions.

Remark 1.4. If V (t, u) = a(t)W (u), a(t) and W (u) are even, then (V1) holds.

Note that our method and results in this article are different from the earlier
ones in [5, 6, 7, 8, 9, 10] and references therein.

As the second application, in the study of formation of spatial patterns in bistable
systems, we consider a fourth-order differential equation [1, 4, 11],

u(4)(t)− Vu(t, u(t)) = 0, 0 6 t 6 T (1.6)

with the boundary condition u(0) = u(T ) = u′′(0) = u′′(T ) = 0. For (1.6), we also
have a result similar to Theorem 1.3.

Theorem 1.5. Let V (t, u) ∈ C1(R× R,R) satisfy
(V4) V (t, u) = V (t,−u), for all t ∈ R, u ∈ R;
(V5) there exist m > 0, b > 0 such that T < π/ 4

√
m and V (t, u) 6 b + 1

2m|u|
2,

for all t ∈ R, u ∈ R;
(V6) there exist p ∈ N and constants M > 0, ρ > 0 such that T > pπ/ 4

√
M ,M >

mp4 and

V (t, u) >
1
2
M |u|2, ∀t ∈ R, |u| 6 ρ√p.

Then, for each T ∈ (pπ/ 4
√
M,π/ 4

√
m), (1.6) has at least p distinct pairs (u(t),−u(t))

of solutions.

To the best of our knowledge, only a few multiplicity results for fourth-differential
equations, similar to Theorem 1.5, have been reported in the literature.

2. Proof of Theorem 1.1

Lemma 2.1. Under the hypotheses of Theorem 1.1, the functional ϕT (u) is coercive
in X, and bounded from below.

Proof. The condition (J2) implies the estimate

ϕT (u) >
1
2
‖u‖2 − 1

2
m‖u‖2L2(0,T ) − b, (2.1)



4 C. LI, M. WANG, Z. XIAO EJDE-2013/166

which combined with the inequality (1.3) yields

ϕT (u) >
1
2
[
1−m(

T

π
)2k
]
‖u‖2 − b =

1
2
B‖u‖2 − b > −b, (2.2)

with B = 1 −m(Tπ )2k > 0. Thus, we conclude that ϕT (u) is coercive in X, and
bounded from below. �

Lemma 2.2. Under the hypotheses of Theorem 1.1, the functional ϕT (u) satisfies
Palais-Smale condition in X.

Proof. Let {uj} ⊂ X be such that ϕT (uj) is bounded and ϕT
′(uj) → 0(j → ∞).

Then by Lemma 2.1,

‖uj‖2 6
2
B

(ϕT (uj) + b) (2.3)

which implies that {uj} is bounded, so we may assume, by passing to a subsequence
if necessary, that

uj ⇀ u weakly in X. (2.4)

As we know
ϕT
′(uj)u = 〈uj , u〉 − J ′(uj)u (2.5)

letting j →∞, by the completely continuousness of J ′, we have

0 = ‖u‖2 − J ′(u)u . (2.6)

Since |ϕT ′(uj)uj | 6 ‖ϕT ′(uj)‖‖uj‖ → 0, using (2.6), we obtain

‖uj‖2 = ϕT
′(uj)uj + J ′(uj)uj → J ′(u)u = ‖u‖2 (2.7)

Thus, we conclude that uj → u in X. The proof is complete. �

Proof of Theorem 1.1. For p ∈ N and ρ > 0 defined in (J3), let the subset K of X
as follows

K = {λ1e1(t) + λ2e2(t) + · · ·+ λpep(t) : λ1, λ2, . . . , λp ∈ R,
p∑
k=1

λ2
k = ρ2} (2.8)

We know the map

λ1e1(t) + λ2e2(t) + · · ·+ λpep(t)→ (−λ1

ρ
,−λ2

ρ
, . . . ,−λp

ρ
) (2.9)

is an odd homeomorphism from K to Sp−1. For all u(t) = λ1e1(t) +λ2e2(t) + · · ·+
λpep(t) ∈ K, we have the estimate

|u(t)|2 6 (λ2
1 + λ2

2 + · · ·+ λ2
p)(|e1(t)|2 + |e2(t)|2 + · · ·+ |ep(t)|2) 6 pρ2. (2.10)

Combining (2.10) and (J3) with (1.4) shows that

ϕT (u) 6
1
2
‖u‖2 − 1

2
M‖u‖2L2(0,T )

=
1
2

p∑
j=1

λ2
j‖ej(t)‖2 −

1
2
M

p∑
j=1

λ2
j‖ej(t)‖2L2(0,T )

6
µ

2

p∑
j=1

λ2
j [(
jπ

T
)2k −M ].

(2.11)
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Since T > pπ/ 2k
√
M , we have 0 < jπ

T < 2k
√
M , for 1 6 j 6 p. Therefore, we obtain

ϕT (u) 6
µ

2
ρ2((

pπ

T
)2k −M) < 0, ∀u ∈ K (2.12)

which implies sup{ϕT (u) : u ∈ K} < 0 = ϕT (0). Thus, Lemma 2.1, Lemma 2.2
and Clark Theorem imply that ϕT (u) possesses at least p distinct pairs (ui,−ui)
of critical points such that ϕT (ui) < 0 clearly ui 6= 0(1 6 i 6 p). �

Corollary 2.3. In Theorem 1.1, for any T > 0, if conditions (J2)-(J3) are replaced
by

(J2’) lim|u|→∞ V (t, u)/|u|2 = 0 uniformly in t ∈ R,
(J3’) lim|u|→0 V (t, u)/|u|2 =∞ uniformly in t ∈ R,

then the functional ϕT (u) has infinitely many distinct pairs (−u, u) of critical
points.

Proof. For any fixed p ∈ N, by (J2’) and (J3’), we may take m sufficiently small
and M large enough such that

0 < m < (
π

T
)2k, M > (

pπ

T
)2k, M > mp2k, (2.13)

thus (J2)-(J3) are all satisfied, and T ∈ (pπ/ 2k
√
M,π/ 2k

√
m). By Theorem 1.1, the

functional ϕT (u) has at least p distinct pairs (u,−u) of critical points. Since p
is arbitrary, there exist infinitely many distinct pairs (u,−u) of critical points of
ϕT (u). �

3. Applications of Theorem 1.1

The first application is for to Hamiltonian systems. To prove Theorem 1.3, we
study the related boundary value problem

ü(t) + Vu(t, u(t)) = 0, 0 < x < T,

u(0) = u(T ) = 0,
(3.1)

with T = τ/2. For a solution u(t) of (3.1), we define

ū(t) =

{
u(t) 0 6 t 6 T,
−u(−t) −T 6 t 6 0.

(3.2)

For any t ∈ [−T, 0], by (V1), we see that

(ū)′′(t) + Vu(t, ū(t)) = −ü(−t) + Vu(t,−u(−t))
= −[ü(−t)− Vu(t,−u(−t))]
= −[ü(−t) + Vu(t,−u(−t))] = 0.

Hence, ū = ū(t) is a solution of (1.5) over [−T, T ],and its 2T -periodic extension
over R, still denoted by ū = ū(t), is an odd τ -periodic solution of (1.5) with
τ = 2T . Let X = H1

0 ([0, T ]; Rn) be a Hilbert space with the inner product (u, ω) =∫ T
0

[u̇(t)ω̇(t) + u(t)ω(t)]dt and the corresponding norm

‖u‖∆ = (u, u)1/2 = (
∫ T

0

[|u̇(t)|2 + |u(t)|2]dt)1/2.
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The Pointcare inequality
∫ T

0
|u(t)|2dt 6 (Tπ )2

∫ T
0
|u̇(t)|2dt implies that

‖u‖ = (
∫ T

0

|u̇(t)|2dt)1/2

is also a norm in X, and is equivalent to ‖u‖∆. Now we define the functional ϕT (u)
on X:

ϕT (u) =
1
2

∫ T

0

|u̇(t)|2dx−
∫ T

0

V (t, u(t))dt ≡ 1
2
‖u‖2 − J(u) (3.3)

From V (t, u) ∈ C1(R×Rn), we know that ϕT ∈ C1(X,R), and J ′(u) is completely
continuous.

Proof of Theorem 1.3. Under the assumptions of Theorem 1.3, {sin jπt
T e}∞j=1 is an

orthogonal sequence with e = (1, 0, 0, . . . , 0) ∈ Rn in both X and L2 such that
‖ sin jπt

T e‖2L2(0,T ) = T
2 , ‖sin jπtT e‖2 = T

2 ( jπT )2, for all j > 1, the functional (3.3)
satisfies (J1)− (J3) of Theorem 1.1. Thus, ϕT (u) possesses at least p distinct pairs
(ui,−ui) of critical points such that ϕT (ui) < 0 with ui 6= 0(1 6 i 6 p). Since
X ∩ Rn = 0,we conclude that ui 6= any constant (1 6 i 6 p). Thus, in the way of
(3.2), the extensions of ±ui(t) (1 6 i 6 p) are p distinct pairs of nontrivial odd τ−
periodic solutions of (1.5). �

Remark 3.1 ([5]). For α ∈ (0, 1/2), we can choose a function h ∈ C1([0,∞),R)
such that

r1+2α 6 h(r) 6 r1+α for 0 6 r 6 1,

−r4 6 h(r) 6
1
8
r2 for r > 2.

Define V (t, u) = (1 + 1
2 cos t)h(|u|) then for τ = 2π, for all p > 1, (V1)-(V3)

are satisfied. Thus, by Theorem 1.3, (1.5) has infinitely many nontrivial pairs
(u(t),−u(t)) of odd 2π-periodic solutions.

Finally, since the proof of Theorem 1.5, is similar to that of Theorem 2, so we
briefly sketch it.

Proof of Theorem 1.5. Set

X = H2(0, T ) ∩H1
0 (0, T ) (3.4)

and the functional

ϕT (u) =
1
2

∫ T

0

|ü(t)|2dx−
∫ T

0

V (t, u(t))dt, u ∈ X. (3.5)

Then the critical points of ϕT in (3.5) are the classical solutions of the problem
(1.6). By [4, Lemma 2.1],

‖u‖ = (
∫ T

0

|ü(t)|2dt)1/2

is a norm in X, ‖u‖L2(0,T ) 6 (Tπ )2‖u‖, and the set of functions {sin jπt
T }
∞
j=1 is an

orthogonal sequence in both X and L2 such that

‖ sin
jπt

T
‖2L2(0,T ) =

T

2
, ‖ sin

jπt

T
‖2 =

T

2
(
jπ

T
)4, ∀j > 1.

Therefore, by Theorem 1.1, the proof is complete. �
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