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EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR
SEMILINEAR DIFFERENTIAL EQUATIONS WITH
SUBQUADRATIC POTENTIALS

CHENGYUE LI, MENGMENG WANG, ZHIWEI XIAO

ABSTRACT. Existence and multiplicity of nontrivial solutions of a class of semi-
linear differential equations with subquadratic potentials are studied using
Clark’s theorem. As an application of the above results, periodic solutions for
a second Hamiltonian systems are studied.

1. INTRODUCTION

In physical, chemical and biological sciences, many models can be set as equation
of the form

Lu=V,(t,u), teR, (1.1)

where L is a linear differential operator which is self-adjoint and positive in some
suitable space, and the potential V(t,q) : R x R® — R is a C'-function, with
v .

Vu(t,q) = 5 see for example the references in this article. If V' satisfies

lim V(t,u)/\u|2 < ¢ < oo,
U—00

then we say that is subquadratic. If lim, o V(u)/|u|? = oo, then is su-
perquadratic. Our main goal is to find periodic solutions of with subquadratic
potentials by variational methods; that is, periodic solutions of are critical
points of the corresponding functional in an appropriate Hilbert space (X, || - I|),
given by

pr(u) = gl ~ J(w), weX, (12)

where (Lu,u) = ||u]|?, (,) denotes the inner product of X. Under some assump-
tions, we have an abstract result as follows.

Theorem 1.1. Let (X, | -||) € L? = L*([0, T],R™) be a Hilbert space such that

T,k
[wllz2(0,m) < (;) full, VueX (1.3)
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for some k € N, and {e;(t)}32, be an orthogonal sequence in X and L? such that
le;(t)] <1, for all j > 1, ¢t €[0,7T] and

2 jﬂ' .
le;(Oliz00) = 12 lles I < p(Z5)*, Wi >1 (1.4)

for some p > 0, the functional ¢r(u) in (1) is defined in X such that J(u) €
CYHX,R), J(0) = 0 and J'(u) is completely continuous. Furthermore, we assume
that J(u) satisfies:
(J1) J(u) = J(—u) for all u € X,
(J2) there exist m > 0 and b > 0 such that for all w € X, T' < 7/ %/m, and
J() < b+ mllula gz
(J3) there exist p € N and M > 0, p > Osuch that T > pr/ ¥/ M, M > mp**,
and

1 .
J(u) > §M||u||2L2(O,T)7 Vu € X with [Jul| e 0,7) < pv/P-

Then, for each T € (prr/ %/ M, n/ %/m), there exist at least p distinct critical point
pairs (u;, —u;) of pr(u) such that o7 (u;) < 0(1 <@ < p).

In section 2, we will give the proof of Theorem [1.1] For this, we recall a com-
pactness condition introduced by Palais and Smale.

Palais-Smale condition. Let X be a Banach space and ¢ € C!(X,R) is said to
satisfy Palais-Smale condition if any sequence {u;} C X such that ¢(u;) is bounded
and ¢'(uj) — 0 possesses a convergent subsequence.

We also need the following theorem.

Theorem 1.2 (Clark Theorem [2]). Let Xbe a Banach space and ¢ € C'(X,R)
be even satisfying the Palais-Smale condition. Suppose that (i) ¢ is bounded from
below; (ii) there exist a closed, symmetric set K C X and p € N such that K is
homeomorphism to SP~1 by an odd map, and sup{¢(z) : z € K} < ¢(0). Then ¢
possesses at least pdistinct pairs (u, —u) of critical point with corresponding critical
values less than ©(0).

In section 3, we will apply Theorem to Hamiltonian systems and fourth-
order differential equations with bi-even subquadratic potentials. First, we consider
second order Hamiltonian systems

i(t) + Va(tu(t) =0, teR (1.5)

where V(¢,u) € C}(R x R",R) is a T-periodic function in the variable ¢,V (¢,0) = 0.
The existence of periodic solutions is one of the most important problems in the
theory of Hamiltonian systems. In the past thirty years, many authors studied pe-
riodic solutions for Hamiltonian systems via the critical point theory. Here we only
mention some results for subquadratic Hamiltonian systems. Clarke and Ekeland [3]
studied a family of convex subquadratic Hamiltonian systems where V (¢t,u) = V (u)
satisfies lim|, o0 V(1) /|u* = 0, limjy—o V(u)/|u* = oo, and they used the dual
variational method to obtain the first variational result on periodic solutions hav-
ing a prescribed minimal period. Later, Mawhin and Willem [6] made an improve-
ment, they supposed that V(u) is convex, also satisfies lim,|— oo V(u)/|ul? = 0,
limy,|—o V(u)/|ul* = oo, and proved that there is a Ty > 0 such that for all ' > Tj,
(1.5) has a periodic solution with minimal period T. Rabinowitz [7| [§], Tang [10]
and others proved the existence, where authors used the subquadratic condition:
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uVy(t,u) < aV(t,u)(0 < a < 2), which plays an important role. Schechter [9]
assumed that V (¢, ) is subquadratic, and 2V (¢, u) — uV,,(¢,u) — —oo(Ju| — o) or
2V (t,u) — uVy(t,u) < W(t), then he proved that has one non-constant pe-
riodic solution. Long [5] studied this problem for bi-even subquadratic potentials,
and get the existence of one odd T-periodic solution. Inspired by the above papers,
using Theorem [I.1] we give a multiplicity result for as follows.

Theorem 1.3. Let V(t,u) € C}(R x R®,R) be T-periodic in t and satisfy
(V1) V(t,u) =V (t,—u) = V(—t,—u), for allt € R, v € R™;
(V2) there exist m > 0,b > 0 such that T < 2r/\/m and V(t,u) < b+ smlul?,
forallt e R, u e R™;
(V3) there exist p € N and constants M > 0,p > 0 such that 7 > 2pr/vV/M,
M > mp? and

1
Vt,u) > §M|u\2, vVt e R, |u] < py/p.

Then, for 7 € (2pm/vVM,27//m),(1.5)) has p distinct pairs (u(t), —u(t)) of non-

trivial odd T-periodic solutions.
Remark 1.4. If V(¢t,u) = a(t)W(u), a(t) and W (u) are even, then (V1) holds.

Note that our method and results in this article are different from the earlier
ones in [B] 6] [7, 8, @, [10] and references therein.
As the second application, in the study of formation of spatial patterns in bistable
systems, we consider a fourth-order differential equation [Il, 4 [T1],
u®(t) = Vy(t,ut) =0, 0<t<T (1.6)
with the boundary condition u(0) = u(T) = v”(0) = «”(T") = 0. For (1.6]), we also
have a result similar to Theorem L3
Theorem 1.5. Let V(t,u) € C*(R x R,R) satisfy
(V4) V(t,u) =V (t,—u), for allt € R,u € R;
(V5) there exist m > 0,b > 0 such that T < w/¢/m and V(t,u) < b+ tmlul?,
forallt e Ryu € R;
(V6) there exist p € N and constants M > 0,p > 0 such that T > pr/~/M,M >
4
mp* and

Vt,u) > %MMQ, vVt € R, |u| < py/p.
Then, for each T € (pr/~/M,m//m), (1.6)) has at least p distinct pairs (u(t), —u(t))

of solutions.

To the best of our knowledge, only a few multiplicity results for fourth-differential
equations, similar to Theorem have been reported in the literature.

2. PROOF OF THEOREM [L.1]

Lemma 2.1. Under the hypotheses of Theorem the functional pr(u) is coercive
i X, and bounded from below.

Proof. The condition (J2) implies the estimate

1 1
o) > 3l = Smlluls ) — b (21)
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which combined with the inequality (1.3]) yields

1 T 1
er(u) > 5[1 - m(;)%] [ull® b= QBHUH2 —b= -0, (2.2)
with B = 1 —m(%£)?* > 0. Thus, we conclude that o7 (u) is coercive in X, and
bounded from below. O

Lemma 2.2. Under the hypotheses of Theorem the functional pr(u) satisfies
Palais-Smale condition in X.

Proof. Let {u;} C X be such that ¢r(u;) is bounded and p7'(u;) — 0(j — o).
Then by Lemma

2
< 2 (pr(us) +) (23)
which implies that {u;} is bounded, so we may assume, by passing to a subsequence
if necessary, that

o511

u; = u weakly in X. (2.4)
As we know
o1’ (uj)u = (uj,u) — J'(uj)u (2.5)
letting 7 — oo, by the completely continuousness of J’, we have
0= |lul|®* = J (u)u. (2.6)
Since |o7' (u;)u;] < [lor’ (ug)]l||uj]| — 0, using (2.6), we obtain
lusll* = oz’ (ug)us + ' (uj)u; — J'(wyu = |[ul® (2.7)
Thus, we conclude that u; — u in X. The proof is complete. ([l

Proof of Theorem[1.1 For p € N and p > 0 defined in (J3), let the subset K of X
as follows

p
K= {/\161(t) + )\262(75) + -+ )\pep(t) AL Aoy, /\p € R, Z )\i = p2} (28)
We know the map
/\161(t) + )\geg(t) + -+ )\pep(t) — (_7, —_ ., _7) (29)

is an odd homeomorphism from K to SP~1. For all u(t) = Aje1(t) + Xaea(t) +- -+
Apep(t) € K, we have the estimate

@ < AT+ 23+ + A)(ler () + ez (B + - + e (1)) <pp®. (2.10)

Combining (2.10) and (J3) with (1.4) shows that

1 1
pr(u) < glull® = 5MulZ20,r)

Il
N
M“

||6J H2 - 7MZ)\2 |e] ||L2(O T) (211)

<.
Il
—

A?[(%)”@ — M).

N
bl =
=

<
I
—
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Since T > prr/ X/M, we have 0 < &= < /M, for 1 < j < p. Therefore, we obtain

er(w) < 5o ((E0)*

which implies sup{pr(u) : v € K} < 0 = ¢p(0). Thus, Lemma Lemma
and Clark Theorem imply that ¢ (u) possesses at least p distinct pairs (u;, —u;)
of critical points such that ¢r(u;) < 0 clearly u; # 0(1 < i < p). O

-M)<0, YueK (2.12)

Corollary 2.3. In Theorem[1.d}, for any T > 0, if conditions (J2)-(J3) are replaced
by

(J2°) limjy|—oo V (t,w)/|ul* = 0 uniformly in t € R,

(J3") limyy o V (¢, u)/|ul* = oo uniformly in t € R,
then the functional pr(u) has infinitely many distinct pairs (—u,w) of critical
points.

Proof. For any fixed p € N, by (J2’) and (J3’), we may take m sufficiently small
and M large enough such that

0<m< (%)2’2 M > (%)2’“, M > mp**, (2.13)

thus (J2)-(J3) are all satisfied, and T' € (pr/ ¥/ M, n/ ¥/m). By Theorem |11} the
functional ¢ (u) has at least p distinct pairs (u, —u) of critical points. Slnce P
is arbitrary, there exist infinitely many distinct pairs (u, —u) of critical points of

or(u). O

3. APPLICATIONS OF THEOREM [L.1]

The first application is for to Hamiltonian systems. To prove Theorem we
study the related boundary value problem

i(t) + Vu(t,u(t)) =0, 0<a<T,

3.1
u(0) =u(T) =0, (3:-1)
with T'= 7/2. For a solution u(t) of (3.1]), we define
t 0<t<T,
at) = "0 (3.2)
—u(—t) T <t<0.

For any t € [-T,0], by (V1), we see that

(@)" (1) + Va(t, a(t)) = —ii(—t) + Vu(t, —u(-1))
= —la(=t) = Vault, —u(=1))]
= —li(=t) + Viu(t, —u(=1))] =
Hence, u = u(t) is a solution of over [—T,T],and its 2T-periodic extension

over R, still denoted by @ = a(t), is an odd 7-periodic solution of (1.5 with
T = 2T Let X = H{([0,T];R™) be a Hilbert space with the inner product (u,w) =

fo ) + u(t)w(t)]dt and the corresponding norm

lulla = (u,u)/2 = ( / [a(t)? + [u(t) dt) 2.
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The Pointcare inequality fOT lu(t)dt < (£)? fOT |u(t)|?dt implies that

nw=%|wwwm

is also a norm in X, and is equivalent to ||ul]|a. Now we define the functional @ (u)
on X:
Y T 1,
erw =5 [ liwPa - [ vieua =gl -aw 63
From V (t,u) € C}(R x R"), we know that o7 € C!(X,R), and J’'(u) is completely

continuous.

Proof of Theorem[1.3. Under the assumptions of Theorem {sin j%te}j‘?‘;l is an
orthogonal sequence with e = (1,0,0,...,0) € R™ in both X and L? such that
|| sin j%teH%%O,T) = L, |IsiniZe|? = L(5)2, for all j > 1, the functional
satisfies (J1) — (J3) of Theorem [I.1] Thus, ¢7(u) possesses at least p distinct pairs
(us, —u;) of critical points such that pr(u;) < 0 with u; # 0(1 < ¢ < p). Since
X NR™ = 0,we conclude that u; # any constant (1 < ¢ < p). Thus, in the way of

(3.2)), the extensions of +u;(t) (1 <4 < p) are p distinct pairs of nontrivial odd 7—
periodic solutions of (|1.5)). d

Remark 3.1 ([5]). For a € (0,1/2), we can choose a function h € C*([0, ), R)
such that

P2 h(r) <t for 0 < r <1,
—rt g h(r) < -r® forr > 2.

Define V(t,u) = (1 + 3cost)h(|u|) then for 7 = 2, for all p > 1, (V1)-(V3)
are satisfied. Thus, by Theorem (1.5) has infinitely many nontrivial pairs
(u(t), —u(t)) of odd 27-periodic solutions.

Finally, since the proof of Theorem is similar to that of Theorem 2, so we
briefly sketch it.

Proof of Theorem[I.5. Set
X = H?*(0,T)N Hy(0,T) (3.4)
and the functional

1

T T
pr(u) = /O i (t) P — /O V(t, u(t))dt,u € X. (3.5)

Then the critical points of @7 in (3.5 are the classical solutions of the problem
(T.6). By [ Lemma 2.1],

nw=%|wwwm

is a norm in X, [lul|r20,7) < (£)?||ull, and the set of functions {si
orthogonal sequence in both X and L? such that

njﬂ't 00

T Jj=1 1s an

. Jmt T . ogmt, T g7
[ SIDTHLQ(O,T) DY || sin 7” = 5(?
Therefore, by Theorem the proof is complete. O

), Vi > 1.
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