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NON-EXISTENCE OF SOLUTIONS FOR TWO-POINT
FRACTIONAL AND THIRD-ORDER

BOUNDARY-VALUE PROBLEMS

GEORGE L. KARAKOSTAS

Abstract. In this article, we provide sufficient conditions for the non-existence

of solutions of the boundary-value problems with fractional derivative of order
α ∈ (2, 3) in the Riemann-Liouville sense

Dα0+x(t) + λa(t)f(x(t)) = 0, t ∈ (0, 1),

x(0) = x′(0) = x′(1) = 0,

and in the Caputo sense

CDαx(t) + f(t, x(t)) = 0, t ∈ (0, 1),

x(0) = x′(0) = 0, x(1) = λ

Z 1

0
x(s)ds;

and for the third-order differential equation

x′′′(t) + (Fx)(t) = 0, a.e. t ∈ [0, 1],

associated with three among the following six conditions

x(0) = 0, x(1) = 0, x′(0) = 0, x′(1) = 0, x′′(0) = 0, x′′(1) = 0.

Thus, fourteen boundary-value problems at resonance and six boundary-value

problems at non-resonanse are studied. Applications of the results are, also,
given.

1. Introduction

The problem of existence of solutions of fractional differential equations and
general third-order differential equations, satisfying two-point boundary conditions,
has been extensively discussed in the literature, see, e.g., [1, 2, 8, 9, 11, 13, 14, 16,
20, 21, 22, 23, 27, 37, 38, 40, 41] and the references therein.

In this work we are dealing with non-existence of solutions and this, because the
two problems (namely, existence and non-existence) are equally important in the
theory of differential equations. To our knowledge, the problem of non-existence
for such boundary-value problems has not been studied sufficiently. Indeed, only
a few results have been given on it, and not in a systematic research. See, e.g.,
[6, 15, 28, 34, 42].
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Let I be the interval [0, 1]. We are going to give sufficient conditions for the
non-existence of solutions of the two boundary-value problems

Dα
0+x(t) + λa(t)f(x(t)) = 0, 0 < t < 1, 2 < α < 3, (1.1)

x(0) = x′(0) = x′(1) = 0, (1.2)

(see, e.g., [6]) with fractional Riemann-Liouville type derivative, and
CDαx(t) + f(t, x(t)) = 0, 0 < t < 1, 2 < α < 3, (1.3)

x(0) = x′′(0) = 0, x(1) = λ

∫ 1

0

x(s)ds (1.4)

(see, e.g., [3]), with fractional Caputo type derivative. The same problem is, also,
discussed for the third-order differential equation of the form

x′′′(t) + (Fx)(t) = 0, a.e. t ∈ I := [0, 1], (1.5)

associated with the following boundary value conditions:

x(0) = x(1) = x′(0) = 0, (1.6)

x(0) = x(1) = x′(1) = 0, (1.7)

x(0) = x(1) = x′′(0) = 0, (1.8)

x(0) = x(1) = x′′(1) = 0, (1.9)

x(0) = x′(0) = x′(1) = 0, (1.10)

x(1) = x′(0) = x′(1) = 0, (1.11)

x(0) = x′(0) = x′′(0) = 0, (1.12)

x(0) = x′(0) = x′′(1) = 0, (1.13)

x(0) = x′(1) = x′′(0) = 0, (1.14)

x(1) = x′(0) = x′′(1) = 0, (1.15)

x(1) = x′(1) = x′′(0) = 0, (1.16)

x(0) = x′(1) = x′′(1) = 0, (1.17)

x(1) = x′(0) = x′′(0) = 0, (1.18)

x(1) = x′(1) = x′′(1) = 0, (1.19)

x′(0) = x′(1) = x′′(0) = 0, (1.20)

x′(0) = x′(1) = x′′(1) = 0, (1.21)

x(0) = x′′(0) = x′′(1) = 0, (1.22)

x(1) = x′′(0) = x′′(1) = 0, (1.23)

x′(0) = x′′(0) = x′′(1) = 0, (1.24)

x′(1) = x′′(0) = x′′(1) = 0. (1.25)

Conditions (1.6)-(1.19) lead to non-resonance boundary-value problems and they
are examined in section 5. On the other hand conditions (1.20), (1.21) formulate
boundary-value problems at resonance, and they are investigated in the last section
6. Existence of solutions of problems at non-resonance with this kind of boundary
conditions, is investigated in a great number of works, see e.g. [4, 5], [7]-[13],
[17]-[20], [24]-[26], [30]-[36], [39].
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2. Preliminaries and some general results

Let C(I,R) be the (Banach) space of all continuous functions y : I → R endowed
with the sup-norm ‖ · ‖. Let, also, U be a subspace of C(I,R) and F : U →
C(I,R) a continuous function. Finally, let T be an operator defined on a subset
of C(I,R)×C(I,R) with range in C(I,R). The question refers to the existence of
solutions of the operator equation

y = T (y, F (y)). (2.1)

Assume that the operator T satisfies the condition

‖T (y, u)‖ ≤ K‖u‖,
for all (y, u) in the domain of T . Let KT be the infimum of all such numbers. For
instance, if an operator depends only on the second argument u and it is defined
by an integral of the form

(Ty)(t) =
∫ 1

0

G(t, s)y(s)ds, t ∈ I, (2.2)

where the kernel G is a continuous function defined on the square [0, 1]× [0, 1], then

KT = sup
t∈I

∫ 1

0

|G(t, s)|ds.

From the definition of KT we have the following result.

Theorem 2.1. If it holds

‖Fu‖ < 1
KT
‖u‖, u ∈ C(I,R), (2.3)

then there is no solution of equation (2.1).

An equivalent result is the following.

Corollary 2.2. Under the previous conditions, the set

{x ∈ C(I,R) : ‖Fx‖ < 1
KT
‖x‖}

does not contain any solution of equation (2.1).

The inequality in Theorem 2.1 can be guaranteed if, the function F satisfies

LF <
1
KT

, (2.4)

where

LF := sup{‖Fx‖
‖x‖

< +∞ : x ∈ U, 0 < ‖x‖}. (2.5)

Our main purpose is to give information about the number KT for several oper-
ators generated from boundary-value problems mentioned in the introduction and
then to check for the applicability of inequality (2.4).

An interesting case, which will be used in the applications given later, is when
the response F is a Nemytskii-type operator. Indeed, assume that U is the space
C(2)(I,R). Also, let F : U → C(I,R) be defined via a continuous function f :
[0, 1]× R3 → R, by the type

(Fx)(t) := f(t, x(t), x′(t), x′′(t)), t ∈ I.
Then we have the following corollary.
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Corollary 2.3. If the condition

sup
t∈I

sup
u0,u1,u2∈R

|f(t, u0, u1, u2)|
|u0|

<
1
KT

holds, then no solution of problem (2.1) exists.

Proof. Let k be such that

sup
t∈I

sup
u0,u1,u2∈R

|f(t, u0, u1, u2)|
|u0|

< k <
1
KT

Then, the result follows from Theorem 2.1 and the fact that for any function x,
with continuous derivative of second order and some points t1, t2 ∈ I we have

‖f(·, x(·), x′(·), x′′(·))‖
‖x(·)‖

=
|f(t1, x(t1), x′(t1), x′′(t1))|

|x(t2)|

≤ |f(t1, x(t1), x′(t1), x′′(t1))|
|x(t1)|

≤ sup
t∈I

sup
u0,u1,u2∈R

|f(t, u0, u1, u2)|
|u0|

< k.

�

Warning: In the sequel when an operator T is generated from a boundary-value
problem (a)-(b) instead of KT we shall write K(a)−(b).

3. Nonexistence for the fractional BVP (1.1)-(1.2)

We start with the fractional boundary-value problem (1.1)-(1.2), studied in [6],
where (the Krasnoselskii’s fixed point theorem in cones is applied and sufficient
conditions for) the existence of solutions is investigated.

Here the parameter λ is a positive real number, a : (0, 1)→ [0,+∞) is a contin-
uous function with

∫ 1

0
a(t)dt > 0, and f : [0,+∞) → [0,+∞) is continuous. The

symbol Dα
0+u represents the Riemann-Liouville fractional derivative of the continu-

ous function u : I → R of order α ∈ (2, 3), (see, e.g., [29]), i.e. the quantity defined
by

Dα
0+u(t) =

1
Γ(n− α)

( d
dt

)n ∫ t

0

u(s)
(t− s)α−n+1

ds, n = bαc+ 1.

Theorem 3.1. Assume that f satisfies the condition

Lf := sup
|u|>0

|f(u)|
|u|

<
Γ(α)

λ
∫ 1

0
s(1− s)α−2a(s)ds

. (3.1)

Then problem (1.1)-(1.2) does not admit solutions.

Proof. According to [6], the problem is equivalent to the operator equation (2.1),
where the operator T has the integral form (2.2) with the Green’s function G being
defined by the type

G(t, s) :=


(1−s)α−2tα−1

Γ(α) a(s), 0 ≤ t ≤ s ≤ 1,[
(1−s)α−2tα−1

Γ(α) − (t−s)α−1

Γ(α)

]
a(s), 0 ≤ s ≤ t ≤ 1.
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Here Γ(α) is the gamma function at α. It is not hard to see that G takes positive
values and it satisfies

G(t, s) ≤ G(1, s), (t, s) ∈ [0, 1]× [0, 1].

Therefore, the result will follow from Theorem 2.1 and inequality (2.4), when we
know that the quantity in the right side of relation (3.1) is less than or equal to
1/K(1.1)−(1.2). So, we have to prove this fact. Indeed, we have

K(1.1)−(1.2) = λ sup
t∈I

∫ 1

0

G(t, s)a(s)ds

= λ

∫ 1

0

G(1, s)a(s)ds

= λ
1

Γ(α)

∫ 1

0

[
(1− s)α−2 − (1− s)α−1

]
a(s)ds

= λ
1

Γ(α)

∫ 1

0

s(1− s)α−2a(s)ds,

from which the result follows. �

Application 3.2. Consider the values

α = 2.7, a(t) := 2t+ 3, f(u) :=
8u2 + u

u+ 1
(4 + sin(u)),

as they appear in [6]. Then we have∫ 1

0

s(1− s)α−2a(s)ds =
∫ 1

0

(1− s)α−2(2s2 + 3s)ds

=
∫ 1

0

sα−2(2(1− s)2 + 3(1− s))ds

=
∫ 1

0

sα−2(5− 7s+ 2s2)ds =
3α+ 7

(α− 1)α(α+ 1)
.

and therefore it follows that
Γ(α)

λ
∫ 1

0
s(1− s)α−2a(s)ds

=
(α− 1)Γ(α+ 2)

λ(3α+ 7)
≈ 26.23339972

15.1λ
.

Since it holds
|f(u)|
|u|

=
8u+ 1
u+ 1

(4 + sin(u)) ≤ 40,

we have, also,
‖f(u(·))‖
‖u(·)‖

≤ 40,

which, due to Theorem 2.1, shows that, if the parameter λ is chosen such that

λ <
26.23339972

40× 15.1
=

26.23339972
604

= 0.04343278,

then the problem has no (any, and not necessarily positive) solution. This upper
bound of the parameter λ agrees with the value of the parameter suggested in [6].
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4. Nonexistence for the fractional BVP (1.3)-(1.4)

Here we discuss non-existence for the fractional boundary-value problem (1.3)-
(1.4), studied in [3], where, again, (the Krasnoselskii’s fixed point theorem in cones
is applied and) the existence of solutions is investigated.

It is assumed that CDαu is the Caputo fractional derivative of the continuous
function u : I → R at the real number α ∈ (2, 3) defined by

CDαu(t) :=
1

Γ(n− α)

∫ t

0

(t− s)(α−1)u(s)ds, n = bαc+ 1.

Also, the function f : [0, 1]× [0,→ [0,∞) is continuous and 0 < λ < 2.

Theorem 4.1. Assume that f satisfies the condition

Lf := sup
t∈I

sup
|u|>0

|f(t, u)|
|u|

<
(2− λ)(α− 2)Γ(α+ 2)

2α(α− 1)
. (4.1)

Then problem (1.3)-(1.4) does not admit solutions.

Proof. According to [3], the problem is equivalent to the operator equation (2.1),
where T has the integral form (2.2), with the Green’s function G being given by
the type

G(t, s) :=

{
2t(1−s)α−1(α−λ+λs)−(2−λ)α(t−s)α−1

(2−λ)Γ(α+1) , 0 ≤ s ≤ t ≤ 1,
2t(1−s)α−1(α−λ+λs)

(2−λ)Γ(α+1) , 0 ≤ t ≤ s ≤ 1.

Due to [3, Lemmas 2.3 and 2.4], the kernel G is a nonnegative function and it
satisfies the inequality

G(t, s) ≤ 2α
λ(α− 2)

G(1, s),

for all s, t,∈ [0, 1] and λ ∈ (0, 2). Hence, the result will follow from Theorem 2.1
and inequality (2.4), when we know that the quantity in the right side of relation
(4.1) is less than or equal to the 1/K(1.3)−(1.4). To prove this fact observe that

K(1.3)−(1.4) = sup
t∈I

∫ 1

0

G(t, s)ds

≤ 2α
λ(α− 2)

∫ 1

0

G(1, s)ds =
2α(α− 1)

(2− λ)(α− 2)Γ(α+ 2)
.

This completes the proof of the theorem. �

5. Nonexistence for third-order BVPs at non-resonance

In this section we give information about non-existence for the third-order dif-
ferential equation (1.5) subject to one of the boundary conditions (1.6), (1.7), · · · ,
(1.19).

Theorem 5.1. The boundary-value problems (at non-resonance) (1.5)-(1.6), (1.5)-
(1.7), . . . ,(1.5)-(1.19), do not have solutions provided that (2.4) is satisfied, where
the number LF is such as the following tables shows:

(1.5)-(1.6) (1.5)-(1.7) (1.5)-(1.8) (1.5)-(1.9)
0 < Lf < 40.5 40.5 inft∈I 6/t(t4 − 2t3 + 1) 9

√
3
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(1.5)-(1.10) (1.5)-(1.11) (1.5)-(1.12) (1.5)-(1.13) (1.5)-(1.14)
0 < Lf < 12 12 6 3 3

(1.5)-(1.15) (1.5)-(1.16) (1.5)-(1.17) (1.5)-(1.18) (1.5)-(1.19)
0 < Lf < 3 3 6 6 6

Proof. All the boundary-value problems are equivalent to the integral equation
(2.1), where the operator T is defined by (2.2). Thus the proof is implied from
Theorem 2.1, provided that the numbers defined in (4.1) have values as in the
tabular. Therefore what we have to (and shall) do is to obtain the Green’s functions
of the integral equations and then to calculate the corresponding numbers 1/KT .
Problem (1.5)-(1.6): The corresponding Green’s function is

G(t, s) :=

{
1
2s(1− t)[t(1− s) + t− s], 0 ≤ s ≤ t ≤ 1,
t2

2 (1− s)2, 0 ≤ t ≤ s ≤ 1

and it is nonnegative. Hence we have

K(1.5)−(1.6) = sup
t∈I

[ ∫ t

0

G(t, s)ds+
∫ 1

t

G(t, s)ds
]

=
1
2

sup
t∈I

[ ∫ t

0

s(1− t)[t(1− s) + t− s]ds+
∫ 1

t

t2(1− s)2ds
]

= · · · = sup
t∈I

t2

6
(1− t) =

2
81

=
1

40.5
.

Problem (1.5)-(1.7): The corresponding Green’s function is

G(t, s) :=

{
−1
2 s

2(1− t)2, 0 ≤ s ≤ t ≤ 1
−t
2 (1− s)[(s− t) + s(1− t)], 0 ≤ t ≤ s ≤ 1,

which is nonpositive. Thus we have

K(1.5)−(1.7) = sup
t∈I

[ ∫ t

0

|G(t, s)|ds+
∫ 1

t

|G(t, s)|ds
]

=
1
2

sup
t∈I

[ ∫ t

0

s2(1− t)2ds+
∫ 1

t

t(1− s)[(s− t) + s(1− t)]ds
]

= · · · = sup
t∈I

t

6
(t− 1)2 =

2
81

=
1

40.5
.

Problem (1.5)-(1.8): The corresponding Green’s function is

G(t, s) :=

{
1
2 (1− t)(t− s2), 0 ≤ s ≤ t ≤ 1
t
2 (1− s)2, 0 ≤ t ≤ s ≤ 1,

which is nonnegative. Thus we have

K(1.5)−(1.8) = sup
t∈I

[ ∫ t

0

G(t, s)ds+
∫ 1

t

G(t, s)ds
]

=
1
2

sup
t∈I

[ ∫ t

0

(1− t)(t− s2)ds+
∫ 1

t

t(1− s)2ds
]

= · · · = sup
t∈I

t

6
(t4 − 2t3 + 1) =

1
inft∈I 6

t(t4−2t3+1)

≈ 1
14.309267

.



8 G. L. KARAKOSTAS EJDE-2013/152

Problem (1.5)-(1.9): The corresponding Green’s function is

G(t, s) :=

{
−s2

2 (1− t) s ≤ t,
−t
2 [(s− t) + s(1− s)], t ≤ s

and it is nonpositive. Then we have

K(1.5)−(1.9) = sup
t∈I

t

6
(1− t)(2− t) =

√
3

27
=

1
9
√

3
.

Problem (1.5)-(1.10): The corresponding Green’s function is

G(t, s) :=

{
1
2 [ts(1− t) + s(t− s)], 0 ≤ s ≤ t ≤ 1,
t2

2 (1− s), 0 ≤ t ≤ s ≤ 1.

The latter is nonnegative. Hence we obtain

K(1.5)−(1.10) = sup
t∈I

[ t2
4
− t3

6

]
=

1
12
.

Problem (1.5)-(1.11): The corresponding Green’s function is

G(t, s) :=

{
−s
2 (1− t)2, s ≤ t,
−1
2 (1− s)(s− t2), t ≤ s

and it is nonpositive. Hence it follows that

K(1.5)−(1.11) = sup
t∈I

1
12

(1− 3t2 + 2t3) =
1
12
.

Problem (1.5)-(1.12): The corresponding Green’s function is

G(t, s) :=
−(t− s)2

2
χ[0,t](s),

which is nonpositive. Thus we have

K(1.5)−(1.12) = sup
t∈I

∫ t

0

(t− s)2

2
ds =

∫ 1

0

s2

2
ds =

1
6
.

Problem (1.5)-(1.13): The corresponding Green’s function is

G(t, s) :=

{
1
2 [ts+ s(t− s)], s ≤ t,
t2

2 , t ≤ s,

which is nonnegative. Hence we obtain

K(1.5)−(1.13) = sup
t∈I

t2

6
(3− t) =

1
3
.

Problem (1.5)-(1.14): The corresponding Green’s function is

G(t, s) :=

{
1
2 (t(1− t) + t− s+ s(1− s)), 0 ≤ s ≤ t ≤ 1
t(1− s), 0 ≤ t ≤ s ≤ 1,

which is nonnegative. Thus we have

K(1.5)−(1.14) = sup
t∈I

t

6
(3− t2) =

1
3
.
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Problem (1.5)-(1.15): The corresponding Green’s function G is

G(t, s) :=

{
−s(1− t), s ≤ t,
−1
2 [2s− s2 − t2], t ≤ s,

and it is nonpositive. This gives

K(1.5)−(1.15) = sup
t∈I

1
6

(2− 3t2 + t3) =
1
3
.

Problem (1.5)-(1.16): The corresponding Green’s function is

G(t, s) :=

{
−1
2 (1− t)2, 0 ≤ s ≤ t ≤ 1
−1
2 (1− s)[(s− t) + (1− t)], 0 ≤ t ≤ s ≤ 1,

which is nonpositive. Thus we obtain

K(1.5)−(1.16) = sup
t∈I

1
6

[2− 3t+ t3] =
1
3
.

Problem (1.5)-(1.17): The corresponding Green’s function is

G(t, s) :=

{
−1
2 s

2, 0 ≤ s ≤ t ≤ 1
−1
2 [ts+ t(s− t)], 0 ≤ t ≤ s ≤ 1,

which is nonpositive. Then we obtain

K(1.5)−(1.17) = sup
t∈I

1
6

[3t− 3t2 + t3] =
1
6
.

Problem (1.5)-(1.18): The corresponding Green’s function is

G(t, s) :=

{
1−t

2 (1 + t− 2s), 0 ≤ s ≤ t ≤ 1
1
2 (1− s)2, 0 ≤ t ≤ s ≤ 1,

which is nonnegative. Hence, it follows that

K(1.5)−(1.18) = sup
t∈I

1
6

[1− t3] =
1
6
.

Problem (1.5)-(1.19): This is a terminal value problem with Green’s function given
by

G(t, s) :=
(t− s)2

2
χ[t,1](s),

which is nonnegative. Thus we have

K(1.5)−(1.19) = sup
t∈I

∫ 1

t

(t− s)2

2
ds =

1
6
.

The proof is complete. �

Application 5.2. Consider the differential equation

x′′′ + (σ +
cos(x′ + x′′)

4(1 + x2)
)x = 0. (5.1)

Here we have

f(u1, u2, u3) = (σ +
cos(u2 + u3)

4(1 + u2
1)

)u1
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and therefore

sup
u1,u2,u3

f(u1, u2, u3)
u1

= σ +
1
4
.

Taking into account Corollary 2.3, the previous theorem and Theorem 2.1, we can,
easily, see that the problems (5.1)-(1.6), (5.1)-(1.7), · · · , (5.1)-(1.19) do not have any
solution, provided that the parameter σ has corresponding values, as the following
tables show:

(5.1)-(1.6) (5.1)-(1.7) (5.1)-(1.8) (5.1)-(1.9) (5.1)-(1.10)
0 < σ < 40.25 < 40.25 < 14.0602 < 15.3385 < 11.75

(5.1)-(1.11) (5.1)-(1.12) (5.1)-(1.13) (5.1)-(1.14) (5.1)-(1.15)
0 < σ < 11.75 < 5.75 < 2.75 < 2.75 < 2.75

(5.1)-(1.16) (5.1)-(1.17) (5.1)-(1.18) (5.1)-(1.19)
0 < σ < 2.75 < 5.75 < 5.75 < 5.75

The upper bounds of σ for problem (5.1)-(1.8) and (5.1)-(1.9) are approximate
values.

6. Nonexistence for third-order BVPs at resonance

In this section we shall discuss the problems (6.1)-(1.20) - (6.1)-(1.25) where
(6.1) is equation

x′′′ + f(x(t)) = 0, a. e. t ∈ I. (6.1)

Due to the boundary conditions (1.20)-(1.25), these problems are at resonance and,
so, they do not have integral equivalent forms, as in the preceding cases. Hence we
need to apply a suitable technique, where, we need to assume some rather simple
conditions on the function f . Of course, this will restrict the family of responses.
Indeed, in the sequel we shall assume that the response f satisfies the conditions:

(1) f is a continuously differentiable real valued function.
(2) There are positive real numbers Lf > δ such that

|f(u)| ≤ Lf |u| and |f ′(u)| ≥ δ, u ∈ R. (6.2)

Clearly, the latter implies that either f ′(u) ≥ δ, for all u, or f ′(u) ≤ −δ, for all u.
Our main theorem reads as follows.

Theorem 6.1. The boundary-value problems (6.1)-(1.20), . . . , (6.1)-(1.25) (at res-
onance) do not admit solutions when the parameters L, δ satisfy the relations as in
the following tables:

(6.1)-(1.20) (6.1)-(1.21) (6.1)-(1.22)
δ < Lf < −5δ +

√
25δ2 + 60δ 1

11 (−10δ + 2
√

25δ2 + 165δ) −δ +
√
δ2 + 12δ

(6.1)-(1.23) (6.1)-(1.24) (6.1)-(1.25)
δ < Lf <

1
3 (−δ +

√
δ2 + 36δ) −2δ +

√
4δ2 + 24δ 1

5 (−4δ + 2
√

4δ2 + 30δ)

Proof. These boundary-value problems can be written as operator equations of the
form (2.1), where the operator T is not linear. So, for each problem, we must
formulate this operator and then to calculate the quantity KT . Also, due to (6.2),
Theorem 2.1 will be applied, when we shall show that

LfKT < 1. (6.3)
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Problem (6.1)-(1.20): Assume that δ < Lf < −5δ +
√

25δ2 + 60δ. Then it holds

Lf [
Lf
60δ

+
1
6

] < 1, (6.4)

If there is a solution x of the problem, it will satisfy the boundary conditions
x′(0) = x′(1) = x′′(0) = 0. Integrating equation x′′′ + f(x) = 0 we get

x′′(t) = −
∫ t

0

y(s)ds,

where y(t) := f(x(t)). By using the boundary conditions we obtain∫ 1

0

(1− s)y(s)ds = 0 (6.5)

and x(t) = x(0)− (g1y)(t), t ∈ [0, 1], where

(g1y)(t) :=
∫ t

0

(t− s)2

2
y(s)ds, t ∈ I.

Next, define the function

(A1y)(v) :=
∫ 1

0

(1− t)f(v − (g1y)(t))dt, v ∈ R.

This is a differentiable function, which, due to (6.5), satisfies the equation

(A1y)(0) + (A1y)′(µx(0))x(0) = (A1y)(x(0)) = 0,

for some µ ∈ [0, 1]. Namely we have∫ 1

0

(1− t)f(−(g1y)(t))dt+ x(0)
∫ 1

0

(1− t)f ′(µx(0)− (g1y)(t))dt = 0.

Thus the initial value satisfies the relation

x(0) = −b1(x, y)
∫ 1

0

(1− t)f(−(g1y)(t))dt,

where
b1(x, y) :=

1∫ 1

0
(1− t)f ′(µx(0)t− (g1y)(t))dt

.

Clearly, it holds |b1(x, y)| ≤ 2/δ. Therefore, the solution x satisfies the integral
equation x = T (x, f(x)), where the operator T is defined on C(I,R) × C(I,R) by
the type

T (x, y)(t) := −b1(x, y)
∫ 1

0

(1− r)f(−(g1y)(r))dr − (g1y)(t), t ∈ [0, 1].

Then, from (6.2) we obtain

|T (x, y)(t)| ≤ K(6.1)−(1.20)‖y‖,
where

K(6.1)−(1.20) :=
2
δ
Lf

∫ 1

0

(1− r)r
3

6
dr +

1
6
,

which implies that

LfK(6.1)−(1.20) < Lf [
Lf
60δ

+
1
6

] < 1,

because of (6.2) and (6.4).
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Problem (6.1)-(1.21): Let δ < Lf <
1
11 (−10δ + 2

√
25δ2 + 55δ). Then we have

Lf
11Lf + 20δ

60δ
< 1. (6.6)

Assume that there is a solution x(t), t ∈ [0, 1] of the problem such that x′(0) =
x′(1) = x′′(1) = 0. Integrating equation x′′′ + f(x) = 0, we get

x′′(t) = −
∫ t

0

y(s)ds, (6.7)

where y(s) := f(x(s)). By using the boundary conditions x′′(1) = x′(1) = 0, it
follows that ∫ 1

0

sy(s)ds = 0. (6.8)

Integrate (6.7), once again, and get x(t) = x(0) + (g2y)(t), where

(g2y)(t) :=
t2

2

∫ 1

t

y(s)ds+
∫ t

0

2ts− s2

2
y(s)ds, t ∈ I.

Define the function

(A2y)(v) :=
∫ 1

0

tf(v + (g2y)(t))dt, v ∈ R,

for which we observe that

(A2y)(0) + (A2y)′(λx(0))x(0) = (A2y)(x(0)) = 0,

because of (6.8), for some λ ∈ [0, 1]. This implies that∫ 1

0

tf((g2y)(t))dt+ x(0)
∫ 1

0

tf ′(λx(0) + (g2y)(t))dt = 0,

from which we get

x(0) = −b2(x, y)
∫ 1

0

tf((g2y)(t))dt,

where
b2(x, y) :=

1∫ 1

0
tf ′(λx(0) + (g2(y)(t))dt

is such that |b2(x, y)| ≤ 2/δ. Hence, for all t ∈ [0, 1], the solution x satisfies the
integral relation

x(t) = T (x, f(x)),
where the operator T is defined by the type

T (x, y) := −b2(x, y)
∫ 1

0

rf((g2y)(r))dr + (g2y)(t), t ∈ I

on C(I,R)× C(I,R). From this equation and (6.2) it follows that

|T (x, y)(t)| ≤ 2
δ
Lf

∫ 1

0

r|(g2y)(r)|dr + |(g2y)(t)|

and so, finally, we obtain

|T (x, y)(t)| ≤ K(6.1)−(1.21)‖y‖,
where

K(6.1)−(1.21) :=
2
δ
Lf

11
120

+
1
3
.
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Thus we get LfK(6.1)−(1.21) < 1, because of (6.6).
Problem (6.1)-(1.22): Assume that δ < Lf < −δ +

√
δ2 + 12δ. Then we have

Lf
Lf + 2δ

12δ
< 1. (6.9)

Assume that x is a solution of the problem. Hence it satisfies x(0) = x′′(0) =
x′′(1) = 0. Integrating equation x′′′ + f(x) = 0, we obtain

x′′(t) = −
∫ t

0

y(s)ds,

where y(s) := f(x(s)). Thus we have∫ 1

0

y(s)ds = 0. (6.10)

Integrate two more times and get x(t) = x′(0)t− (g1y)(t), t ∈ [0, 1], where

(g1y)(t) :=
∫ t

0

(t− s)2

2
y(s)ds, t ∈ I.

Define the function

(A3y)(v) :=
∫ 1

0

f(vt− (g1y)(t))dt, v ∈ R

and we observe that it satisfies

(A3y)(0) + (A3y)′(λx′(0))x′(0) = (A3y)(x′(0)) = 0,

because of (6.10), for some λ ∈ [0, 1]. This implies that∫ 1

0

f(−(g1y)(t))dt+ x′(0)
∫ 1

0

tf ′(λx′(0)t− (g1y)(t))dt) = 0.

Therefore, the value x′(0) satisfies

x′(0) = −b3(x, y)
∫ 1

0

f(−(g1y)(t))dt,

where the coefficient b3(x, y) is such that

b3(x, y) :=
1∫ 1

0
tf ′(λx′(0)t− (g1y)(t))dt

and moreover
|b3(x, y)| ≤ 2

δ
,

because of (6.2). Hence, for all t ∈ [0, 1], the solution x satisfies the operator
equation x(t) = T (x, f(x))(t), where T is defined on the space C(1)(I,R)×C(I,R)
by the type

T (x, y)(t) := −b3(x, y)t
∫ 1

0

f(−(g1y)(r))dr − (g1y)(t).

From here and (6.2) we obtain

|T (x, y)(t)| ≤ |b3(x, y)|L
∫ 1

0

|(g1y)(r)|dr + |(g1y)|(t),

and so, finally,
|T (x, y)(t)| ≤ K(6.1)−(1.22)‖y‖,



14 G. L. KARAKOSTAS EJDE-2013/152

where
K(6.1)−(1.22) :=

Lf
12δ

+
1
6
.

The latter implies that LfK(6.1)−(1.22) < 1, due to (6.9).
Problem (6.1)-(1.23): Let δ < Lf <

1
3 (−δ +

√
δ2 + 36δ). Then we have

Lf <
12δ

3Lf + 2δ
. (6.11)

Assume that there is a solution x(t), t ∈ [0, 1] of the problem such that x(1) =
x′′(0) = x′′(1) = 0. Integrating equation x′′′ + f(x) = 0, we obtain

x′′(t) = −
∫ t

0

y(s)ds,

where y := f(x). Thus we have ∫ 1

0

y(s)ds = 0. (6.12)

Taking into account the boundary conditions, we integrate and get

x(t) = −(1− t)x′(0) + (g3y)(t), t ∈ [0, 1],

where

(g3y)(t) :=
∫ 1

t

(1− s)2

2
y(s)ds+

∫ t

0

(1− t)2 + 2(t− s)(1− t)
2

y(s)ds, t ∈ I.

Define the function

(A4y)(v) :=
∫ 1

0

f(−(1− t)v + (g3y)(t))dt, v ∈ R,

for which we observe that

(A4y)(0) + (A4y)′(λx′(0))x′(0) = (A4y)(x′(0)) = 0,

because of (6.12), for some λ ∈ [0, 1]. This implies that∫ 1

0

f((g3y)(t))dt− x′(0)
∫ 1

0

(1− t)f ′(−(1− t)λx′(0) + (g3y)(t))dt = 0

and, so,

x′(0) = b4(x, y)
∫ 1

0

f((g3y)(t))dt,

where
b4(x, y) :=

1∫ 1

0
(1− t)f ′(−(1− t)λx′(0) + (g3y)(t))dt

.

Due to (6.2), we have |b4(x, y)| ≤ 2
δ . Hence, for all t ∈ [0, 1], the solution x satisfies

the relation
x(t) = T (x, f(x))(t),

where the operator T is defined on C(1)(I,R)× C(I,R) by the type

T (x, y)(t) := −(1− t)b4(x, y)
∫ 1

0

f((g3y)(r))dr + (g3y)(t), t ∈ [0, 1].

Then, as in the previous cases, due to (6.2), we obtain

|T (x, y)(t)| ≤ K(6.1)−(1.23)‖y‖,
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where
K(6.1)−(1.23) := Lf (

Lf
4δ

+
1
6

).

This implies that LfK(6.1)−(1.23) < 1, because of (6.11).
Problem (6.1)-(1.24): Assume that δ < Lf < −2δ +

√
4δ2 + 24δ. Then we have

Lf <
24δ

Lf + 4δ
. (6.13)

Let x(t), t ∈ [0, 1] be a solution of the problem such that x′(0) = x′′(0) = x′′(1) =
0. Integrating equation x′′′+f(x) = 0, we obtain x′′(t) = −

∫ t
0
y(s)ds, where, again,

y(s) := f(x(s)). Thus we have ∫ 1

0

f(x(s))ds = 0. (6.14)

Integrate and get x(t) = x(0)− (g1y)(t), t ∈ [0, 1], where, again,

(g1y)(t) :=
∫ t

0

(t− s)2

2
y(s)ds, t ∈ I.

Define the function

(A5y)(v) :=
∫ 1

0

f(v − (g1y)(t))dt, v ∈ R,

and observe that

(A5y)(0) + (A5y)′(λx(0))x(0) = (A5y)(x(0)) = 0,

because of (6.14), for some λ ∈ [0, 1]. This implies that∫ 1

0

f(−(g1y)(t))dt+ x(0)
∫ 1

0

f ′(λx(0)− (g1y)(t))dt = 0

and so

x(0) = −b5(x, y)
∫ 1

0

f(−(g1y)(t))dt,

where
b5(x, y) :=

1∫ 1

0
f ′(λx(0)− (g1y)(t))dt

,

which, obviously, satisfies |b5| ≤ 1
δ . Hence, for all t ∈ [0, 1], the solution x satisfies

the relation
x(t) = T (x, f(x))(t),

where the operator T is defined on C(I,R)× C(I,R) by the type

T (x, y)(t) := −b5(x, y)
∫ 1

0

f(−(g1y)(r))dr)− (g1y)(t).

Thus, because of (6.2), we have

|T (x, y)(t)| ≤ |b5(x, y)|Lf
∫ 1

0

∫ r

0

(r − s)2

2
‖y‖ ds dr +

∫ t

0

(t− s)2

2
‖y‖ds,

and so
|T (x, y)(t)| ≤ K(6.1)−(1.24)‖y‖,

where
K(6.1)−(1.24) := Lf (

Lf
24δ

+
1
6

),
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because of (6.2). This gives LfK(6.1)−(1.24) < 1, because of (6.13).
Problem (6.1)-(1.25): Let 0 < Lf <

1
5 (−4δ + 2

√
4δ2 + 30δ). Then we have

Lf
5Lf + 8δ

24δ
< 1. (6.15)

Assume that there is a solution x(t), t ∈ [0, 1] of the problem such that x′(1) =
x′′(0) = x′′(1) = 0. Integrating the equation x′′′ + f(x) = 0, we obtain x′′(t) =
−
∫ t

0
y(s)ds, where y := f(x). Thus we have∫ 1

0

y(s)ds = 0. (6.16)

Integrate, again, and obtain x(t) = x(0) + (g4y)(t), t ∈ [0, 1], where

(g4y)(t) := t

∫ 1

t

(1− s)y(s)ds+
∫ t

0

(t− t2

2
− s2

2
)y(s)ds, t ∈ I.

Define the function

(A6y)(v) :=
∫ 1

0

f(v + (g4y)(t))dt, v ∈ R,

for which we observe that

(A6y)(0) + (A6y)′(λx(0))x(0) = (A6y)(x(0)) = 0,

because of (6.16), for some λ ∈ [0, 1]. This implies that∫ 1

0

f((g4y)(t))dt+ x(0)
∫ 1

0

f ′(λx(0) + (g4y)(t))dt = 0

and so we have

x(0) = −b6(x, y)
∫ 1

0

f((g4y)(t))dt,

where
b6(x, y) :=

1∫ 1

0
f ′(λx(0) + (g4y)(t))dt

,

which satisfies |b6(x, y)| ≤ 1
δ . Hence, for all t ∈ [0, 1], the solution x satisfies the

relation
x(t) = T (x, f(x))(t),

where T is the operator defined on C(I,R)× C(I,R) by the type

T (x, y)(t) := −b6(x, y)
∫ 1

0

f((g4y)(r))dr + (g4y)(t).

Due to (6.2), this gives that

|T (x, y)(t)| ≤ |b6(x, y)|Lf‖y‖
∫ 1

0

(r
2
− r3

6
)
dr + ‖y‖( t

2
− t3

6
),

and so
|T (x, y)(t)| ≤ K(6.1)−(1.25)‖y‖,

where
K(6.1)−(1.25) := Lf (

5Lf
24δ

+
1
3

).

The latter gives LfK(6.1)−(1.25) < 1 because of (6.15).
�
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Figure 1. If the pair of parameters (δ, L) belongs to the shaded
area in the δ − L plane, then there are no solutions of the BVPs
(6.1)-(1.20), (6.1)-(1.21), (6.1)-(1.22), (6.1)-(1.23), (6.1)-(1.24),
(6.1)-(1.25), respectively.

Application 6.2. Consider the differential equation

x′′′ + (σ +
1

4(1 + x2)
)x = 0, (6.17)

for a positive parameter σ. Setting δ := σ − 1
4 and L := σ + 1

4 , one can easily
apply the tabular in Theorem 6.1 and conclude that the problems (6.17)-(1.20),
· · · , (6.17)-(1.25) do not have solutions when the parameter σ takes corresponding
values, such as they are approximately given in the following tables:

(6.17)-(1.20) (6.17)-(1.21) (6.17)-(1.22)
σ 0.00231 < σ < 4.92951 0.00254 < σ < 2.3424 0.01223 < σ < 3.40443

(6.17)-(1.23) (6.17)-(1.24) (6.17)-(1.25)
σ 0.04397 < σ < 1.70604 0.0059 < σ < 4.24411 0.03973 < σ < 1.21028
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