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MULTIPLICITY OF HOMOCLINIC SOLUTIONS FOR
SECOND-ORDER HAMILTONIAN SYSTEMS

GUI BAO, ZHIQING HAN, MINGHAI YANG

Abstract. By using a modified function technique and variational methods,

we establish the existence of infinitely many homoclinic solutions for a second-

order Hamiltonian system ü − L(t)u + Fu(t, u) = 0, for all t ∈ R, where no
coercive condition for F (t, u) at infinity is imposed.

1. Introduction and statement of main results

This article concerns the existence of homoclinic solutions for the following
second-order Hamiltonian system

ü− L(t)u+ Fu(t, u) = 0, ∀t ∈ R, (1.1)

where u = (u1, . . . , uN ) ∈ RN , L ∈ C(R,RN2
) is a symmetric matrix-valued func-

tion and F ∈ C1(R × RN ,R). Here, as usual, we say that a solution u of system
(1.1) is a homoclinic solution (to 0) if u ∈ C2(R,RN ), u(t) 6≡ 0, u(t) → 0 and
u̇(t)→ 0 as |t| → ∞.

There have been many papers devoted to the homoclinic solutions of second
order Hamiltonian systems via variational methods; see, e.g., [1, 2, 3, 4, 5, 6, 9, 10,
12, 13, 15, 16, 17, 18, 19] and the references therein. If L and F are T -periodic in
t, Rabinowitz [10] obtains the existence of one homoclinic solution to system (1.1)
as a limit of 2kT -periodic solutions. The methods and the results are extended
by many further works; e.g. see [3] for a significant paper. If L and F are not
periodic in t, the problem of existence of homoclinic solutions to system (1.1) is
quite different. We now recall some papers. In [4], the author considers the case
where L(t) is not periodic and the corresponding linear part is not necessarily
positive definite and proves that system (1.1) possesses homoclinic solutions by
extending the compact imbedding theorems in [9]. The case is also considered in
[16] but F (t, u) is subquadratic satisfying a variant of the Ahmad-Lazer-Paul type
condition. By using variant fountain theorem, the authors in [17] also investigate
the case when F (t, u) is subquadratic or superquadratic. We should point out
that either in the superquadratic or the subquadratic case for F (t, u), which is
considered in the above mentioned papers, some kind of coercive conditions at
infinity are needed.
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In this paper, by using variational methods, we obtain infinitely many homo-
clinic solutions of system (1.1) without requiring any coercive condition or even
any growth restriction for F (t, u) at infinity when F (t, u) is subquadratic. We
introduce the following hypotheses.

(L1) There exist a > 0 and r > 0 such that one of the following two conditions
is true,

(i) L ∈ C1(R,RN ) and |L′(t)| ≤ a|L(t)| for all |t| ≥ r,
(ii) L ∈ C2(R,RN ) and L′′(t) ≤ aL(t) for all |t| ≥ r, where L′(t) =

(d/dt)L(t) and L′′(t) = (d2/dt2)L(t).
(L2) There exists α < 1 such that

l(t)|t|α−2 →∞as |t| → ∞,

where l(t) is the smallest eigenvalue of L(t); i.e.,

l(t) := inf
|ξ|=1, ξ∈RN

〈L(t)ξ, ξ〉.

(F1) F (t, u) ≥ 0 for all (t, u) ∈ R × RN and there exists a constant 1 < µ < 2
such that

〈Fu(t, u), u〉 ≤ µF (t, u), ∀(t, u) ∈ R× RN .

(F2) F (t, 0) ≡ 0 and there exist constants c1 > 0, R1 > 0 and 1
2 ≤ v < 1 such

that
|Fu(t, u)| ≤ c1|u|v, ∀t ∈ R, |u| ≤ R1.

(F3) There exist constants L0 > 0, L1 > 0, d0 > 0, where L1 is sufficiently large
(fixed below), such that

F (t, u) ≥ d0|u| > 0, ∀t ∈ R, L0 ≤ |u| ≤ L1.

(F4) 0 < b ≡ inft∈R, |u|=1 F (t, u) ≤ supt∈R, |u|=1 F (t, u) ≡ b <∞.

Here and in the sequel, 〈·, ·〉 and | · | denote the standard inner product and the
associated norm in RN respectively.

Remark 1.1. In fact, if we set

M := τ∞

(
4 + (a4

1 + 2a4
2)
(
L0 +

8
d0(2− µ)

)2

+ 8c2τ1+v
1+v + 8c2τµµ

) 1
2−s

then the constant L1 in (F3) can be any constant bigger than M , where s =
max{1 + v, µ}, τ1+v, τµ and τ∞ are defined in Lemma 2.1, a1, a2 are defined in the
proof of Theorem 1.2, c2 is defined in (3.1).

Our main results are the following theorems.

Theorem 1.2. Suppose that (L1)–(L2), (F1)–(F4) are satisfied, and F (t, u) is even
in u. Then system (1.1) has infinitely many homoclinic solutions.

Theorem 1.3. Suppose that L(t) is positive for all t, and satisfies (L1)–(L2).
Assume that F (t, u) is even in u and

(F5) lim|u|→0
F (t,u)
|u|2 =∞ uniformly for t ∈ R.

Then system (1.1) has infinitely many homoclinic solutions which converge to zero.
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Remark 1.4. We point out that there are natural functions F (t, u) satisfying the
conditions of Theorem 1.2. For example,

F (t, u) = u6/5e−εu
2
.

It is easy to see that, for ε > 0 small, F (t, u) does not satisfy any of the coercive
conditions for the problem (1.1) in the above-mentioned papers (c.f. [4, 17, 16]).

2. Variational settings and preliminaries

We first recall the variational settings for system (1.1).
Denote by A the self-adjoint extension of the operator −(d2/dt2)+L(t) with the

domain D(A) ⊂ L2 := L2(R,RN ). Let E := D(|A|1/2), the domain of |A|1/2, and
define in E the inner product and norm by

(u, v)0 := (|A|1/2u, |A|1/2v)2 + (u, v)2, ‖u‖0 := (u, u)1/2
0 ,

where, as usual, (·, ·)2 denotes the inner product of L2. Then E is a Hilbert space.
The following lemma is proved in [4].

Lemma 2.1. If L(t) satisfies condition (L2), then E is compactly embedded in
Lp := Lp(R,RN ) for 1 ≤ p ≤ ∞, which implies that there exists a constant τp > 0
such that

|u|p ≤ τp‖u‖0, ∀u ∈ E.

By Lemma 2.1, the spectrum σ(A) consists of only eigenvalues numbered in
λ1 ≤ λ2 ≤ · · · → ∞(counted in their multiplicities) and a corresponding system of
eigenfunctions {en}, Aen = λnen, which forms an orthogonal basis of L2. Assume
that λ1, . . . , λn− < 0, λn−+1 = · · · = λn̄ = 0, and let E− := span{e1, . . . , en−},
E0 := span{en−+1, . . . , en̄} and E+ := span{en̄+1, . . .}. Then E = E− ⊕E0 ⊕E+.

We introduce in E the inner product

(u, v) := (|A|1/2u, |A|1/2v)2 + (u0, v0)2

and the norm
‖u‖2 = (u, u) = ‖|A|1/2u‖22 + ‖u0‖22,

where u = u− + u0 + u+ and v = v− + v0 + v+ ∈ E− ⊕ E0 ⊕ E+. Then ‖ · ‖ and
‖ · ‖0 are equivalent. From now on, the norm ‖ · ‖ in E will be used. Hereafter, (·, ·)
denotes the inner product in E or the pairing between E∗ and E.

Let X be a Banach space with the norm ‖·‖ and X = ⊕j∈NXj with dimXj <∞,
for any j ∈ N. Set Yk = ⊕kj=1Xj and Zk = ⊕∞j=kXj . Consider the following C1-
functional Φλ : X → R defined by

Φλ(u) := A(u)− λB(u), λ ∈ [1, 2].

The following variant of the fountain theorem is established in [19].

Proposition 2.2. Assume that the functional Φλ defined above satisfies the fol-
lowing conditions.

(T1) Φλ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2], Φλ(−u) =
Φλ(u) for all (λ, u) ∈ [1, 2]×X.

(T2) B(u) ≥ 0 for all u ∈ X; B(u)→∞ as ‖u‖ → ∞ in any finite dimensional
subspace of X.
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(T3) There exist ρk > rk > 0 such that

αk(λ) := inf
u∈Zk,‖u‖=ρk

Φλ(u) ≥ 0 > βk(λ) := max
u∈Yk,‖u‖=rk

Φλ(u), ∀λ ∈ [1, 2],

and

ξk(λ) := inf
u∈Zk,‖u‖≤ρk

Φλ(u)→ 0, as k →∞ uniformly for λ ∈ [1, 2].

Then there exist λn → 1, uλn ∈ Yn such that

Φ′λn |Yn(uλn) = 0, Φλn(uλn)→ ηk ∈ [ξk(2), βk(1)], as n→∞

Particularly, if {uλn} has a convergent subsequence for every k, then Φ1 has in-
finitely many nontrivial critical points {uk} ⊂ X\{θ} satisfying Φ1(uk) → 0− as
k →∞.

We shall use a result from [7]. For this purpose, we first recall the definition of
genus.

Definition 2.3. Let X be a real Banach space and A a subset of X. The set A is
said to be symmetric if u ∈ A implies −u ∈ A. For a closed symmetric set A which
does not contain the origin, we define a genus γ(A) of A as the smallest integer k
such that there exists an odd continuous mapping from A to Rk \{θ}. If there does
not exist such a k, we define γ(A) =∞. Moreover, we set γ(∅) = 0. Let Γk denote
the family of closed symmetric subsets A of X such that 0 /∈ A and γ(A) ≥ k.

Remark 2.4 ([8, 11]). 1. For any bounded symmetric neighborhood Ω of the origin
in Rm it holds that γ(∂Ω) = m.

2. Let A,B be closed symmetric subsets of X which do not contain the origin.
If there is an odd continuous mapping from A to B, then γ(A) ≤ γ(B).

The following proposition is established in [7].

Proposition 2.5. Let X be an infinite dimensional Banach space and let I ∈
C1(X,R) satisfy the following two conditions:

(A1) I(u) is even, bounded from below, I(θ) = 0 and I(u) satisfies the Palais-
Smale condition (PS)

(A2) For each k ∈ N, there exists an Ak ∈ Γk such that supu∈Ak I(u) < 0.
Then I(u) admits a sequence of critical points uk such that I(uk) ≤ 0, uk 6= θ and
limk→∞ uk = θ.

3. Proofs of the main results

3.1. Proof of Theorem 1.2. By (F1), (F2) and (F4), we obtain

|F (t, u)| ≤ c2(|u|1+v + |u|µ), ∀(t, u) ∈ R× RN , (3.1)

for some c2 > 0. By (F3), there exists a constant δ0 > 0 such that

F (t, u) ≥ d0

2
|u| > 0, ∀t ∈ R, L0 ≤ |u| ≤ L1 + δ0. (3.2)

Let χ ∈ C∞(R,R) such that χ(y) ≡ 1, if y ≤ L1, χ(y) ≡ 0, if y ≥ L1 + δ0 and
χ′(y) < 0, if y ∈ (L1, L1 + δ0). Set

G(t, u) := χ(|u|)F (t, u) +
d0

2
(1− χ(|u|))|u|.
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Then G ∈ C1(R× RN ,R) and G(t, u) ≥ 0 for all (t, u) ∈ R× RN . It is easily seen
that

〈Gu(t, u), u〉 = χ(|u|)〈Fu(t, u), u〉+ χ′(|u|)|u|(F (t, u)− d0

2
|u|) +

d0

2
(1− χ(|u|))|u|.

Hence,by (F1), (3.2) and the definition of χ, we have

〈Gu(t, u), u〉 ≤ µG(t, u), ∀(t, u) ∈ R× RN . (3.3)

Without loss of generality, we assume that d0 ≤ 1. Combining (3.1) and (3.2), we
obtain

G(t, u) ≤ 2c2(|u|1+v + |u|µ), ∀(t, u) ∈ R× RN , (3.4)

and

G(t, u) ≥ d0

2
|u| > 0, ∀t ∈ R, |u| ≥ L0. (3.5)

Let

ϕ(u) =
1
2

∫
R
(|u̇|2 + 〈L(t)u, u〉)dt−

∫
R
G(t, u) dt

=
1
2
‖u+‖ − 1

2
‖u−‖2 −

∫
R
G(t, u) dt

= ϕ1(u) + ϕ2(u)

where ϕ1(u) = 1
2‖u

+‖ − 1
2‖u
−‖2, ϕ2(u) =

∫
R G(t, u)dt for u = u− + u0 + u+ ∈ E.

By [4], we have the following lemma.

Lemma 3.1. Suppose that (L1)–(L2), (F1)–(F4) are satisfied. Then ϕ2 ∈ C1(E,R)
and ϕ′2 : E → E∗ is compact. Moreover,

(ϕ′2(u), v) =
∫

R
〈Gu(t, u), v〉dt,

(ϕ′(u), v) = (u+, v+)− (u−, v−)−
∫

R
〈Gu(t, u), v〉dt

for all u, v ∈ E = E− ⊕ E0 ⊕ E+ with u = u− + u0 + u+ and v = v− + v0 + v+.
Correspondingly, the nontrivial critical points of ϕ in E are the homoclinic solutions
of the system

ü− L(t)u+Gu(t, u) = 0, ∀t ∈ R. (3.6)

To prove Theorem 1.2 using Proposition 2.2, we define the functionals

A(u) =
1
2
‖u+‖2, B(u) =

1
2
‖u−‖2 +

∫
R
G(t, u) dt, (3.7)

Φλ(u) = A(u)− λB(u) =
1
2
‖u+‖2 − λ

(1
2
‖u−‖2 +

∫
R
G(t, u) dt

)
(3.8)

for all u = u− + u0 + u+ ∈ E = E− ⊕ E0 ⊕ E+ and λ ∈ [1, 2].
By the similar arguments as in [17], we obtain the following two Lemmas. For

the completeness of this paper we will give their proofs.

Lemma 3.2. Suppose that (F1)–(F3) are satisfied. Then B(u) ≥ 0 for all u ∈ E
and B(u)→∞ as ‖u‖ → ∞ in any finite-dimensional subspace of E.
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Proof. By G(t, u) ≥ 0 and (3.7), we have B(u) ≥ 0. For any finite-dimensional
subspace E0 ⊂ E, there exists a constant ε > 0 such that

m({t ∈ R : |u(t)| ≥ ε‖u‖}) ≥ ε, ∀u ∈ E0 \ {θ}, (3.9)

where m(·) denotes the Lebesgue measure in R. The proof of the claim is stan-
dard(e.g. see [17, 15]). Let

Λu = {t ∈ R : |u(t)| ≥ ε‖u‖}, ∀u ∈ E0 \ {θ},
where ε is given in (3.9). Then

m(Λu) ≥ ε, ∀u ∈ E0 \ {θ}. (3.10)

Combining with (3.5) and (3.10), for any u ∈ E0 with ‖u‖ ≥ L0/ε, we have

B(u) =
1
2
‖u−‖2 +

∫
R
G(t, u) dt

≥
∫

Λu

G(t, u) dt

≥
∫

Λu

d0

2
|u| dt

≥ d0ε‖u‖ ·m(Λu)/2

≥ d0ε
2‖u‖/2.

This implies that B(u) → ∞ as ‖u‖ → ∞ in any finite-dimensional subspace of
E0 ⊂ E. The proof is completed. �

Lemma 3.3. Suppose that (L2), (F1)-(F4) are satisfied. Then there exist a positive
integer k1 and two sequences 0 < rk < ρk → 0 as k →∞ such that

αk(λ) := inf
u∈Zk,‖u‖=ρk

Φλ(u) > 0, ∀k ≥ k1,

ξk(λ) := inf
u∈Zk,‖u‖≤ρk

Φλ(u)→ 0 as k →∞ uniformly for λ ∈ [1, 2],

βk(λ) := max
u∈Yk,‖u‖=rk

Φλ(u) < 0, ∀k ∈ N,

where Yk =
⊕k

j=1Xj = span{e1, . . . , ek} and Zk =
⊕∞

j=kXj = span{ek, . . .} for
all k ∈ N.

Proof. Let lk = supu∈Zk,‖u‖=1 |u|1+v
1+v,∀k ∈ N. Then lk → 0 as k → ∞ (cf.[14,

Lemma 3.8]). Choose k large enough such that Zk ⊂ E+. Noticing (F2) and
F (t, u) = G(t, u) as |u| ≤ R1, we have G(t, u) ≤ c1|u|1+v for |u| ≤ R1. Therefore,
for any u ∈ Zk with ‖u‖ ≤ R1/τ∞, we have

Φλ(u) ≥ 1
2
‖u‖2 − 2

∫
R
G(t, u) dt ≥ 1

2
‖u‖2 − 2c1lk‖u‖v+1.

Set ρk = (8c1lk)
1

1−v . There exists a positive k1 > n̄+ 1 such that ρk < R1/τ∞ for
all k ≥ k1. Thus, for any k ≥ k1, we have

αk(λ) := inf
u∈Zk,‖u‖=ρk

Φλ(u) ≥ ρ2
k/4 > 0.

Noticing that Φλ(θ) = 0, we have

0 ≥ inf
u∈Zk,‖u‖≤ρk

Φλ(u) ≥ −2c1lkρv+1
k , ∀k ≥ k1.
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Thus,

ξk(λ) := inf
u∈Zk,‖u‖≤ρk

Φλ(u)→ 0 as k →∞ uniformly for λ ∈ [1, 2].

Since dimYk <∞, there exists a constant Ck > 0 such that |u|µ ≥ Ck‖u‖, ∀u ∈
Yk. By (F1) and (F4), for any k ∈ N and |u| ≤ 1, we have G(t, u) ≥ b|u|µ. For any
k ∈ N and for all u ∈ Yk with ‖u‖ < τ−1

∞ , we have

Φλ(u) ≤ 1
2
‖u+‖2 −

∫
R
G(t, u) dt

≤ 1
2
‖u‖2 − b|u|µµ

≤ 1
2
‖u‖2 − bCµk ‖u‖

µ, ∀λ ∈ [1, 2].

Hence, for 0 < rk < min{ρk, τ−1
∞ , (2bCµk )

1
2−µ }, we have

βk(λ) := max
u∈Yk,‖u‖=rk

Φλ(u) < 0, ∀k ∈ N.

The proof is complete. �

Proof of Theorem 1.2. By F (t, u) = F (t,−u) and the definition of G(t, u), we ob-
tain that Φλ(−u) = Φλ(u) for all (λ, u) ∈ [1, 2] × E. By Lemma 2.1 and (3.4),
we know that Φλ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2].
Combining with Lemmas 3.2-3.3 and Proposition 2.2, for each k ≥ k1 there exist
λn → 1, ukλn ∈ Yn such that

Φ′λn |Yn(ukλn) = 0, Φλn(ukλn)→ ηk ∈ [ξk(2), βk(1)], as n→∞. (3.11)

Next we will prove that {ukλn} is bounded and possesses a strong convergent
subsequence in E. By Proposition 2.2, we will get infinitely many nontrivial critical
points of ϕ := Φ1. That is, we will get infinitely many homoclinic solutions of
system (3.6). By noting that F (t, u) = G(t, u) for |u| ≤ L1, our proof will be
finished if we can find an upper bound M( 6= ∞) of |u|∞ independent of L1. For
the notational simplicity, we set un = ukλn for all n ∈ N, k ≥ k1.

Now we prove that {un} is bounded in E. By Lemma 3.3, there exists k2 > 0 such
that |ξk(λ)| ≤ 1 for k ≥ k2. By (3.11), there exists n0 ∈ N such that |Φλn(un)| ≤ 2
for n ≥ n0 and k ≥ max{k1, k2}. By (F1), (F3) and (3.5), we have

2 ≥ −Φλn(un)

=
1
2

Φ′λn |Yn(un)un − Φλn(un)

≥ λn
∫

Ωn

[
G(t, un)− 1

2
〈Gu(t, un), un〉

]
dt

≥ λn(2− µ)
2

∫
Ωn

G(t, un) dt

≥ d0λn(2− µ)
4

∫
Ωn

|un| dt, ∀n ∈ N,

where Ωn := {t ∈ R : |un(t)| ≥ L0}. Consequently,∫
Ωn

|un| dt ≤ 8
d0(2− µ)

, ∀n ∈ N, n ≥ n0. (3.12)
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For any n ∈ N , define ωn : R→ R by

ωn =

{
1, t ∈ Ωn
0, t /∈ Ωn.

Noticing that dimE−⊕E0 <∞ and dimE− <∞, by the equivalence of the norms
in finite-dimensional spaces, there exist two constants a1, a2 > 0 such that

|u−n + u0
n|1 ≤ a1|u−n + u0

n|2, |u−n + u0
n|∞ ≤ a1|u−n + u0

n|2, (3.13)

‖u−n + u0
n‖ ≤ a1|u−n + u0

n|2, (3.14)

|u−n |1 ≤ a2|u−n |2, |u−n |∞ ≤ a2|u−n |2, (3.15)

‖u−n ‖ ≤ a2|u−n |2. (3.16)

By Lemma 2.1, (3.12) and the Hölder inequality, we have

|u−n + u0
n|22 = (u−n + u0

n, un)2

= (u−n + u0
n, (1− ωn)un)2 + (u−n + u0

n, ωnun)2

≤ |(1− ωn)un|∞|u−n + u0
n|1 + |ωnun|1|u−n + u0

n|∞

≤ a1

(
L0 +

8
d0(2− µ)

)
|u−n + u0

n|2, ∀n ∈ N, n ≥ n0.

By (3.14), we obtain that

‖u−n + u0
n‖ ≤ a2

1

(
L0 +

8
d0(2− µ)

)
, ∀n ∈ N. (3.17)

Similarly, by Lemma 2.1, (3.15) (3.16) and the Hölder inequality, we have

‖u−n ‖ ≤ a2
2

(
L0 +

8
d0(2− µ)

)
, ∀n ∈ N, n ≥ n0. (3.18)

Without loss of generality, we assume that ‖un‖ ≥ 1. Then by Lemma 2.1, (3.4)
(3.17) and (3.18), for all n ∈ N, n ≥ n0, we obtain

‖un‖2 = ‖u+
n ‖2 + ‖u−n + u0

n‖2

= 2Φλn(un) + λn‖u−n ‖2 + ‖u−n + u0
n‖2 + 2λn

∫
R
G(t, un) dt

≤ 4 + (a4
1 + 2a4

2)
(
L0 +

8
d0(2− µ)

)2

+ 8c2(τ1+v
1+v ‖un‖1+v + τµµ ‖un‖µ)

≤
(

4 + (a4
1 + 2a4

2)
(
L0 +

8
d0(2− µ)

)2

+ 8c2τ1+v
1+v + 8c2τµµ

)
‖un‖s,

where s = max{1 + v, µ}. By noting that 1 < µ < 2 and 1
2 ≤ v < 1, we have

‖un‖ ≤
(

4 + (a4
1 + 2a4

2)
(
L0 +

8
d0(2− µ)

)2

+ 8c2τ1+v
1+v + 8c2τµµ

) 1
2−s

, (3.19)

where the constant does not depend on L1.
Since E is embedded compactly into Lp for 1 ≤ p ≤ ∞, by a standard argument,

we obtain that {un}∞n=1 possesses a strong convergent subsequence in E for each
k ≥ max{k1, k2}. Hence, by Proposition 2.2, system (3.6) possesses infinitely many
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homoclinic solutions. By Lemma 3.3 and (3.11), we know that Φλn(ukλn) is bounded
uniformly for ∀k ≥ max{k1, k2}. Set

M := τ∞

(
4 + (a4

1 + 2a4
2)
(
L0 +

8
d0(2− µ)

)2

+ 8c2τ1+v
1+v + 8c2τµµ

) 1
2−s

.

By (3.19) we obtain ‖uk‖ ≤M, ∀k ≥ max{k1, k2}, where uk is the limit of {ukn}∞n=1.
Therefore, there exists a constant M > 0 independent of L1 such that |uk|∞ ≤
M, ∀k ≥ max{k1, k2}. Combining this with F (t, u) = G(t, u) for |u| ≤ L1, we
know that system (1.1) possesses infinitely many homoclinic solutions if L1 ≥ M .
The proof is complete. �

Proof of Theorem 1.3. Let M0 > 0, and let χ ∈ C∞(R,R) and C > 0 be such that
χ(y) ≡ 1, if y ≤M0; χ(y) ≡ 0, if y ≥M0 + 1; and |χ′(y)| < C, if y ∈ (M0,M0 + 1).
Set

G(t, u) := χ(|u|)F (t, u) + |u|(1− χ(|u|)). (3.20)
Then G ∈ C1(R× RN ,R) and

|G(t, u)| ≤ a3(1 + |u|),
for some a3 > 0. Let

ϕ̃(u) =
1
2

∫
R

(|u̇|2 + 〈L(t)u, u〉)dt−
∫

R
G(t, u) dt.

Then ϕ̃ ∈ C1(E,R) and the nontrivial critical points of ϕ̃ in E are the homoclinic
solutions of system

ü− L(t)u+Gu(t, u) = 0, ∀t ∈ R. (3.21)
Let

ψ(u) =
1
2

∫
R

(|u̇|2 + 〈L(t)u, u〉)dt− χ(|u|)
∫

R
G(t, u) dt

=
1
2
‖u‖2 − χ(|u|)

∫
R
G(t, u) dt.

Then, ψ ∈ C1(E,R). For ‖u‖ ≥ τ−1
∞ (M0 +1), we have ψ(u) = 1

2‖u‖
2, which implies

that ψ(u) → ∞ as ‖u‖ → ∞. Hence ψ is coercive on E. Then ψ(u) is bounded
from below and, by noticing Lemma 2.1, it satisfies the (PS) condition. By (3.20),
it is easy to see that ψ(u) is even and ψ(θ) = 0. This shows that (A1) holds. By
(F4), for any ε > 0, there exists δ > 0, such that F (t, u) ≥ ε−1|u|2, |u| ≤ δ. For
any given k, let Ek := span{e1, . . . , ek}. Then there exists a constant ηk such that
|u|2 ≥ ηk‖u‖ for u ∈ Ek. Therefore, for any u ∈ Ek with

‖u‖ = ρ < min{τ−1
∞ M0, τ

−1
∞ δ, 2ε−1ηk},

where ε is small enough, we have

ψ(u) =
1
2
‖u‖2 − χ(|u|)

∫
R
G(t, u) dt

≤ 1
2
‖u‖2 − ε−1η2

k‖u‖2 < 0.

Then A := {u ∈ Ek : ‖u‖ = ρ} ⊂ {u ∈ X : ψ(u) < 0}. By Remark 2.4, we
have that γ(A) = k and γ({u ∈ X : ψ(u) < 0}) ≥ γ(A) = k. Setting Ak =
{u ∈ X : ψ(u) < 0}, then Ak ∈ Γk and supu∈Γk

ψ(u) < 0. This shows that (A2)
holds. Hence, by Proposition 2.5, we obtain that ψ admits a sequence of nontrivial
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solutions {uk} such that limk→∞ uk = θ. Then there exists k1 > 0 such that
‖uk‖ ≤ τ−1

∞ M0 for k ≥ k1. Since ϕ̃ = ψ for |u| ≤ M0, we know that ϕ̃ possesses
infinitely many nontrivial nontrivial critical points {uk} for k ≥ k1. Therefore,
(3.21) possesses infinitely many nontrivial solutions. That is, system (1.1) has
infinitely many solutions by noting that F (t, u) = G(t, u) for |u| ≤ M0. The proof
is completed. �
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