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EXISTENCE OF SOLUTIONS TO FRACTIONAL
BOUNDARY-VALUE PROBLEMS WITH A PARAMETER

YA-NING LI, HONG-RUI SUN, QUAN-GUO ZHANG

Abstract. This article concerns the existence of solutions to the fractional

boundary-value problem

−
d

dt

` 1

2
0D
−β
t +

1

2
tD
−β
T

´
u′(t) = λu(t) +∇F (t, u(t)), a.e. t ∈ [0, T ],

u(0) = 0, u(T ) = 0.

First for the eigenvalue problem associated with it, we prove that there is

a sequence of positive and increasing real eigenvalues; a characterization of
the first eigenvalue is also given. Then under different assumptions on the

nonlinearity F (t, u), we show the existence of weak solutions of the problem

when λ lies in various intervals. Our main tools are variational methods and
critical point theorems.

1. Introduction

As a generalization of differentiation and integration to arbitrary non-integer
order, fractional calculus, is a significant tool for solving complex problems from
various fields such as engineering, science, viscoelasticity, diffusion and pure and
applied mathematics. As the authors point out in [14], there is hardly a field of
science or engineering that has remained untouched by this field. In the past few
years, theory of fractional differential equation has been investigated extensively,
see the monographs of Kilbas et al [12], Miller and Ross [14], and Podlubny [15],
Samko [17], and the papers [1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 13, 18, 19, 20] and the
reference therein.

In [7], Ervin and Loop investigated the steady state fractional advection disper-
sion equation

− d

dt

(
p0D

−β
t + q tD

−β
T

)
u′(t) + b(t)u′(t) + c(t)u(t) = ∇F (t, u(t)), a.e. t ∈ [0, T ],

u(0) = 0, u(T ) = 0,
(1.1)

by defining appropriate fractional derivative spaces, they established some existence
and uniqueness results of the problem. Recently, there have been many papers
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dealing with the existence of solutions for this problem. Jiao and Zhou [10] showed
the variational structure of the problem

−1
2
d

dt

(
0D
−β
t + tD

−β
T

)
u′(t) = ∇F (t, u(t)), a.e. t ∈ [0, T ],

u(0) = 0, u(T ) = 0.

By using the least action principle and Mountain Pass theorem, they obtained some
sufficient conditions for the existence of one solution. The authors in [6, 8, 11, 18]
further studied the existence and multiplicity of solutions for the above problem or
related problems by critical point theory.

Inspired by the results in [6, 7, 8, 10, 11, 18], we consider the existence of weak
solution to the fractional boundary-value problem

−1
2
d

dt

(
0D
−β
t + tD

−β
T

)
u′(t) = λu(t) +∇F (t, u(t)), a.e. t ∈ [0, T ],

u(0) == 0, u(T ) = 0.
(1.2)

where 0 < β < 1, 0D
−β
t and tD

−β
T are the left and right fractional integrals of order

β respectively, λ ∈ R is a parameter, F : [0, T ] × RN → R, and ∇F (t, x) is the
gradient of F with respect to x.

First, we consider the eigenvalue problem associates with (1.2),

−1
2
d

dt

(
0D
−β
t + tD

−β
T

)
u′(t) = λu(t) a.e. t ∈ [0, T ],

u(0) = 0, u(T ) = 0.
(1.3)

By Riesz-Schauder theory, we prove that (1.3) possesses a sequence of eigenvalues
{λk} with 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . and λk → ∞ as k → ∞. Then under the
assumption that F (t, u) is superquadratic with respect to u, we show that (1.2) has
at least one nontrivial weak solution when λ < λ1 by using Mountain Pass theorem.
In the special case λ = 0 our results extend [10, Theorem 5.2]. When λ ≥ λ1,
sufficient conditions for the existence of one solution is also given by applying
Linking theorem. We obtain also the existence of at least two weak solutions for
every real number λ via Brezis and Nirenberg’s Linking theorem. Furthermore, for
every positive integer k, the existence criteria of k pairs of weak solutions when
λ > λk are established by using Clark theorem. Our methods are different from
those used in [6, 7, 8, 10, 11, 18].

This article is organized as follows. In Section 2, some preliminaries are pre-
sented. Section 3 presents the main result and its proof.

2. Preliminaries

To apply critical point theory for the existence of solutions for problem (1.2), we
shall state some basic notation and results [11], which will be used in the proof of
our main results.

Throughout this paper, we denote α = 1 − β
2 , and assume that the following

condition is satisfied.
(H1) F (t, x) is measurable in t for every x ∈ RN and continuously differentiable

in x for a.e t ∈ [0, T ], and there exist a ∈ C(R+,R+), b ∈ L1(0, T ; R+) such
that

|F (t, x)| ≤ a(|x|)b(t), |∇F (t, x)| ≤ a(|x|)b(t) (2.1)
for all x ∈ RN and t ∈ [0, T ].
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The fractional derivative space Eα is defined by the completion of C∞0 ((0, T ),RN )
with respect to the norm

‖u‖ =
(∫ T

0

|u(t)|2dt+
∫ T

0

|0Dα
t u(t)|2dt

)1/2

,

where 0D
α
t is the α-order left Riemann-Liouville fractional derivative. If u ∈ Eα,

then 0D
α
t u(t) exists a.e. in [0, T ]. The set Eα is a reflexive and separable Hilbert

space.

Lemma 2.1 ([11]). For all u ∈ Eα, we have

‖u‖L2 ≤ Tα

Γ(α+ 1)
‖0Dα

t u‖L2 , (2.2)

‖u‖∞ ≤
Tα−

1
2

Γ(α)(2α− 1)1/2
‖0Dα

t u‖L2 . (2.3)

According to (2.2), one can consider Eα with respect to the equivalent norm

‖u‖α = ‖0Dα
t u‖L2

Lemma 2.2 ([11]). If the sequence {uk} converges weakly to u in Eα, i.e. uk ⇀ u.
Then uk → u in C([0, T ],RN ), i.e. ‖u− uk‖∞ → 0 as k →∞.

Similar to the proof of [10, Proposition 4.1], we have the following property.

Lemma 2.3. For any u ∈ Eα, we have

| cos(πα)|‖u‖2α ≤ −
∫ T

0

(
0D

α
t u(t), tDα

Tu(t)
)
dt ≤ 1

| cos(πα)|
‖u‖2α. (2.4)

To obtain a weak solution of (1.2), we assume that u is a sufficiently smooth
solution of (1.2). Multiplying (1.2) by an arbitrary v ∈ C∞0 (0, T ), we have∫ T

0

(
− 1

2
d

dt
(0D

−β
t + tD

−β
T )u′(t), v(t)

)
− λ
(
u(t), v(t)

)
dt

=
∫ T

0

(
∇F (t, u(t)), v(t)

)
dt.

(2.5)

Observe that

− 1
2

∫ T

0

( d
dt

(0D
−β
t u′(t) + tD

−β
T u′(t)), v(t)

)
dt

=
1
2

∫ T

0

(
(0D

−β
t u′(t), v′(t)) + (tD

−β
T u′(t), v′(t))

)
dt

=
1
2

∫ T

0

(
(0D

−β/2
t u′(t), tD

−β/2
T v′(t)) + (tD

−β/2
T u′(t), 0D

−β/2
t v′(t))

)
dt.

As u(0) = u(T ) = v(0) = v(T ) = 0, we have

0D
−β/2
t u′(t) = 0D

1− β2
t u(t), tD

−β/2
T u′(t) = −tD

1− β2
T u(t),

0D
−β/2
t v′(t) = 0D

1− β2
t v(t), tD

−β/2
T v′(t) = −tD

1− β2
T v(t).
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Then (2.5) is equivalent to∫ T

0

−1
2

[
(

0D
α
t u(t),tDα

T v(t)
)

+
(
tD

α
Tu(t), 0Dα

t v(t)
)
]− λ

(
u(t), v(t)

)
dt

=
∫ T

0

(
∇F (t, u(t)), v(t)

)
dt.

(2.6)

Since (2.6) is well defined for u, v ∈ Eα, the weak solution of (1.2) can be defined
as follows.

Definition 2.4. A weak solution of (1.2) is a function u ∈ Eα such that∫ T

0

−1
2
[(

0D
α
t u(t),tDα

T v(t)
)

+
(
tD

α
Tu(t), 0Dα

t v(t)
)]

− λ
(
u(t), v(t)

)
−
(
∇F (t, u(t)), v(t)

)
dt = 0

for every v ∈ Eα.

We consider the functional ϕ : Eα → R, defined by

ϕ(u) =
∫ T

0

[
− 1

2
(

0D
α
t u(t),tDα

Tu(t)
)
− λ

2
(
u(t), u(t)

)
− F (t, u(t))

]
dt. (2.7)

Then ϕ is continuously differentiable under assumption (H1), and

〈ϕ′(u), v〉 = −
∫ T

0

1
2
[(

0D
α
t u(t), tDα

T v(t)
)

+
(
tD

α
Tu(t), 0D

α
t v(t)

)]
dt

−
∫ T

0

λ
(
u(t), v(t)

)
dt−

∫ T

0

(
∇F (t, u(t)), v(t)

)
dt

(2.8)

for u, v ∈ Eα. Hence a critical point of ϕ is a weak solution of (1.2).
For our proofs, we need the following results in critical point theory.

Definition 2.5. Let E be a real Banach space and ϕ ∈ C1(E,R). We say that ϕ
satisfies the (PS) condition if any sequence {um} ⊂ E for which ϕ(um) is bounded
and ϕ′(um)→ 0, as m→∞, posses a convergent subsequence.

Lemma 2.6 (Mountain Pass theorem [16, Theorem 2.2]). Let E be a real Banach
space and ϕ ∈ C1(E,R) satisfying (PS). Suppose ϕ(0) = 0 and

(C1) there are constants ρ, α > 0 such that ϕ|∂Bρ ≥ α, where Bρ = {x ∈ E :
‖x‖ < ρ},

(C2) there is an e ∈ E \Bρ such that ϕ(e) ≤ 0.
Then ϕ possesses a critical value c ≥ α. Moreover c can be characterized as

c = inf
g∈Γ

max
u∈g([0,1])

ϕ(u),

where Γ = {g ∈ C([0, 1], E)|g(0) = 0, g(1) = e}.

Lemma 2.7 (Linking theorem [16, Theorem 5.3]). Let E be a real Banach space
with E = V ⊕ X, where V is finite dimensional. Suppose ϕ ∈ C1(E,R), satisfies
(PS), and

(C1’) there are constants ρ, α > 0 such that ϕ|∂Bρ∩X ≥ α, where Bρ = {x ∈ E :
‖x‖ < ρ},

(C3) there is an e ∈ ∂B1 ∩X and R > ρ such that if Q ≡ (BR ∩ V ) ⊕ {re|0 <
r < R}, then ϕ|∂Q ≤ 0.
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Then ϕ possesses a critical value c ≥ α, which can be characterized as

c = inf
h∈Γ

max
u∈Q

ϕ(h(u)),

where Γ = {h ∈ C(Q,E) : h = Id on ∂Q}.

Remark 2.8. It is easy to obtain the following conclusion. Suppose that ϕ|V ≤ 0
and there are an e ∈ ∂B1∩X and an R ≥ ρ such that ϕ(u) ≤ 0 for u ∈ V ⊕span{e}
and ‖u‖ ≥ R. Then for any large R,Q as defined in (C3) satisfies ϕ|∂Q ≤ 0.

Lemma 2.9 (Clark theorem [16, Theorem 9.1]). Let E be a real Banach space,
ϕ ∈ C1(E,R), with ϕ even, bounded from below, and satisfying (PS). Suppose
ϕ(0) = 0, there is a set E′ ⊂ E such that E′ is homeomorphic to Sj−1 (j − 1
dimension unit sphere) by an odd map, and supE′ϕ < 0. Then ϕ possesses at least
j distinct pairs of critical points.

Next we have the Brezis and Nirenberg’s linking theorem.

Lemma 2.10 ([5]). Let E have a direct sum decomposition E = X ⊕ Y , where
dimX < ∞, and ϕ be a C1 functional on E with ϕ(0) = 0, satisfying (PS) and
assume that, for some r > 0,

ϕ(x) ≤ 0, ∀x ∈ X, ‖x‖ ≤ r, ϕ(y) ≥ 0, ∀y ∈ Y, ‖y‖ ≤ r.

Assume also that ϕ is bounded below and infE ϕ < 0. Then ϕ has at least two
nonzero critical points.

3. Main results

First we consider the eigenvalue problem

−1
2
d

dt

(
0D
−β
t + tD

−β
T

)
u′(t) = λu, a.e. t ∈ [0, T ],

u(0) = 0, u(T ) = 0 .
(3.1)

Its weak solution u ∈ Eα satisfies

−
∫ T

0

1
2
[(

0D
α
t u(t), tDα

T v(t)
)

+
(
tD

α
Tu(t), 0D

α
t v(t)

)]
dt =

∫ T

0

λ(u(t), v(t))dt

(3.2)
for every v ∈ Eα.

Theorem 3.1. Each eigenvalue of (3.1) is real and if we repeat each eigenvalue
according to its multiplicity, we h 0 < λ1 ≤ λ2 ≤ λ3 ≤ . . . and λk →∞ as k →∞.
λ1 can be characterized as

λ1 = inf
u∈Eα\{0}

−
∫ T

0

(
0D

α
t u(t), tDα

Tu(t)
)
dt∫ T

0
(u(t), u(t))dt

. (3.3)

Furthermore, there exists an orthogonal basis {wk}∞k=1 of Eα, where wk ∈ Eα is an
eigenfunction corresponding to λk for k = 1, 2, . . . .

Proof. For u ∈ Eα, let

‖u‖1 =
(
−
∫ T

0

(
0D

α
t u(t), tDα

Tu(t)
)
dt
)1/2

.
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From (2.4), we have

| cosπα|1/2‖u‖α ≤ ‖u‖1 ≤ | cosπα|− 1
2 ‖u‖α.

So ‖ · ‖1 is an equivalent norm on Eα, while Eα is a Banach space with this new
norm, and there is an inner product induced by ‖ · ‖1, we denote

(u, v)1 = −
∫ T

0

1
2
[(

0D
α
t u(t), tDα

T v(t)
)

+
(
tD

α
Tu(t), 0D

α
t v(t)

)]
dt, u, v ∈ Eα.

Then Eα is a Hilbert space with this inner product.
Next, we will transform (3.2) into a problem about symmetric compact operator.

From Hölder inequality and (2.2), for given u ∈ L2(0, T ) and any v ∈ Eα,∣∣ ∫ T

0

(u, v)dt
∣∣ ≤ ‖u‖L2‖v‖L2

≤ Tα

Γ(α+ 1)
‖u‖L2‖v‖α

≤ Tα

Γ(α+ 1)| cosπα|1/2
‖u‖L2‖v‖1.

In view of the Riesz theorem, there exists a unique w ∈ Eα such that∫ T

0

(u, v)dt = (w, v)1, ∀v ∈ Eα.

If we define the operator K : L2(0, T )→ Eα as Ku = w, then

‖Ku‖α ≤
Tα

Γ(α+ 1)| cosπα|1/2
‖u‖L2

and K is a bounded linear operator from L2(0, T ) to Eα. Let S : Eα → L2(0, T )
be an embedding operator, by Lemma 2.2, S is compact. Thus (3.2) is equivalent
to

(u, v)1 = (λw, v)1 = (λKSu, v)1, ∀v ∈ Eα.
That is,

(I − λKS)u = 0.
Since Eα is separable and KS is symmetric and compact, by Riesz-Schauder theory,
we know that all eigenvalue {λk} of KS are positive real numbers and there are
corresponding eigenfunctions which make up an orthogonal basis of Eα and (3.3)
holds. �

Lemma 3.2. Suppose the following condition holds
(H2) there are constants µ > 2 and R > 0 such that, for |x| ≥ R,

0 < µF (t, x) ≤ (x, ∇F (t, x)). (3.4)

Then ϕ satisfies the (PS) condition.

Proof. Let {un} ⊂ Eα, {ϕ(un)} be bounded and ϕ′(un) → 0. First we show that
{un} is bounded. From (3.4), we know that there exist constants a1, a2 > 0 such
that

F (t, x) ≥ a1|x|µ − a2, t ∈ [0, T ], x ∈ RN . (3.5)
Since µ > 2, then for ε > 0, u ∈ Eα and by Young’s inequality, we have

‖u‖2L2 ≤ T
µ−2
µ ‖u‖2Lµ ≤ C(ε) + ε‖u‖µLµ
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where C(ε)→∞ as ε→ 0.
Choose 2 < µ1 < µ, and denote λ̃ = λ for λ > 0, and λ̃ = 0 otherwise. Then for

large n and choose ε small enough,

µ1ϕ(un)− (ϕ′(un), un)

= (1− µ1

2
)
∫ T

0

(
0D

α
t un(t), tDα

Tun(t)
)
dt+ λ(1− µ1

2
)‖un‖2L2

+
∫
|un|≥R

((un(t),∇F (t, un(t)))− µ1F (t, un(t)))dt

+
∫
|un|<R

((un(t),∇F (t, un(t)))− µ1F (t, un(t)))dt

≥ (
µ1

2
− 1)| cos(πα)|‖un‖2α − λ̃(1− µ1

2
)‖un‖2L2 + (µ− µ1)a1‖un‖µLµ

− (µ− µ1)Ta2 + c

≥ (
µ1

2
− 1)| cos(πα)|‖un‖2α − λ̃(1− µ1

2
)(C(ε) + ε‖un‖µLµ) + (µ− µ1)a1‖un‖µLµ

− (µ− µ1)Ta2 + c.

where c is a constant. So this implies that {un} is bounded since ε is small enough.
From the reflexivity of Eα, we may extract a weakly convergent subsequence

that, for simplicity, we call {un}, un ⇀ u, then ‖un − u‖∞ → 0. Next, we prove
that {un} strongly converges to u. By (H1), we know that∫ T

0

(
un(t)− u(t),∇F (t, un(t))−∇F (t, u(t))

)
dt→ 0 as n→∞. (3.6)

From (2.7), we have

(ϕ′(un)− ϕ′(u), un − u)

= −
∫ T

0

(
0D

α
t (un(t)− u(t)), tDα

T (un(t)− u(t))
)
dt

− λ
∫ T

0

((un(t)− u(t)), (un(t)− u(t)))dt

−
∫ T

0

(
un(t)− u(t),∇F (t, un(t))−∇F (t, u(t))

)
dt

≥ | cos(πα)|‖un − u‖2α − λ̃T‖un − u‖2∞

−
∫ T

0

(
un(t)− u(t),∇F (t, un(t))−∇F (t, u(t))

)
dt.

(3.7)

From ϕ′(un)→ 0 and un ⇀ u, we obtain that

(ϕ′(un)− ϕ′(u), un − u)→ 0 as n→∞. (3.8)

In view of (3.6), (3.7) and (3.8), it is easy to see that ‖un − u‖α → 0 as n → ∞.
Therefore ϕ satisfies the (PS) condition. �

Theorem 3.3. If (H2) holds and
(H3)

lim sup
|x|→0

F (t, x)
|x|2

≤ (Γ(α+ 1))2| cos(πα)|
4T 2α

(1− λ̃

λ1
)
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uniformly for t ∈ [0, T ], where λ̃ = λ for λ > 0, and λ̃ = 0 otherwise.
Then for λ < λ1, (1.2) has at least one nontrivial weak solution.

Proof. The proof relies on the Mountain Pass theorem. It is clear that ϕ ∈
C1(Eα, R), ϕ(0) = 0, and ϕ satisfies the (PS) condition from Lemma 3.2.

From (H3), for

ε1 =
(Γ(α+ 1))2| cos(πα)|

4T 2α
(1− λ̃

λ1
),

there exists a constant δ > 0, such that

F (t, x) ≤ ε1|x|2, t ∈ [0, T ], |x| < δ.

Let u ∈ Eα with ‖u‖α ≤ Γ(α)(2α−1)1/2δ

Tα−
1
2

, then by (2.3), ‖u‖∞ ≤ δ, and from (3.3)
and (2.2), we have

ϕ(u) =
∫ T

0

[
− 1

2
(

0D
α
t u(t), tDα

Tu(t)
)
− λ

2
(u(t), u(t))− F (t, u(t))

]
dt

≥
∫ T

0

−1
2
(

0D
α
t u(t), tDα

Tu(t)
)
dt+

λ̃

2λ1

∫ T

0

(
0D

α
t u(t), tDα

Tu(t)
)
dt− ε1‖u‖2L2

≥ (1− λ̃

λ1
)
| cos(πα)|

2
‖u‖2α −

ε1T
2α

(Γ(α+ 1))2
‖u‖2α

= (1− λ̃

λ1
)
| cos(πα)|

4
‖u‖2α.

If we choose ρ = Γ(α)(2α−1)1/2δ

Tα−
1
2

and % = (1− λ̃
λ1

) | cos(πα)|ρ2
4 , then ϕ|∂Bρ ≥ %.

Let w1 ∈ Eα be an eigenfunction corresponding to λ1 in (3.3), and choose r > 0,
it follows from (3.5) that

ϕ(rw1) =
∫ T

0

[
− r2

2
(

0D
α
t w1(t), tDα

Tw1(t)
)
− r2λ

2
(w1(t), w1(t))− F (t, rw1(t))

]
dt

≤ λ1r
2

2
‖w1‖2L2 −

λr2

2
‖w1‖2L2 − a1r

µ‖w1‖µLµ + a2T,

which implies that ϕ(rw1)→ −∞ as r →∞.
The above discussions show that ϕ has at least one nontrivial critical point, thus

(1.2) has at least one nontrivial weak solution for λ < λ1. �

Note that when λ = 0, Theorem 3.3 extends the results in [10, Theorem 5.2].

Theorem 3.4. Suppose (H2) holds and
(H4) F (t, x) ≥ 0 for all x ∈ RN \ {0}.
(H5) F (t, x) = o(|x|2) as x→ 0.

Then the problem (1.2) possesses a nontrivial weak solution for λ ≥ λ1.

Proof. We will show that the functional ϕ satisfies the hypotheses in Lemma 2.7
when λ ≥ λ1.

Lemma 3.2 tell us that ϕ satisfies the (PS) condition. Since λ ≥ λ1, we can
assume λ ∈ [λk, λk+1) for some k ∈ N. Set V = span{w1, . . . , wk} and X = V ⊥,
where {wj} are eigenfunctions of (3.1) corresponding to the eigenvalues {λj}.
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From (H5) and (2.2), for a small positive number ε2, there exists a constant
δ1 > 0, such that, for u ∈ Eα with ‖u‖∞ < δ1, we have∫ T

0

F (t, u)dt ≤ ε2‖u‖2L2 ≤
ε2T

2α

(Γ(α+ 1))2
‖u‖2α.

Hence for u ∈ X, with ‖u‖∞ ≤ δ1, we have

ϕ(u) =
∫ T

0

[
− 1

2
(

0D
α
t u(t), tDα

Tu(t)
)
− λ

2
(u(t), u(t))− F (t, u(t))

]
dt

≥ −1
2

∫ T

0

(
0D

α
t u(t), tDα

Tu(t)
)
dt+

λ

2λk+1

∫ T

0

(
0D

α
t u(t), tDα

Tu(t)
)
dt

− ε2T
2α

(Γ(α+ 1))2
‖u‖2α

≥ −1
2

(1− λ

λk+1
)
∫ T

0

(
0D

α
t u(t), tDα

Tu(t)
)
dt− ε2T

2α

(Γ(α+ 1))2
‖u‖2α

≥ | cos(πα)|
2

(1− λ

λk+1
)‖u‖2α −

ε2T
2α

(Γ(α+ 1))2
‖u‖2α.

If we choose ε2 small enough, we can get ρ, % > 0 such that ϕ|∂Bρ∩X ≥ %, and ϕ

satisfies (C
′

1) in Lemma 2.7.
To check (C3) in Lemma 2.7, it suffices to verify the conditions in Remark 2.8.

In fact, for u ∈ V , by (H4), we have

ϕ(u) =
∫ T

0

[
− 1

2
(

0D
α
t u(t), tDα

Tu(t)
)
− λ

2
(u(t), u(t))− F (t, u(t))

]
dt

≤ −1
2

∫ T

0

(
0D

α
t u(t), tDα

Tu(t)
)
dt+

λ

2λk

∫ T

0

(
0D

α
t u(t), tDα

Tu(t)
)
dt

≤ −1
2

(1− λ

λk
)
∫ T

0

(
0D

α
t u(t), tDα

Tu(t)
)
dt

≤ | cos(πα)|(λk − λ)
2λk

‖u‖2α < 0.

(3.9)

Let u0 = wk+1
‖wk+1‖α , then for u ∈ V ⊕ span{u0}, we obtain

ϕ(u) =
∫ T

0

[
− 1

2
(

0D
α
t u(t), tDα

Tu0(t)
)
− λ

2
(u(t), u(t))− F (t, u(t))

]
dt

≤ ‖u‖2α
2| cos(πα)|

− λ

2
‖u‖2L2 − a1‖u‖µLµ + a2T.

Since µ > 2, and V ⊕ span{u0} is a finite dimensional space on which all norms
are equivalent. So we obtain ϕ(u) → −∞ as ‖u‖α → ∞, u ∈ V ⊕ span{u0}. This
implies that for any large R,Q as defined in (C3), ϕ|∂Q ≤ 0.

By Lemma 2.7, ϕ has at least a nontrivial critical point, so (1.2) possesses a
nontrivial weak solution for λ ≥ λ1. �

Remark 3.5. In fact, (H5) implies (H3), so when λ < λ1, Theorem 3.3 gives the
conclusion, that is, under the assumptions of (H2), (H4) and (H5), Equation (1.2)
possesses at least one nontrivial weak solution for λ ∈ R.

Theorem 3.6. If (H1) holds and
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(H6) There exist b1, b2 > 0, and η ∈ (0, 2) such that

F (t, x) ≤ −λ
2
|x|2 + b1|x|η + b2, x ∈ RN , t ∈ [0, T ].

(H7) There are k ∈ N and r1 > 0 such that, for |x| ≤ r1

λk − λ
2
|x|2 ≤ F (t, x) ≤ λk+1 − λ

2
|x|2, t ∈ [0, T ]. (3.10)

Then (1.2) possesses at least two nontrivial weak solutions for λ ∈ R.

Proof. First we show that ϕ is bounded from below. Since η ∈ (0, 2), for u ∈ Eα,
by (H6) and (2.3), we have

ϕ(u) =
∫ T

0

[
− 1

2
(

0D
α
t u(t), tDα

Tu(t)
)
− λ

2
(u(t), u(t))− F (t, u(t))

]
dt

≥ −1
2

∫ T

0

(
0D

α
t u(t), tDα

Tu(t)
)
dt− b1T‖u‖η∞ − b2T

≥ | cos(πα)|
2

‖u‖2α −
b1T

η(α− 1
2 )+1

(Γ(α))η(2α− 1)η/2
‖u‖ηα − b2T.

(3.11)

This implies ϕ is bounded from below. If {un} is a (PS) sequence, then {un} is
bounded from (3.11). Similar to the later part proof of Lemma 3.2, we can get that
ϕ satisfies the (PS) condition.

Set V = span{w1, . . . , wk} and X = V ⊥, where {wj} are eigenfunctions of (3.1).

From (H7), for u ∈ V with ‖u‖α ≤ Γ(α)(2α−1)1/2r1

Tα−
1
2

, then ‖u‖∞ ≤ r1, and

ϕ(u) =
∫ T

0

[
−1

2
(

0D
α
t u(t), tDα

Tu(t)
)
− λ

2
(u(t), u(t))− F (t, u(t))

]
dt

≤ −1
2

∫ T

0

(
0D

α
t u(t), tDα

Tu(t)
)
dt− λk

2
‖u‖2L2 ≤ 0.

(3.12)

For u ∈ X with ‖u‖∞ ≤ r1, by (H7), we have

ϕ(u) =
∫ T

0

[
− 1

2
(

0D
α
t u(t), tDα

Tu(t)
)
− λ

2
(u(t), u(t))− F (t, u(t))

]
dt

≥ −1
2

∫ T

0

(
0D

α
t u(t), tDα

Tu(t)
)
dt− λk+1

2
‖u‖2L2 ≥ 0.

(3.13)

If infu∈Eα ϕ(u) ≥ 0, then ϕ(u) = 0 for all u ∈ V with ‖u‖α ≤ Γ(α)(2α−1)1/2r1

Tα−
1
2

,

which implies that all u ∈ V with ‖u‖α ≤ Γ(α)(2α−1)1/2r1

Tα−
1
2

are solutions of (1.2). If
infu∈Eα ϕ(u) < 0, by Lemma 2.10, we get that ϕ has at least two nontrivial weak
solutions for λ ∈ (λk, λk+1). �

Theorem 3.7. Suppose (H6) holds and

(H8) There exist ε3, r2 > 0, such that F (t, x) ≥ ε3 for |x| ≤ r2.
(H9) F (t, x) = F (t,−x).

Then for k = 1, 2, . . . , problem (1.2) possesses at least k distinct pairs of weak
solutions for λ > λk.
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Proof. It is clear that ϕ(0) = 0 and from (H9), ϕ(u) is even. (H6) and (3.11) show
that ϕ is bounded from below and satisfies the (PS) condition.

Let {wj} be the eigenfunctions of (3.1) corresponding to {λj}. Choose

E′ = {u|u =
k∑
j=1

αjwj ,

k∑
j=1

α2
j =

Γ(α)(2α− 1)1/2r2

Tα−
1
2

},

then E′ is homeomorphic to the k− 1 dimension unit sphere Sk−1 by an odd map.
Assume u ∈ E′, then ‖u‖α = Γ(α)(2α−1)1/2r2

Tα−
1
2

, so ‖u‖∞ ≤ r2, via (H8), we have

ϕ(u) =
∫ T

0

[
− 1

2
(

0D
α
t u(t), tDα

Tu(t)
)
− λ

2
(u(t), u(t))− F (t, u(t))

]
dt

≤ −1
2

∫ T

0

(
0D

α
t u(t), tDα

Tu(t)
)
dt− λk

2
‖u‖2L2 − ε3

≤ −ε3.

This implies that supE′ ϕ < 0. And by Clark theorem, ϕ possesses at least k
distinct pairs of critical points which correspond to the weak solutions of (1.2). �

Acknowledgments. This research was supported grant NECT-12-0246 and grant
lzujbky-2013-k02 from the program for New Century Excellent Talent in Universi-
ties.

References

[1] R. P. Agarwal, M. Benchohra, S.Hamani; A survey on existence results for boundary value

problems of nonlinear fractional differential equations and inclusions, Acta Appl. Math. 109
(2010), 973-1033.

[2] B. Ahmad, J. J. Nieto; Existence results for a coupled system of nonlinear fractional dif-

ferential equations with three-point boundary conditions, Comput. Math. Appl. 58 (2009)
1838-1843.
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