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LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS
INVOLVING THE (p1, p2, . . . , pn)-LAPLACIAN

DEVRIM ÇAKMAK, MUSTAFA FAHRI AKTAŞ, AYDIN TIRYAKI

Abstract. We prove some generalized Lyapunov-type inequalities for n-di-

mensional Dirichlet nonlinear systems. We extend the results obtained by
Çakmak and Tiryaki [6] for a parameter 1 < pk < 2. As an application, we

obtain lower bounds for the eigenvalues of the corresponding system.

1. Introduction

In 1907, Lyapunov [9] obtained the remarkable inequality∫ b

a

|f1(s)|ds ≥ 4
b− a

, (1.1)

if Hill’s equation
x′′1 + f1(t)x1 = 0 (1.2)

has a real nontrivial solution x1(t) such that x1(a) = 0 = x1(b), where a, b ∈ R
with a < b are consecutive zeros and x1 is not identically zero on [a, b], where f1

is a real-valued continuous function defined on R. We know that the constant 4 in
the right hand side of inequality (1.1) cannot be replaced by a larger number (see
[7, p. 345]).

Since this result has proved to be a useful tool in oscillation theory, disconju-
gacy, eigenvalue problems and numerous other applications in the study of various
properties of solutions for differential equations, many proofs and generalizations or
improvements of it have appeared in the literature. For authors, who contributed
to the Lyapunov-type inequalities, we refer to [1-19].

Here, we give some inequalities which are useful in the comparison of our main
results. We know that since the function h(x) = xpk−1 is concave for x > 0 and
1 < pk < 2, Jensen’s inequality h(ω+v

2 ) ≥ 1
2 [h(ω) + h(v)] with ω = 1

ck−a and
v = 1

b−ck for k = 1, 2, . . . , n implies

22−pk [
1

ck − a
+

1
b− ck

]pk−1 ≥ 1
(ck − a)pk−1

+
1

(b− ck)pk−1
= m1(ck) (1.3)
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for 1 < pk < 2, k = 1, 2, . . . , n. If pk > 2 for k = 1, 2, . . . , n, then the function
h(x) = xpk−1 is convex for x > 0. Thus, the inequality (1.3) is reversed, i.e.

1
(ck − a)pk−1

+
1

(b− ck)pk−1
≥ 22−pk

[ 1
ck − a

+
1

b− ck
]pk−1 = m2(ck) (1.4)

for pk > 2, k = 1, 2, . . . , n. Moreover, if we obtain the minimum of the right hand
side of inequalities (1.3) and (1.4) for ck ∈ (a, b), k = 1, 2, . . . , n, then it is easy to
see that

min
a<ck<b

mi(ck) = mi(
a+ b

2
) =

2
pk

(b− a)pk−1
(1.5)

for i = 1, 2 and k = 1, 2, . . . , n.
In 2006, Napoli and Pinasco [10] obtained the following inequality(∫ b

a

f1(s)ds
)α1/p1(∫ b

a

f2(s)ds
)α2/p2

≥ 2α1+α2

(b− a)α1+α2−1
, (1.6)

if the quasilinear system

−(φp1(x′1))′ = f1(t)|x1|α1−2x1|x2|α2

−(φp2(x′2))′ = f2(t)|x1|α1 |x2|α2−2x2

(1.7)

has a real nontrivial solution (x1(t), x2(t)) such that x1(a) = x1(b) = 0 = x2(a) =
x2(b) where a, b ∈ R with a < b consecutive zeros, and xk for k = 1, 2 are not
identically zero on [a, b], where φα(u) = |u|α−2u, f1 and f2 are real-valued pos-
itive continuous functions defined on R, 1 < p1, p2 < +∞ and the nonnegative
parameters α1, α2 satisfy α1

p1
+ α2

p2
= 1.

In 2010, Çakmak and Tiryaki [6] obtained the following inequality
n∏
k=1

(∫ b

a

f+
k (s)ds

)αk/pk
≥

n∏
k=1

[ 1
(ck − a)pk−1

+
1

(b− ck)pk−1

]αk/pk , (1.8)

where |xk(ck)| = maxa<t<b |xk(t)| and f+
k (t) = max {0, fk(t)} for k = 1, 2, . . . , n, if

the n-dimensional problem

−(φp1(x′1))′ = f1(t)|x1|α1−2x1|x2|α2 . . . |xn|αn

−(φp2(x′2))′ = f2(t)|x1|α1 |x2|α2−2x2 . . . |xn|αn

. . .

−(φpn(x′n))′ = fn(t)|x1|α1 |x2|α2 . . . |xn|αn−2xn

(1.9)

has a real nontrivial solution (x1(t), x2(t), . . . , xn(t)) satisfying the Dirichlet bound-
ary conditions

xk(a) = 0 = xk(b) (1.10)

where a, b ∈ R with a < b consecutive zeros, xk 6≡ 0 for k = 1, 2, . . . , n on [a, b].
Here, n ∈ N, φα(u) = |u|α−2u, fk are real-valued continuous functions defined on
R, 1 < pk < +∞ and the nonnegative parameters αk satisfy

∑n
k=1

αk
pk

= 1 for
k = 1, 2, . . . , n. Using (1.5) in the inequality (1.8), Çakmak and Tiryaki [6] also
obtained the inequality

n∏
k=1

(∫ b

a

f+
k (s)ds

)αk/pk ≥ 2
Pn
k=1 αk

(b− a)(
Pn
k=1 αk)−1

. (1.11)
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Recently, Yang et al [19] obtained the inequality∫ b

a

fk(s)ds ≥ 2
pk

(b− a)pk−1
Hk, (1.12)

where

Hk =
Mpk−1
k

gk(M1,M2, . . . ,Mn)
(1.13)

with Mk = |xk(ck)| = maxa<t<b |xk(t)| for k = 1, 2, . . . , n, at least one inequality
in (1.12) is also strict, if the following nonlinear system involving (p1, p2, . . . , pn)-
Laplacian operators

(φp1(x′1))′ + F1(t, x1, x2, . . . , xn) = 0

(φp2(x′2))′ + F2(t, x1, x2, . . . , xn) = 0
. . .

(φpn(x′n))′ + Fn(t, x1, x2, . . . , xn) = 0

(1.14)

has a real nontrivial solution (x1(t), x2(t), . . . , xn(t)) satisfying the boundary condi-
tion (1.10), where n ∈ N, φα(u) = |u|α−2u, 1 < pk < +∞ and Fk ∈ C([a, b]×Rn,R)
for k = 1, 2, . . . , n, under the following hypothesis:

(C1) There exist the functions fk ∈ C([a, b], [0,∞)) and gk ∈ C(Rn, [0,∞)) for
k = 1, 2, . . . , n such that

|Fk(t, x1, x2, . . . , xn)| ≤ fk(t)gk(x1, x2, . . . , xn) (1.15)

and

gk(x1, x2, . . . , xn) is monotonic nondecreasing in each variable (1.16)

for k = 1, 2, . . . , n.
Yang et al [19] claim that the inequality (1.11) with fk(t) > 0 for k = 1, 2, . . . , n

of Çakmak and Tiryaki [6] can be obtained by using the inequality (1.12) under
the following conditions

Fk(t, x1, x2, . . . , xn) = fk(t)gk(x1, x2, . . . , xn), k = 1, 2, . . . , n, (1.17)

where gk(x1, x2, . . . , xn) = |zk(x1, x2, . . . , xn)| with

z1(x1, x2, . . . , xn) = |x1|α1−2x1|x2|α2 . . . |xn|αn

z2(x1, x2, . . . , xn) = |x1|α1 |x2|α2−2x2 . . . |xn|αn

. . .

zn(x1, x2, . . . , xn) = |x1|α1 |x2|α2 . . . |xn|αn−2xn,

(1.18)

where αk ≥ 0 for k = 1, 2, . . . , n such that
∑n
k=1

αk
pk

= 1. It is easy to see from
(1.16) that the nondecreasing condition on each variable of gk with (1.18) for k =
1, 2, . . . , n is not satisfied. Therefore, [19, Remarks 1–3, Corollary 3] fail. So, [19,
Corollary 3] does not apply to this example.

Now, we present the following hypothesis instead of (C1):
(C1*) There exist the functions fk ∈ C([a, b], [0,∞)) and gk ∈ C(Rn, [0,∞)) for

k = 1, 2, . . . , n such that

|Fk(t, x1, x2, . . . , xn)| ≤ fk(t)gk(|x1|, |x2|, . . . , |xn|) (1.19)
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and gk(u1, u2, . . . , un) is monotonic nondecreasing in each variable ui, such
that either gk(0, 0, . . . , 0) = 0 or gk(u1, u2, . . . , un) > 0 for at least one
ui 6= 0 for i = 1, 2, . . . , n, for k = 1, 2, . . . , n.

It is clear that if the hypothesis (C1) is replaced by (C1*) for system (1.14), then
(1.11) with fk(t) > 0 for k = 1, 2, . . . , n of Çakmak and Tiryaki [6] obtain by using
inequality (1.12) under the condition αk ≥ 1 for k = 1, 2, . . . , n.

In this article, our purpose is to obtain Lyapunov-type inequalities for system
(1.14) similar to the ones given in Yang et al [19] by imposing somewhat different
conditions on the function Fk for k = 1, 2, . . . , n, and improve and generalize the
results of Çakmak and Tiryaki [6] when 1 < pk < 2 for k = 1, 2, . . . , n. In addition,
the positivity conditions on the function fk for k = 1, 2, . . . , n in hypothesis (C1) are
dropped. We also obtain a better lower bound for the eigenvalues of corresponding
system as an application.

We derive some Lyapunov-type inequalities for system (1.14), where all compo-
nents of the solution (x1(t), x2(t), . . . , xn(t)) have consecutive zeros at the points
a, b ∈ R with a < b in I = [t0,∞) ⊂ R. For system (1.14), we also derive some
Lyapunov-type inequalities which relate not only points a and b in I at which all
components of the solution (x1(t), x2(t), . . . , xn(t)) have consecutive zeros but also
a point in (a, b) where all components of the solution (x1(t), x2(t), . . . , xn(t)) are
maximized.

Since our attention is restricted to the Lyapunov-type inequalities for system
of differential equations, we shall assume the existence of the nontrivial solution
(x1(t), x2(t), . . . , xn(t)) of system (1.14).

2. Main results

We give the following hypothesis for system (1.14).
(C2) There exist the functions fk ∈ C([a, b],R) and gk ∈ C(Rn, [0,∞)) such that

Fk(t, x1, x2, . . . , xn)xk ≤ fk(t)gk(|x1|, |x2|, . . . , |xn|) (2.1)

and
gk(u1, u2, . . . , un) is monotonic nondecreasing in each
variable ui such that either gk(0, 0, . . . , 0) = 0 or
gk(u1, u2, . . . , un) > 0 for at least one ui 6= 0, i = 1, 2, . . . , n,

(2.2)

for k = 1, 2, . . . , n.
One of the main results of this article is the following theorem, whose proof is

different from the that of [19, Theorem 1] and modified that of [13, Theorem 2.1].

Theorem 2.1. Assume that hypothesis (C2) is satisfied. If (1.14) has a real
nontrivial solution (x1(t), x2(t), . . . , xn(t)) satisfying the boundary condition (1.10),
then the inequalities∫ b

a

f+
k (s)ds ≥ 22−pk

[ 1
ck − a

+
1

b− ck
]pk−1

MkHk (2.3)

hold, where f+
k (t) = max{0, fk(t)}, and Hk, Mk for k = 1, 2, . . . , n are as in (1.13).

Moreover, at least one inequality in (2.3) is strict.

Proof. Let the boundary condition (1.10) hold; i.e., xk(a) = 0 = xk(b) for k =
1, 2, . . . , n where n ∈ N, a, b ∈ R with a < b consecutive zeros and xk for k =
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1, 2, . . . , n are not identically zero on [a, b]. Thus, by Rolle’s theorem, we can
choose ck ∈ (a, b) such that

Mk = max
a<t<b

|xk(t)| = |xk(ck)| and x′k(ck) = 0

for k = 1, 2, . . . , n. By using xk(a) = 0 and Hölder’s inequality, we obtain

|xk(ck)| ≤
∫ ck

a

|x′k(s)|ds ≤ (ck − a)(pk−1)/pk
(∫ ck

a

|x′k(s)|pkds
)1/pk

(2.4)

and hence

|xk(ck)|pk ≤ (ck − a)pk−1

∫ ck

a

|x′k(s)|pkds (2.5)

for k = 1, 2, . . . , n and ck ∈ (a, b). Similarly, by using xk(b) = 0 and Hölder’s
inequality, we obtain

|xk(ck)|pk ≤ (b− ck)pk−1

∫ b

ck

|x′k(s)|pkds (2.6)

for k = 1, 2, . . . , n and ck ∈ (a, b). Multiplying the inequalities (2.5) and (2.6) by
(b− ck)pk−1 and (ck − a)pk−1 for k = 1, 2, . . . , n, respectively, we obtain

(b− ck)pk−1|xk(ck)|pk ≤ [(ck − a)(b− ck)]pk−1

∫ ck

a

|x′k(s)|pkds (2.7)

and

(ck − a)pk−1|xk(ck)|pk ≤ [(ck − a)(b− ck)]pk−1

∫ b

ck

|x′k(s)|pkds (2.8)

for k = 1, 2, . . . , n and ck ∈ (a, b). Thus, adding the inequalities (2.7) and (2.8), we
have

|xk(ck)|pk [(b− ck)pk−1 + (ck−a)pk−1] ≤ [(ck−a)(b− ck)]pk−1

∫ b

a

|x′k(s)|pkds (2.9)

for k = 1, 2, . . . , n and ck ∈ (a, b). It is easy to see that the functions zk(x) =
(b− x)pk−1 + (x− a)pk−1 take the minimum values at a+b

2 ; i.e.,

zk(x) ≥ min
a<x<b

zk(x) = zk(
a+ b

2
) = 2(

b− a
2

)pk−1

for k = 1, 2, . . . , n. Thus, we obtain

|xk(ck)|pk [2(
b− a

2
)pk−1] ≤ [(ck − a)(b− ck)]pk−1

∫ b

a

|x′k(s)|pkds (2.10)

and hence

2Mpk
k = 2|xk(ck)|pk ≤ [

2
b− a

(ck − a)(b− ck)]pk−1

∫ b

a

|x′k(s)|pkds (2.11)

for k = 1, 2, . . . , n and ck ∈ (a, b). Multiplying the k-th equation of system (1.14)
by xk(t), integrating from a to b by using integration by parts and taking into
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account that xk(a) = 0 = xk(b) and the inequalities (2.1) for k = 1, 2, . . . , n, then
the monotonicity of gk yields∫ b

a

|x′k(s)|pkds =
∫ b

a

Fk(s, x1(s), x2(s), . . . , xn(s))xk(s)ds

≤
∫ b

a

fk(s)gk(|x1(s)|, |x2(s)|, . . . , |xn(s)|)ds

≤
∫ b

a

f+
k (s)gk(|x1(s)|, |x2(s)|, . . . , |xn(s)|)ds

= gk(M1,M2, . . . ,Mn)
∫ b

a

f+
k (s)ds.

(2.12)

Then, using (2.12) in (2.11), we have∫ b

a

f+
k (s)ds ≥

2Mpk
k

gk(M1,M2, . . . ,Mn)
[ b− a
2(ck − a)(b− ck)

]pk−1 (2.13)

for k = 1, 2, . . . , n. Since (x1(t), x2(t), . . . , xn(t)) is a nontrivial solution of system
(1.14), it is easy to see that at least one inequality in (2.13) is strict, which completes
the proof. �

Another main result of this paper is the following theorem whose proof is almost
the same to that of [19, Theorem 1]; hence it is omitted.

Theorem 2.2. Let all the assumptions of Theorem 2.1 hold. Then the inequality∫ b

a

f+
k (s)ds ≥

[ 1
(ck − a)pk−1

+
1

(b− ck)pk−1

]
MkHk (2.14)

holds, where f+
k (t), Hk and Mk for k = 1, 2, . . . , n are as in Theorem 2.1. Moreover,

at least one inequality in (2.14) is strict.

Remark 2.3. The right-hand side of inequalities (2.3) in Theorem 2.1 or (2.14) in
Theorem 2.2 shows that ck, for k = 1, 2, . . . , n, cannot be too close to a or b, since
the exponents satisfy 1 < pk < +∞ for k = 1, 2, . . . , n. We have

∫ b
a
f+
k (s)ds < ∞

for k = 1, 2, . . . , n, but

lim
ck→a+, ck→b−

[ 1
ck − a

+
1

b− ck
]pk−1 =∞, or

lim
ck→a+, ck→b−

[ 1
(ck − a)pk−1

+
1

(b− ck)pk−1

]
=∞

for k = 1, 2, . . . , n.

Now, according to the value of pk, we compare Theorem 2.1 with Theorem 2.2
as follows.

Remark 2.4. It is easy to see from inequality (1.3) that if we take 1 < pk < 2, for
k = 1, 2, . . . , n, then inequality (2.3) is better than (2.14) in the sense that (2.14)
follows from (2.3), but not conversely. Similarly, from inequality (1.4), if pk > 2,
for k = 1, 2, . . . , n, then inequality (2.14) is better than (2.3) in the sense that
(2.3) follows from (2.14), but not conversely. Moreover, if pk = 2 or ck = a+b

2 for
k = 1, 2, . . . , n, then Theorem 2.1 is exactly the same as Theorem 2.2.

By using (1.5) in Theorem 2.1 or 2.2, we obtain the following result.
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Theorem 2.5. Let all the assumptions of Theorem 2.1 hold. Then the inequality∫ b

a

f+
k (s)ds ≥ 2

pk

(b− a)pk−1
MkHk (2.15)

holds, where f+
k (t), Hk and Mk for k = 1, 2, . . . , n are as in Theorem 2.1. Moreover,

at least one inequality in (2.15) is strict.

Now, we present the following hypothesis which gives the importance of our
theorems for system (1.9).

(C3) There exist the functions fk ∈ C([a, b],R) and gk ∈ C(Rn, [0,∞)) such that

Fk(t, x1, x2, . . . , xn)xk = fk(t)gk(|x1|, |x2|, . . . , |xn|) (2.16)

and
gk(u1, u2, . . . , un) is monotonic nondecreasing in each
variable ui such that either gk(0, 0, . . . , 0) = 0 or
gk(u1, u2, . . . , un) > 0 for at least one ui 6= 0 for i =
1, 2, . . . , n,

(2.17)

where gk(|x1|, |x2|, . . . , |xn|) = xkzk(x1, x2, . . . , xn) with (1.18) for k =
1, 2, . . . , n such that αk ≥ 0 and

∑n
k=1

αk
pk

= 1.

It is easy to see that system (1.14) with hypothesis (C3) reduces to system (1.9).
Since

n∏
k=1

(MkHk)αk/pk = 1, (2.18)

we have the following results from Theorems 2.1 and 2.2, respectively.

Theorem 2.6. Assume that hypothesis (C3) is satisfied. If (1.14) has a real non-
trivial solution (x1(t), x2(t), . . . , xn(t)) satisfying the boundary condition (1.10),
then

n∏
k=1

(∫ b

a

f+
k (s)ds

)αk/pk
≥

n∏
k=1

[
22−pk(

1
ck − a

+
1

b− ck
)pk−1

]αk/pk , (2.19)

where |xk(ck)| = maxa<t<b |xk(t)| and f+
k (t) = max{0, fk(t)} for k = 1, 2, . . . , n.

Moreover, at least one inequality in (2.19) is strict.

Theorem 2.7. Let all the assumptions of Theorem 2.6 hold. Then the inequality
n∏
k=1

(∫ b

a

f+
k (s)ds

)αk/pk
≥

n∏
k=1

[ 1
(ck − a)pk−1

+
1

(b− ck)pk−1

]αk/pk (2.20)

holds, where ck and f+
k (t) for k = 1, 2, . . . , n are as in Theorem 2.6. Moreover, at

least one inequality in (2.20) is strict.

By using (1.5) in Theorem 2.6 or 2.7 and (2.18) in Theorem 2.5, we have the
following result.

Corollary 2.8. Let all the assumptions of Theorem 2.6 hold. Then the inequality
n∏
k=1

(∫ b

a

f+
k (s)ds

)αk/pk
≥ 2

Pn
k=1 αk

(b− a)(
Pn
k=1 αk)−1

(2.21)

holds, where f+
k (t) for k = 1, 2, . . . , n is as in Theorem 2.6. Moreover, at least one

inequality in (2.21) is strict.
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Remark 2.9. It is easy to see from (1.3) that if we take 1 < pk < 2 for k =
1, 2, . . . , n, then (2.19) is better than (1.8) in the sense that (1.8) follows from
(2.19), but not conversely. Similarly, from (1.4), if pk > 2 for k = 1, 2, . . . , n,
then (1.8) is better than (2.19) in the sense that (2.19) follows from (1.8), but not
conversely.

Remark 2.10. It is easy to see that inequality (2.20) is exactly the same as (1.8),
and (2.21) is exactly the same as (1.11).

Remark 2.11. When αk = pk for k = 1, 2, . . . , n, and for i 6= k, αi = 0 for
i = 1, 2, . . . , n in system (1.9), we obtain the result for the case of a single equation
from Theorems 2.6, 2.7 or Corollary 2.8.

Remark 2.12. Since |f(x)| ≥ f+(x), the integrals of
∫ b
a
f+
k (s)ds for k = 1, 2, . . . , n

in the above results can also be replaced by
∫ b
a
|fk(s)|ds for k = 1, 2, . . . , n, respec-

tively.

3. Applications

In this section, we present some applications of the Lyapunov-type inequalities
obtained in Section 2.

Firstly, we give the same example of Yang et al [19] which gives the importance
of our results. Note that our Corollary 2.8 is applicable to the following example,
but [19, Corollary 3] is not applicable to it, since the nondecreasing condition on
each variable of gk for k = 1, 2, . . . , n is not satisfied.

Example 3.1. Consider the quasilinear system

(φp1(x′1))′ + f1(t)(3 + sin 2x1)|x1|α1−2x1|x2|α2−1x2 = 0

(φp2(x′2))′ + f2(t)(1 + sin2 2x2)|x1|α1−1x1|x2|α2−2x2 = 0,
(3.1)

where φα(u) = |u|α−2u, p1, p2 > 1, α1, α2 ≥ 0 with α1
p1

+ α2
p2

= 1, f1 and f2

are nonnegative continuous functions on [a, b]. Assume that system (3.1) has a
real nontrivial solution (x1(t), x2(t)) satisfying the Dirichlet boundary condition
x1(a) = x1(b) = 0 = x2(a) = x2(b). Since

F1(t, x1, x2)x1 ≤ 4f1(t)|x1|α1 |x2|α2 and

F2(t, x1, x2)x2 ≤ 2f2(t)|x1|α1 |x2|α2 ,
(3.2)

where gk(u1, u2) = uα1
1 uα2

2 for k = 1, 2 which are satisfied the nondecreasing con-
dition on each variable ui for i = 1, 2, we have the following inequalities

4
∫ b

a

f1(s)ds >
2
p1

(b− a)p1−1
M1H1, 2

∫ b

a

f2(s)ds >
2
p2

(b− a)p2−1
M2H2 (3.3)

with M1H1 = Mp1−α1
1 M−α2

2 and M2H2 = M−α1
1 Mp2−α2

2 from Theorem 2.6.
Hence, we have(∫ b

a

f1(s)ds
)α1
p1
(∫ b

a

f2(s)ds
)α2
p2
>

2α1+α2−α1
p1
−1

(b− a)α1+α2−1
(3.4)

from Corollary 2.8.
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Secondly, we give another application of the Lyapunov-type inequalities obtained
for system (1.9). Note that the lower bounds are found by using inequality (2.20)
in Theorem 2.7 coincide with that of [6, Theorem 9]. Now, we present new lower
bounds by using inequality (2.19) in Theorem 2.6 which give a better lower bound
for the eigenvalues of following system than that of [6, Theorem 9] when 1 < pk < 2
for k = 1, 2, . . . , n.

Let λk for k = 1, 2, . . . , n be generalized eigenvalues of system (1.9), and r(t) be
a positive function for all t ∈ R. Therefore, system (1.9) with fk(t) = λkαkr(t) > 0
for k = 1, 2, . . . , n and all t ∈ R reduces to the system

−(|x′1|p1−2x′1)′ = λ1α1r(t)|x1|α1−2x1|x2|α2 . . . |xn|αn

−(|x′2|p2−2x′2)′ = λ2α2r(t)|x1|α1 |x2|α2−2x2 . . . |xn|αn

. . .

−(|x′n|pn−2x′n)′ = λnαnr(t)|x1|α1 |x2|α2 . . . |xn|αn−2xn .

(3.5)

By using similar techniques to the technique in [6], we obtain the following result
which gives lower bounds for the n-th eigenvalue λn. The proof of following theorem
is based on above generalization of the Lyapunov-type inequality, as in that of [6,
Theorem 9] and hence is omitted.

Theorem 3.2. There exist a function k1(λ1, λ2, . . . , λn−1) such that

λn ≥ k1(λ1, λ2, . . . , λn−1) (3.6)

for every generalized eigenvalue (λ1, λ2, . . . , λn) of system (3.5), where |xk(ck)| =
max
a<t<b

|xk(t)| for k = 1, 2, . . . , n and

k1(λ1, λ2, . . . , λn−1)

=
1
αn

{ n∏
k=1

[
22−pk( 1

ck−a + 1
b−ck )pk−1

]αk/pk[ n−1∏
k=1

(λkαk)αk/pk
∫ b

a

r(s)ds
]−1
}pn/αn

.

(3.7)

Remark 3.3. Let 1 < pk < 2 for k = 1, 2, . . . , n. If we compare Theorem 3.2
with [6, Theorem 9], we obtain k1(λ1, λ2, . . . , λn−1) ≥ h1(λ1, λ2, . . . , λn−1) since
the inequality (1.3) holds. Thus, Theorem 3.2 gives a better lower bound than [6,
Theorem 9].

Remark 3.4. Since k1 is a continuous function, k1(λ1, λ2, . . . , λn−1)→ +∞ as any
eigenvalue of λk → 0+ for k = 1, 2, . . . , n−1. Therefore, there exists a ball centered
in the origin such that the generalized spectrum is contained in its exterior. Also,
by rearranging terms in (3.6) we obtain

n∏
k=1

λ
αk/pk
k ≥

n∏
k=1

[22−pk(
1

ck − a
+

1
b− ck

)pk−1]αk/pk
[ n∏
k=1

α
αk/pk
k

∫ b

a

r(s)ds
]−1

.

(3.8)
It is clear that when the interval collapses, right-hand side of (3.8) approaches
infinity.
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[4] D. Çakmak; On Lyapunov-type inequality for a class of nonlinear systems, Math. Inequal.
Appl. 16 (2013), 101-108.
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[6] D. Çakmak, A. Tiryaki; Lyapunov-type inequality for a class of Dirichlet quasilinear systems

involving the (p1, p2, . . . , pn)-Laplacian, J. Math. Anal. Appl. 369 (2010), 76-81.
[7] P. Hartman; Ordinary differential equations, Wiley, New York, 1964 an Birkhäuser, Boston
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[18] M. Ünal, D. Çakmak; Lyapunov-type inequalities for certain nonlinear systems on time

scales, Turkish J. Math. 32 (2008), 255-275.

[19] X. Yang, Y. Kim, K. Lo; Lyapunov-type inequality for a class of quasilinear systems, Math.
Comput. Modelling 53 (2011), 1162-1166.

Devrim Çakmak
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