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STABILIZATION OF A SEMILINEAR WAVE EQUATION WITH
VARIABLE COEFFICIENTS AND A DELAY TERM IN THE

BOUNDARY FEEDBACK

JING LI, HONGYINPING FENG, JIEQIONG WU

Abstract. We study the uniform stabilization of a semilinear wave equation

with variable coefficients and a delay term in the boundary feedback. The

Riemannian geometry method is applied to prove the exponential stability of
the system by introducing an equivalent energy function.

1. Introduction

Let Ω be a bounded domain in Rn (n ≥ 2) with smooth boundary ∂Ω = Γ0

⋃
Γ1.

Assume that Γ0 is nonempty and relatively open in ∂Ω and Γ0 ∩ Γ1 = ∅. Define

Au = −div(A(x)∇u) for u ∈ H1(Ω), (1.1)

where div(X) denote the divergence of the vector field X in the Euclidean metric,
A(x) = (aij(x)) is a matrix function with aij = aji of class C1, satisfying

λ

n∑
i=1

ξ2
i ≤

n∑
i,j=1

aij(x)ξiξj ≤ Λ
n∑
i=1

ξ2
i ∀x ∈ Ω,

0 6= ξ = (ξ1, ξ2 · · · ξn)T ∈ Rn,

(1.2)

for some positive constants λ,Λ.
We consider the initial boundary value problem

utt(x, t) +Au(x, t) + h(∇u) + f(u) = 0 in Ω× (0,+∞),

u = 0 on Γ0 × (0,+∞),
∂u

∂νA
= −µ1ut(x, t)− µ2ut(x, t− τ) on Γ1 × (0,+∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

ut(x, t− τ) = g0(x, t− τ) on Γ1 × [0, τ ],

(1.3)

where
∂u

∂νA
=

n∑
i,j=1

aij
∂u

∂xj
νi,
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and ν(x) = (ν1, ν2, · · · νn)T denotes the outside unit normal vector of the boundary,
νA = Aν. f : R→ R and h : Rn → R are continuous nonlinear functions satisfying
some assumptions (see (A1), (A2)). Here, τ > 0 is a time delay, µ1, µ2 are positive
real numbers, and the initial values (u0, u1, g0) belong to suitable spaces.

The problem of uniform stabilization for the solution to the wave equation has
been widely investigated. We refer the reader to [3, 6, 8, 10, 11]. The system (1.3)
was claimed to be a nondissipative wave system in the literature. The stability of
a nondissipative system is a important mathematical problem and has attracted
much attention in recent years. On the other hand, delay effects arise in many
applications and practical problems and it is well-known that an arbitrarily small
delay may destabilize a system which is uniformly asymptotically stable in absence
of the delay, see [4, 12, 13, 16]. Consequently, we consider the stabilization for a
nondissipative wave system with a delay term in the boundary feedback.

When A(x) ≡ I, we say that the system (1.3) is of constant coefficients. In this
case, many results on such problems are available in the literature, see [4, 6, 10, 12,
13, 16]. The coefficients matrix A(x) is related to the material in applications. Our
main goal is to dispense with the restriction A(x) ≡ I, and we consider the variable
coefficients case. The main tool is the Riemannian geometric method which was
first introduced in [17] to obtain the observability inequality. This method was
then applied to established the controllability and stabilization in [1, 2, 9, 15, 18]
for second-order hyperbolic equations with the variable coefficients principal part.
For a survey on the Riemannian geometric method, we refer the reader to [7].

We will show that the nondissipative system (1.3) is essentially a dissipative
system by introducing an equivalent energy function of the system. A similar
nondissipative system with variable coefficients has been studied in [8]. However,
the delay term was not considered. The appearance of the delay term often brings
great difficulty. We will select a new equivalent energy function, which is different
from the equivalent energy function in [8], to obtain the exponential stability of the
solution to (1.3).

Our paper is organized as follows. In Section 2, some necessary notation is
introduced and the main results are presented. In Section 3, some preliminary
results and the main theorem are proved. The proof of the existence theorem of
the solution is presented in the Appendix.

2. Notation and statement of results

All definitions and notation are standard and classical in the literature, see [14].
Set

G(x) = (gij(x)) = A−1(x). (2.1)

For each x ∈ Rn in the tangent space Rnx = Rn, we denote the inner product and
the norm as

g(X,Y ) = 〈X,Y 〉g =
n∑

i,j=1

gij(x)αiβj , |X|g = 〈X,X〉1/2g (2.2)

for all

X =
n∑
i=1

αi
∂

∂xi
, Y =

n∑
i=1

βi
∂

∂xi
∈ Rnx , x ∈ Rn.
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From [17, Lemma 2.1], it holds that

〈X(x), A(x)Y (x)〉g = X(x) · Y (x) x ∈ Rn, (2.3)

where the central dot denotes the Euclidean product of Rn.
It is easy to check that (Rn, g) is a Riemannian manifold with the metric g.
Denote as D the Levi-Civita connection in the Riemannian metric g. Let H be

a vector field on (Rn, g). Then the covariant differential DH of H determines a
bilinear form on Rnx × Rnx for each x ∈ Rn, by

DH(X,Y ) = 〈DYH,X〉g ∀X,Y ∈ Rnx , (2.4)

where DYH stands for the covariant derivative of vector field H with respect to Y .
Denote as ∇gu the the gradient of u in the Riemannian metric g. It follows from

[17, Lemma 2.1] that

∇gu =
n∑
i=1

( n∑
j=1

aij(x)
∂u

∂xj

) ∂

∂xi
, |∇gu|2g =

n∑
i,j=1

aij
∂u

∂xi

∂u

∂xj
. (2.5)

We refer the reader to [17] for further relationships.
The following assumptions are needed for proving our results.
(A1) f : R→ R is a C1-function deriving from a potential

F (s) =
∫ s

0

f(τ)dτ ≥ 0 ∀s ∈ R, (2.6)

and satisfies

|f(s)| ≤ b1|s|ρ + b2, |f ′(s)| ≤ b1|s|ρ−1 + b2, (2.7)

where b1, b2 are positive constants and the parameter ρ satisfies

1 ≤ ρ ≤

{
2, n ≤ 3,
n
n−2 , n ≥ 4.

(2.8)

(A2) h : Rn → R is a C1-function and there exist two constants β > 0 and L > 0
such that

|h(ξ)| ≤ β
√
λ|ξ|, |∇h(ξ)| ≤ L ∀ξ ∈ Rn. (2.9)

(A3) There exists a vector field H on the Riemannian manifold (Rn, g) such that

DH(X,X) = c(x)|X|2g ∀x ∈ Ω, X ∈ Rnx . (2.10)

Let b = minΩ c(x) > 0 and B = maxΩ c(x) such that

B < min
{
b+

2b− 3ε0

n
, r
(
b− ε0

n

)}
for some ε0 ∈ (0, b) and r > 1. (2.11)

Moreover,

H · ν ≤ 0 on Γ0 and H · ν ≥ δ > 0 on Γ1 for some constant δ. (2.12)

Note that (A3) implies that

nb ≤ div(H) ≤ nB. (2.13)

A number of examples of such a vector field H on (Rn, g) for which the condition
(2.10) is satisfied without any constraints on B are presented in [17].

When A(x) ≡ I, condition (2.10) is automatically satisfied by choosing H =
x− x0.
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If µ2 = 0, that is, in absence of the delay term, the energy of the system (1.3)
is exponentially decaying to zero, see [8]. On the contrary, if µ1 = 0, that is,
there exists only the delay part in the boundary condition on Γ1, the system (1.3)
becomes unstable. See, for instance [5]. So it is interesting to seek a stabilization
result when both µ1 and µ2 are nonzero. In this case, the boundary feedback is
composed of two parts and only one of them has a delay.

The stability of a linear wave equation with constant coefficients and a delay in
the boundary feedback has been studied in [12]. There it is shown that if µ1 = µ2,
then there exists a sequence of arbitrary small (and large) delays such that insta-
bilities occur, if µ2 > µ1; delays which destabilize the system were also obtained.

In this article, in agreement with [12], we assume that

µ2 < µ1. (2.14)

Set
V = {v ∈ H1(Ω)|v = 0 on Γ0}, W = H2(Ω) ∩ V.

Theorem 2.1. Under assumptions (A1), (A2) and (2.14), for any given initial
values (u0, u1) ∈W ×W , g0 ∈ C1([−τ, 0];L2(Γ1)), satisfying

∂u0

∂νA
= −µ1u1 − µ2g0(x,−τ) on Γ1 (2.15)

and T > 0, system (1.3) admits a unique strong solution u on (0, T ) such that

u ∈ L∞(0, T ;V ), ut ∈ L∞(0, T ;V ), utt ∈ L∞(0, T ;L2(Ω)). (2.16)

Moreover, if (u0, u1) ∈ V × L2(Ω), g0 ∈ L2(−τ, 0;L2(Γ1)), then (1.3) possess at
least a weak solution in the space C([0, T ];V ) ∩ C1([0, T ];L2(Ω)).

The Galerkin’s approximation will be used for proving Theorem 2.1. Under
assumption (2.14), define the energy of (1.3) as

E(t) =
1
2

∫
Ω

[|ut|2 + |∇gu|2g + 2F (u)]dx+
ξ

2

∫ 1

0

∫
Γ1

u2
t (x, t− τρ)dΓdρ, (2.17)

where ξ is a strictly positive constant satisfying

τµ2 ≤ ξ ≤ τ(2µ1 − µ2). (2.18)

Denote Es(t) as

Es(t) =
1
2

∫
Ω

[|ut|2 + |∇gu|2g + 2F (u)]dx. (2.19)

Our main result is the following theorem.

Theorem 2.2. Let u be a (strong or weak) solution of (1.3). Suppose that (A1)–
(A3) and (2.14) hold. In addition assume that f satisfies

2rF (s) ≤ sf(s) for some constant r > 1, and all s ∈ R. (2.20)

If β in (2.9) is sufficiently small, then there exist positive constants C and ω inde-
pendent of initial values such that

E(t) ≤ CE(0) exp{−ωt} ∀t ≥ 0. (2.21)
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3. Proof of Theorem 2.2

Proposition 3.1. Let u be a (strong or weak) solution to the system (1.3), the
following estimate holds:

dE(t)
dt

≤ −C1

∫
Γ1

[u2
t (x, t) + u2

t (x, t− τ)]dΓ + βEs(t), (3.1)

with C1 is a positive constant to be specified later.

Proof. Differentiating (2.17), we obtain

dE(t)
dt

=
∫

Ω

[ututt + 〈∇gu,∇gut〉g + f(u)ut] dx

+ ξ

∫ 1

0

∫
Γ1

ut(x, t− τρ)utt(x, t− τρ)dΓdρ

=
∫

Γ1

∂u

∂νA
utdΓ−

∫
Ω

uth(∇u)dx

+ ξ

∫ 1

0

∫
Γ1

ut(x, t− τρ)utt(x, t− τρ)dΓdρ.

(3.2)

Now, let y(x, ρ) = u(x, t− τρ). So we have

ut = −1
τ
yρ, utt =

1
τ2
yρρ. (3.3)

Therefore,∫ 1

0

∫
Γ1

ut(x, t− τρ)utt(x, t− τρ)dΓdρ = − 1
τ3

∫ 1

0

∫
Γ1

yρ(x, ρ)yρρ(x, ρ)dΓdρ. (3.4)

Integrating by parts in ρ, we obtain∫ 1

0

∫
Γ1

yρ(x, ρ)yρρ(x, ρ)dΓdρ

=
(∫

Γ1

yρ(x, ρ)yρ(x, ρ)dΓ
)∣∣∣1

0
−
∫ 1

0

∫
Γ1

yρρ(x, ρ)yρ(x, ρ)dΓdρ

=
∫

Γ1

[
y2
ρ(x, 1)− y2

ρ(x, 0)
]
dΓ−

∫ 1

0

∫
Γ1

yρρ(x, ρ)yρ(x, ρ)dΓdρ.

(3.5)

That is ∫ 1

0

∫
Γ1

yρ(x, ρ)yρρ(x, ρ)dΓdρ =
1
2

∫
Γ1

[
y2
ρ(x, 1)− y2

ρ(x, 0)
]
dΓ.

Therefore, ∫ 1

0

∫
Γ1

ut(x, t− τρ)utt(x, t− τρ)dΓdρ

= − 1
2τ3

∫
Γ1

[
y2
ρ(x, 1)− y2

ρ(x, 0)
]
dΓ

=
1
2τ

∫
Γ1

[
u2
t (x, t)− u2

t (x, t− τ)
]
dΓ

(3.6)
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which, together with the boundary condition of (1.3) on Γ1 and (3.2), leads to

dE(t)
dt

= −µ1

∫
Γ1

u2
t (x, t)dΓ− µ2

∫
Γ1

ut(x, t)ut(x, t− τ)dΓ−
∫

Ω

ut(x, t)h(∇u)dx

+
ξ

2τ

∫
Γ1

[
u2
t (x, t)− u2

t (x, t− τ)
]
dΓ.

(3.7)
Applying the Cauchy-Schwarz inequality to (3.7), from (2.9) and the fact F (s) ≥ 0,
we have

dE(t)
dt

≤
(
− µ1 +

µ2

2
+

ξ

2τ

)∫
Γ1

u2
t (x, t)dΓ +

(µ2

2
− ξ

2τ

)∫
Γ1

u2
t (x, t− τ)dΓ

+
β

2

∫
Ω

[|ut|2 + |∇gu|2g]dx

≤
(
− µ1 +

µ2

2
+

ξ

2τ

)∫
Γ1

u2
t (x, t)dΓ +

(µ2

2
− ξ

2τ

)∫
Γ1

u2
t (x, t− τ)dΓ

+ βEs(t),
(3.8)

which implies

dE(t)
dt

≤ −C1

∫
Γ1

[
u2
t (x, t) + u2

t (x, t− τ)
]
dΓ + βEs(t), (3.9)

with

C1 = min{µ1 −
µ2

2
− ξ

2τ
,
ξ

2τ
− µ2

2
}.

Due to (2.18), we have C1 > 0. The proof is complete. �

Remark 3.2. From inequality (3.9), it seems that the system (1.3) is not dissipa-
tive. However, this is a wrong impression. Actually, by introducing an equivalent
energy function, we will find that the system (1.3) is essentially dissipative under
some suitable conditions.

Lemma 3.3. Let H be a vector field on Ω. For any (strong or weak) solution to
(1.3) we have

∂u

∂νA
H(u) = |∇gu|2g(H · ν) on Γ0. (3.10)

Proof. Let x ∈ Γ0. We decompose ∇gu into a direct sum in (Rnx , g)

∇gu(x) =
〈
∇gu(x),

νA(x)
|νA|g

〉
g

νA(x)
|νA|g

+ Y (x), (3.11)

where Y (x) ∈ Rnx with 〈Y (x), νA(x)〉g = 0. Taking (2.3) into account, we obtain

Y (x) · ν(x) = 〈Y (x), A(x)ν(x)〉g = 〈Y (x), νA(x)〉g = 0, (3.12)

which imply Y (x) ∈ Γ0x, the tangent space of Γ0 at x.
Since u = 0 on Γ0, it follows from (3.11) and (3.12) that

|∇gu|2g = ∇gu(u) =
1
|νA|2g

〈∇gu(x), νA(x)〉2g + Y (u)

=
1
|νA|2g

∣∣∣ ∂u
∂νA

∣∣∣2. (3.13)
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Similarly, H can be decomposed into a direct sum

H = 〈H(x),
νA(x)
|νA|g

〉g
νA(x)
|νA|g

+ Z(x), (3.14)

where Z(x) ∈ Γ0x.
Recalling that u = 0 on Γ0, from (2.3) and (3.14), we obtain

H(u) =
〈H(x), νA(x)〉g

|νA|2g

( ∂u
∂νA

)
=
H(x) · ν(x)
|νA|2g

( ∂u
∂νA

)
(3.15)

which, together with (3.13), leads to (3.10). The proof is complete. �

Let

P (t) =
∫

Ω

[2H(u) + (nb− ε0)u]utdx for some ε0 ∈ (0, b). (3.16)

Proposition 3.4. Let u be a (strong or weak) solution of (1.3), under the assump-
tions of Theorem 2.2, there exist two positive constants θ and N such that

dP (t)
dt

≤ −2θEs(t) +N

∫
Γ1

[u2
t (x, t) + u2

t (x, t− τ)]dΓ. (3.17)

Proof. Differentiating (3.16) with respect to t we obtain

dP (t)
dt

=
∫

Ω

ut[2H(ut) + (nb− ε0)ut]dx−
∫

Ω

Au[2H(u) + (nb− ε0)u]dx

−
∫

Ω

h(∇u)[2H(u) + (nb− ε0)u]dx−
∫

Ω

f(u)[2H(u) + (nb− ε0)u]dx

= I1(t) + I2(t) + I3(t) + I4(t),
(3.18)

where

I1(t) =
∫

Ω

ut[2H(ut) + (nb− ε0)ut]dx,

I2(t) = −
∫

Ω

Au[2H(u) + (nb− ε0)u]dx,

I3(t) = −
∫

Ω

h(∇u)[2H(u) + (nb− ε0)u]dx,

I4(t) = −
∫

Ω

f(u)[2H(u) + (nb− ε0)u]dx.

Now we estimate Ii(t), (i = 1, 2, 3, 4). Noting that u = 0 on Γ0, we have

I1(t) =
∫

Ω

H(u2
t )dx+

∫
Ω

(nb− ε0)u2
tdx

=
∫

Γ1

u2
t (H · ν)dΓ−

∫
Ω

[div(H)− nb]u2
tdx− ε0

∫
Ω

u2
tdx,

where div(H) denote the divergence of the vector field H in the Euclidean metric.
Denoting M = maxΩ |H|g, from (2.13) we obtain

I1(t) ≤M
∫

Γ1

u2
tdΓ− ε0

∫
Ω

u2
tdx. (3.19)
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Next, we estimate I2(t).

I2(t) = 2
∫
∂Ω

∂u

∂νA
H(u)dΓ− 2

∫
Ω

〈∇gu,∇g(H(u))〉gdx+
∫
∂Ω

(nb− ε0)u
∂u

∂νA
dΓ

−
∫

Ω

(nb− ε0)|∇gu|2gdx

= −2
∫

Ω

DH(∇gu,∇gu)dx+
∫

Ω

[div(H)− nb+ ε0] |∇gu|2gdx

+
∫

Γ1

[
2
∂u

∂νA
H(u)− |∇gu|2g(H · ν) + (nb− ε0)u

∂u

∂νA

]
dΓ

+
∫

Γ0

|∇gu|2g(H · ν)dΓ,

(3.20)
where the validity of the last step comes from the fact u = 0 on Γ0 and (3.10).
Since ∫

Γ1

2
∂u

∂νA
H(u)dΓ ≤

∫
Γ1

[
δ|∇gu|2g +

M2

δ
| ∂u
∂νA
|2
]
dΓ, (3.21)

from (2.10), (2.12), (2.13), (3.20), (3.21) we obtain

I2(t) ≤
∫

Ω

[div(H)− (n+ 2)b+ ε0] |∇gu|2gdx

+
∫

Γ1

[
δ|∇gu|2g +

M2

δ

∣∣ ∂u
∂νA

∣∣2 − δ|∇gu|2g + (nb− ε0)u
∂u

∂νA

]
dΓ

≤ [nB − (n+ 2)b+ ε0]
∫

Ω

|∇gu|2gdx

+
∫

Γ1

[M2

δ

∣∣ ∂u
∂νA

∣∣2 + (nb− ε0)u
∂u

∂νA

]
dΓ.

(3.22)

Using the trace theorem, ∫
Γ1

|v|2dΓ ≤ C̃
∫

Ω

|∇gv|2gdx

for some constant C̃ > 0, for all v ∈ V , and the boundary condition of (1.3) on Γ1,
we estimate the last term on the right-hand side of (3.22) as∫

Γ1

[M2

δ

∣∣ ∂u
∂νA

∣∣2 + (nb− ε0)u
∂u

∂νA

]
dΓ

≤
∫

Γ1

M2

δ

∣∣ ∂u
∂νA

∣∣2dΓ + (nb− ε0)
∫

Γ1

[
η|u|2 +

1
4η

∣∣ ∂u
∂νA

∣∣2]dΓ

≤ C̃(nb− ε0)η
∫

Ω

|∇gu|2gdx+
(nb− ε0

4η
+
M2

δ

)∫
Γ1

∣∣ ∂u
∂νA

∣∣2dΓ

≤ C̃(nb− ε0)η
∫

Ω

|∇gu|2gdx

+ C2

(nb− ε0

4η
+
M2

δ

)∫
Γ1

[
u2
t (x, t) + u2

t (x, t− τ)
]
dΓ

= ε0

∫
Ω

|∇gu|2gdx+M1

∫
Γ1

[
u2
t (x, t) + u2

t (x, t− τ)
]
dΓ,

(3.23)
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where η = ε0eC(nb−ε0)
, M1 = C2

(
nb−ε0

4η + M2

δ

)
were used in the last step and C2 is a

positive constant. Substitute (3.23) into (3.22) to obtain

I2(t) ≤ [nB − (n+ 2)b+ 2ε0]
∫

Ω

|∇gu|2gdx+M1

∫
Γ1

[u2
t (x, t) + u2

t (x, t− τ)]dΓ.

(3.24)
Applying the Cauchy inequality and recalling (2.9), we can obtain the estimation
of I3(t) as follows:

I3(t) ≤ 2βM
∫

Ω

|∇gu|2gdx+ β(nb− ε0)
∫

Ω

|∇gu|g|u|dx

≤ β
[
2M +

nb− ε0

2
(1 + C)

] ∫
Ω

|∇gu|2gdx,
(3.25)

where C is a positive constant satisfying
∫

Ω
|u|2 ≤ C

∫
Ω
|∇gu|2gdx for all u ∈ V .

Finally, we estimate I4(t) . By (2.12), (2.13), (2.20), the nonnegativity of
F, F (0) = 0, u = 0 on Γ0, we have

I4(t) ≤ −(nb− ε0)r
∫

Ω

2F (u)dx− 2
∫

Ω

H(F (u))dx

= −
∫

Ω

[(nb− ε0)r − div(H)]2F (u)dx−
∫

Γ1

2F (u)(H · ν)dΓ

≤ [nB − (nb− ε0)r]
∫

Ω

2F (u)dx.

(3.26)

Let
0 < β <

ε0

2M + (nb−ε0)
2 (1 + C)

.

Combine (3.18), (3.19), (3.24), (3.25) and (3.26) to obtain (3.17), where

θ := min{(n+ 2)b− nB − 3ε0, (nb− ε0)r − nB, ε0},
N := M1 +M.

(3.27)

By (2.11) and the values of M and M1, we have θ > 0, N > 0. The proof is
complete. �

Proof of Theorem 2.2. Define

S(t) :=
∫ t

t−τ

∫
Γ1

es−tu2
t (x, s)dΓds. (3.28)

We can easily estimate

dS(t)
dt

=
∫

Γ1

u2
t (x, t)dΓ−

∫
Γ1

e−τu2
t (x, t− τ)dΓ−

∫ t

t−τ

∫
Γ1

es−tu2
t (x, s)dΓds

≤
∫

Γ1

u2
t (x, t)dΓ− e−τ

∫
Γ1

u2
t (x, t− τ)dΓ− e−τ

∫ t

t−τ

∫
Γ1

u2
t (x, s)dΓds.

(3.29)
Let us define a new energy function for (1.3) as

L(t) := E(t) + γ1P (t) + γ2S(t), (3.30)

where γ1, γ2 are suitable positive small constants that will be specified later on.
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Note that L(t) is equivalent to the energy E(t) if γ1, γ2 are small enough. In
particular, there exist a positive constant C3 and suitable positive constants α1, α2

such that

α1E(t) ≤ L(t) ≤ α2E(t) ∀0 ≤ γ1, γ2 ≤ C3. (3.31)

Therefore, L(t) is an equivalent energy function of(1.3) for small γ1, γ2.
Differentiating the function L(t) and recalling (3.1), (3.17), (3.29) we deduce

dL(t)
dt

=
dE(t)
dt

+ γ1
dP (t)
dt

+ γ2
dS(t)
dt

≤ (−2γ1θ + β)Es(t) + (−C1 + γ1N + γ2)
∫

Γ1

u2
t (x, t)dΓ

+ (−C1 + γ1N − γ2e
−τ )

∫
Γ1

u2
t (x, t− τ)dΓ

− γ2e
−τ
∫ t

t−τ

∫
Γ1

u2
t (x, s)dΓds.

(3.32)

Note that

E(t) = Es(t) +
ξ

2

∫ 1

0

∫
Γ1

u2
t (x, t− τρ)dΓdρ

= Es(t) +
ξ

2τ

∫ t

t−τ

∫
Γ1

u2
t (x, s)dΓds.

(3.33)

Choosing γ1, γ2 sufficiently small such that −C1 + γ1N + γ2 < 0, −C1 + γ1N −
γ2e
−τ < 0 and choosing β > 0 small enough such that −2γ1θ + β < 0, from (3.32)

and (3.33), we have

dL(t)
dt

≤ −ĈE(t), (3.34)

with Ĉ is a positive constant. Applying the second inequality of (3.31), from (3.34),
we have

dL(t)
dt

≤ − Ĉ
α2
L(t). (3.35)

Then, we easily obtain

L(t) ≤ L(0) exp(−ωt) ∀t ≥ 0, (3.36)

with ω is a positive constant. Using (3.31) again, we deduce the estimate (2.21).
The proof is complete. �

4. Appendix: Proof of Theorem 2.1

As in [8], we use Galerkin approximations to prove the well-posedness of (1.3).
The change of variable

v(x, t) = u(x, t)− φ(x, t), (4.1)

where

φ(x, t) = u0(x) + tu1(x) (x, t) ∈ Q := Ω× (0, T ), (4.2)
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gives the following problem, which is equivalent to (1.3),

vtt − div(A(x)∇v) + h(∇v +∇φ) + f(v + φ) = F in Ω× (0, T ),

v = 0 on Γ0 × (0, T ),
∂v

∂νA
= −µ1[vt(x, t) + u1]− µ2[vt(x, t− τ) + u1] + B on Γ1 × (0, T ),

v(x, 0) = vt(x, 0) = 0 in Ω,

vt(x, t− τ) = g0(x, t− τ)− u1 on Γ1 × [0, τ ],

(4.3)

where F = div(A(x)∇φ), B = − ∂φ
∂νA

and div(X) denote the divergence of the vector
field X in the Euclidean metric.

Let {wi}i∈N be a basis for W that is orthonormal in L2(Ω), and let Vm be the
space spanned by w1 · · ·wm.

When g0 ∈ C1([−τ, 0];L2(Γ1)), we choose a sequence g0m → g0 strongly in
C1([−τ, 0];L2(Γ1)). Now we define the approximation

vm(t) =
m∑
j=1

γj(t)wj ,

where vm(t) are solutions to the Cauchy problem∫
Ω

vmtt(t)wdx+
∫

Ω

〈∇gvm(t),∇gw〉gdx+
∫

Ω

h(∇vm(t) +∇φ(t))wdx

+
∫

Ω

f(vm(t) + φ(t))wdx+
∫

Γ1

[µ1(vmt(t) + u1) + µ2(vmt(t− τ) + u1)]wdΓ

=
∫

Ω

F(t)wdx+
∫

Γ1

BwdΓ,

vm(0) = vmt(0) = 0,

vmt(x, t) = g0m(x, t)− u1 on Γ1 × [−τ, 0],
(4.4)

for all w ∈ Vm.
According to the standard theory of ordinary differential equations, the finite

dimensional problem (4.4) has solutions vm(t) defined on some interval [0, Tm).
The a priori estimates that follow imply that Tm = T .
Step 1: The first-order estimate of vm. Replacing w by vmt(t) in (4.4) leads to

1
2
d

dt

(∫
Ω

[|vmt(t)|2 + |∇gvm(t)|2g + 2F (vm(t) + φ(t))]dx
)

+
∫

Ω

h(∇vm(t) +∇φ(t))vmt(t)dx−
∫

Ω

f(vm(t) + φ(t))u1dx

=
∫

Ω

F(t)vmt(t)dx+
d

dt

(∫
Γ1

B(t)vm(t)dΓ
)
−
∫

Γ1

Bt(t)vm(t)dΓ

−
∫

Γ1

[µ1(vmt(t) + u1) + µ2(vmt(t− τ) + u1)][vmt(t) + u1]dΓ

+
∫

Γ1

[µ1(vmt(t) + u1) + µ2(vmt(t− τ) + u1)]u1dΓ.

(4.5)
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Using the Sobolev imbedding theorem, Hölder’s inequality, (A1) and the regularities
of the initial values, we infer that

∫
Ω

f(vm(t) + φ(t))u1dx ≤ C
∫

Ω

|vm(t) + φ(t)|ρ|u1|dx+ C

∫
Ω

|u1|dx

≤ C
(∫

Ω

|vm(t)|ρ|u1|dx+
∫

Ω

|φ(t)|ρ|u1|dx
)

+ C

≤ C
(∫

Ω

|vm(t)|2ρdx
)1/2(∫

Ω

|u1|2dx
)1/2

+ C
(∫

Ω

|u0|ρ|u1|+ tρ|u1|ρ+1
)
dx+ C

≤ C
(∫

Ω

|∇gvm(t)|2gdx
)ρ/2

+ Ctρ + C.

(4.6)

Here and in what follows, we use the constant C > 0 to denote some constants
independent of functions involved although it may have different values in different
contexts.

By (A2), it holds

∫
Ω

h(∇vm(t) +∇φ(t))vmt(t)dx

≤ β2

2

∫
Ω

|∇gvm(t) +∇gφ(t)|2gdx+
1
2

∫
Ω

|vmt(t)|2dx.
(4.7)

Combining (4.5)–(4.7), recalling the trace theorem,

∫
Γ1

|v|2dΓ ≤ C̃
∫

Ω

|∇gv|2gdx

for some constant C̃ > 0 and all v ∈ V , it follows that

1
2
d

dt

(∫
Ω

[|vmt(t)|2 + |∇gvm(t)|2g + 2F (vm(t) + φ(t))]dx
)

≤ C
(∫

Ω

|∇gvm(t)|2gdx
)ρ/2

+ Ctρ +
β2

2

∫
Ω

|∇gvm(t) +∇gφ(t)|2gdx

+
1
2

∫
Ω

|vmt(t)|2dx+
1
2

∫
Ω

|F(t)|2dx+
1
2

∫
Ω

|vmt(t)|2dx

+
d

dt

(∫
Γ1

B(t)vm(t)dΓ
)

+
C̃

2

∫
Γ1

|Bt(t)|2dΓ +
1
2

∫
Ω

|∇gvm(t)|2gdx+ C

−
∫

Γ1

[µ1(vmt(t) + u1) + µ2(vmt(t− τ) + u1)][vmt(t) + u1]dΓ

+
∫

Γ1

[µ1(vmt(t) + u1) + µ2(vmt(t− τ) + u1)]u1dΓ .
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Integrating the obtained result over the interval (0, t), noticing vm(0) = vmt(0) = 0,
ρ
2 ≤ 1 and applying the trace theorem, we obtain∫

Ω

[
|vmt(t)|2 + |∇gvm(t)|2g + 2F (vm(t) + φ(t))

]
dx

≤ (C + 2β2 + 1)
∫ t

0

∫
Ω

|∇gvm(s)|2gdxds+ Ctρ+1 + 2
∫ t

0

∫
Ω

|vms(s)|2dxds

+ 2β2

∫ t

0

∫
Ω

|∇gφ(s)|2gdxds+
∫ t

0

∫
Ω

|F(s)|2dxds+ 2
∫

Γ1

B(t)vm(t)dΓ

+ C̃t

∫
Γ1

∣∣∣ ∂u1

∂νA

∣∣∣2dΓ + Ct+ C

−
∫ t

0

∫
Γ1

[µ1(vms(s) + u1) + µ2(vms(s− τ) + u1)][vms(s) + u1]dΓds

+
∫ t

0

∫
Γ1

[µ1(vms(s) + u1) + µ2(vms(s− τ) + u1)]u1dΓds

≤ (C + 2β2 + 1)
∫ t

0

∫
Ω

|∇gvm(s)|2gdxds+ 2
∫ t

0

∫
Ω

|vms(s)|2dxds

+ ζ

∫
Ω

|∇gvm(t)|2gdx+ C(tρ+1 + t+ t3) + C

−
∫ t

0

∫
Γ1

[µ1(vms(s) + u1) + µ2(vms(s− τ) + u1)][vms(s) + u1]dΓds

+
∫ t

0

∫
Γ1

[µ1(vms(s) + u1) + µ2(vms(s− τ) + u1)]u1dΓds,

(4.8)

where ζ > 0 is a sufficiently small constant that will be specified later on. Using
the Cauchy-Schwartz inequality, we deduce

−
∫ t

0

∫
Γ1

[µ1(vms(s) + u1) + µ2(vms(s− τ) + u1)][vms(s) + u1]dΓds

≤
∫ t

0

∫
Γ1

[(µ2

2
− µ1

)
|vms(s) + u1|2 +

µ2

2
|vms(s− τ) + u1|2

]
dΓds.

(4.9)

Now, using the history values about vmt(t) t ∈ [−τ, 0], the second term in the
right-hand side of (4.9) can be rewritten as∫ t

0

∫
Γ1

|vms(s− τ) + u1|2dΓds

=
∫ t−τ

−τ

∫
Γ1

|vmρ(ρ) + u1|2dΓdρ

=
∫ 0

−τ

∫
Γ1

|vmρ(ρ) + u1|2dΓdρ+
∫ t−τ

0

∫
Γ1

|vmρ(ρ) + u1|2dΓdρ

=
∫ 0

−τ

∫
Γ1

|g0m(ρ)|2dΓdρ+
∫ t−τ

0

∫
Γ1

|vmρ(ρ) + u1|2dΓdρ

≤ C0 +
∫ t

0

∫
Γ1

|vmρ(ρ) + u1|2dΓdρ,

(4.10)
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where C0 is a positive constant. From (4.9) and (4.10), we deduce

−
∫ t

0

∫
Γ1

[µ1(vms(s) + u1) + µ2(vms(s− τ) + u1)][vms(s) + u1]dΓds

≤
∫ t

0

∫
Γ1

(µ2 − µ1)|vms(s) + u1|2dΓds+ C.

(4.11)

On the other hand, taking the Cauchy-Schwartz inequality, the inequality (4.10)
and the regularities of the initial values, we deduce∫ t

0

∫
Γ1

[µ1(vms(s) + u1) + µ2(vms(s− τ) + u1)]u1dΓds

≤ η
∫ t

0

∫
Γ1

|µ1(vms(s) + u1) + µ2(vms(s− τ) + u1)|2dΓds

+ C(η)
∫ t

0

∫
Γ1

|u1|2dΓds

≤ 2η
∫ t

0

∫
Γ1

|µ1(vms(s) + u1)|2dΓds

+ 2η
∫ t

0

∫
Γ1

|µ2(vms(s− τ) + u1)|2dΓds+ C ′(η)

≤ 2(µ2
1 + µ2

2)η
∫ t

0

∫
Γ1

|vms(s) + u1|2dΓds+ C + C ′(η) t ∈ [0, T ],

(4.12)

where η > 0 is a sufficiently small constant that will be specified later on and
C(η), C ′(η) are positive constants.

Substituting (4.11), (4.12) into (4.8) and choosing ζ > 0 small enough, we obtain∫
Ω

[
|vmt(t)|2 + |∇gvm(t)|2g + 2F (vm(t) + φ(t))

]
dx

+ [µ1 − µ2 − 2(µ2
1 + µ2

2)η]
∫ t

0

∫
Γ1

|vms(s) + u1|2dΓds

≤ (C + 2β2 + 1)
∫ t

0

∫
Ω

|∇gvm(s)|2gdxds+ 2
∫ t

0

∫
Ω

|vms(s)|2dxds

+ C(tρ+1 + t+ t3) + C.

(4.13)

Finally, noting the fact µ2 < µ1, F (s) ≥ 0 for all s ∈ R, choosing η > 0 sufficiently
small, by Gronwall’s lemma, we obtain the first-order estimate of vm∫

Ω

[
|vmt(t)|2 + |∇gvm(t)|2g + 2F (vm(t) + φ(t))

]
dx

+
∫ t

0

∫
Γ1

|vms(s) + u1|2dΓds ≤ C4,

(4.14)

where C4 > 0 is a constant independent of m ∈ N and t ∈ [0, T ].
Step 2: The second-order estimate of vm. We estimate the term ‖vmtt(0)‖L2(Ω).
Take t = 0 in (4.4) and notice the fact vm(0) = vmt(0) = 0, to obtain∫

Ω

vmtt(0)wdx+
∫

Ω

h(∇u0)wdx+
∫

Ω

f(u0)wdx+
∫

Γ1

[µ1u1 + µ2g0m(−τ)]wdΓ
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=
∫

Ω

div(A(x)∇u0)wdx+
∫

Γ1

(
− ∂u0

∂νA

)
wdΓ ∀w ∈ Vm

which, together with (2.15), leads to∫
Ω

vmtt(0)wdx+
∫

Ω

h(∇u0)wdx+
∫

Ω

f(u0)wdx+
∫

Γ1

[µ2g0m(−τ)]wdΓ

=
∫

Ω

div(A(x)∇u0)wdx+
∫

Γ1

µ2g0(−τ)wdΓ ∀w ∈ Vm,

which, together with (A1), (A2) and the regularities of the initial values, lead to

‖vmtt(0)‖L2(Ω) ≤ C5,

where C5 > 0 is a constant independent of m ∈ N .
Next, differentiate (4.4) with respect to t and replace w by vmtt, to obtain

1
2
d

dt

[ ∫
Ω

(
|vmtt(t)|2 + |∇gvmt(t)|2g

)
dx
]

+
∫

Ω

∇h(∇vm(t) +∇φ(t))(∇vmt(t) +∇u1)vmtt(t)dx

+
∫

Ω

f ′(vm(t) + φ(t))(vmt(t) + u1)vmtt(t)dx

+
∫

Γ1

[µ1vmtt(t) + µ2vmtt(t− τ)]vmtt(t)dΓ

=
∫

Ω

Ft(t)vmtt(t)dx+
d

dt

(∫
Γ1

Bt(t)vmt(t)dΓ
)
.

(4.15)

Taking (A2) into account, we infer that∫
Ω

∇h(∇vm(t) +∇φ(t))(∇vmt(t) +∇u1)vmtt(t)dx

≤ C
(

1 +
∫

Ω

|∇gvmt(t)|2gdx+
∫

Ω

|vmtt(t)|2dx
)
.

(4.16)

We use Hölder’s inequality, the Sobolev imbedding theorem, and the trace theorem,
by noticing (A1), (4.14) and the regularities of the initial values, to obtain∫

Ω

f ′(vm(t) + φ(t))(vmt(t) + u1)vmtt(t)dx

≤ C
∫

Ω

(|vm(t)|ρ−1 + |φ(t)|ρ−1 + C)(|vmt(t)|+ |u1|)|vmtt(t)|dx

≤ C
∫

Ω

(|vm(t)|2(ρ−1)|vmt(t)|2dx+ C

∫
Ω

|φ(t)|2(ρ−1)|vmt(t)|2dx

+ C

∫
Ω

|vmtt(t)|2dx+ C

≤ C
(∫

Ω

(|vm(t)|2(ρ−1)·n2 dx
)2/n(∫

Ω

(|vmt(t)|2·
n

n−2 dx
)(n−2)/n

+ C

∫
Ω

|φ(t)|2(ρ−1)|vmt(t)|2dx+ C

∫
Ω

|vmtt(t)|2dx+ C

≤ C
∫

Ω

(
|∇gvmt(t)|2g + |vmtt(t)|2

)
dx+ C

(4.17)
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and ∫
Ω

Ft(t)vmtt(t)dx ≤ C
∫

Ω

|vmtt(t)|2dx+ C, (4.18)∫
Γ1

Bt(t)vmt(t)dΓ ≤ C C̃

4ξ
+ ξ

∫
Ω

|∇gvmt(t)|2gdx, (4.19)

where ξ > 0 is a sufficiently small constant that will be specified later on.
Finally, combining (4.16)–(4.19), integrating (4.15) over (0, t), choosing ξ > 0

sufficiently small and recalling ‖vmtt(0)‖L2(Ω) ≤ C5, we obtain∫
Ω

(
|vmtt(t)|2 + |∇gvm(t)|2g

)
dx+

∫ t

0

∫
Γ1

[µ1vmss(s) + µ2vmss(s− τ)]vmss(s)dΓds

≤ C
∫ t

0

∫
Ω

(
|vmss(s)|2 + |∇gvms(s)|2g

)
dx ds+ Ct+ C.

(4.20)
Note that ∫ t

0

∫
Γ1

|vmss(s− τ)|2dΓds

=
∫ t−τ

−τ

∫
Γ1

|vmρρ(ρ)|2dΓdρ

=
∫ 0

−τ

∫
Γ1

|g0mρ(ρ)|2dΓdρ+
∫ t−τ

0

∫
Γ1

|vmρρ(ρ)|2dΓdρ

≤ C ′0 +
∫ t

0

∫
Γ1

|vmρρ(ρ)|2dΓdρ,

(4.21)

where C ′0 is a positive constant. From (4.21), we infer∫ t

0

∫
Γ1

[µ1vmss(s) + µ2vmss(s− τ)]vmss(s) dΓds

≥
∫ t

0

∫
Γ1

[(
µ1 −

µ2

2
)
|vmss(s)|2 −

µ2

2
|vmss(s− τ)|2

]
dΓds

≥
∫ t

0

∫
Γ1

(µ1 − µ2)|vmss(s)|2dΓds− C

(4.22)

which, together with (4.20), leads to∫
Ω

(
|vmtt(t)|2 + |∇gvm(t)|2g

)
dx+

∫ t

0

∫
Γ1

(µ1 − µ2)|vmss(s)|2dΓds

≤
∫ t

0

∫
Ω

(
|vmss(s)|2 + |∇gvm(s)|2g

)
dx ds+ Ct+ C.

(4.23)

Recalling the fact µ2 < µ1, by Gronwall’s lemma, we obtain the second-order
estimate of vm,∫

Ω

(
|vmtt(t)|2 + |∇gvm(t)|2g

)
dx+

∫ t

0

∫
Γ1

(µ1 − µ2)|vmss(s)|2dΓds ≤ C6,

where C6 is a positive constant independent of m ∈ N and t ∈ [0, T ].
For the delay term, using the same method as the one in (4.9)-(4.11), the proof

can be completed arguing as in [8, Theorem 3.1].
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