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EXISTENCE OF INFINITELY MANY HOMOCLINIC ORBITS
FOR SECOND-ORDER SYSTEMS INVOLVING

HAMILTONIAN-TYPE EQUATIONS

ADEL DAOUAS, AMMAR MOULAHI

Abstract. We study the second-order differential system

ü + Au̇− L(t)u +∇V (t, u) = 0,

where A is an antisymmetric constant matrix and L ∈ C(R, RN2
). We es-

tablish the existence of infinitely many homoclinic solutions if W is of sub-
quadratic growth as |x| → +∞ and L does not satisfy the global positive

definiteness assumption. In the particular case where A = 0, earlier results in

the literature are generalized.

1. Introduction

Let us consider the second-order differential system

ü+Au̇− L(t)u+∇V (t, u) = 0, (1.1)

where A is an antisymmetric constant matrix with small size in R2N (see the
estimation (2.2)), L ∈ C(R,RN2

) is a symmetric matrix valued function and
V ∈ C(R × RN ,R) is of class C1 in the second variable. We will say that a
solution u of (1.1) is homoclinic (to 0) if u ∈ C2(R,RN ), u(t)→ 0 and u̇(t)→ 0 as
t→ ±∞.

For the particular case A = 0, (1.1) is just the Hamiltonian system

ü− L(t)u+∇V (t, u) = 0. (1.2)

In recent years, existence and multiplicity of homoclinic solutions for the second
order Hamiltonian system (1.2) have been investigated by many authors via the
critical point theory, see [1]–[13], [15]–[21] and references therein. Most of them
treat the superquadratic case under the so-called global Ambrosetti-Rabinowitz
condition; that is, there exists µ > 2 such that

0 < µV (t, x) ≤ (∇V (t, x), x), for all (t, x) ∈ R× RN\{0}.
Exceptionally, in [5], the author considered, in part of the paper, the case where
the potential is of subquadratic growth as |x| → +∞. Moreover, contrary to the
previous works, he removed the global positive definiteness of the matrix L(t) by
assuming
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(L1) for the smallest eigenvalue of L(t), i.e., l(t) = inf |x|=1(L(t)x, x), there exists
a constant α < 1 such that

l(t)|t|α−2 →∞ as |t| → ∞,
(L2) for some positive constants a, r, one of the following is true:

(i) L ∈ C1(R,RN2
) and |L′(t)x| ≤ a|L(t)x| for all |t| > r and all x ∈ RN

with |x| = 1, or
(ii) L ∈ C2(R,RN2

) and (aL(t)x − L′′(t)x, x) ≥ 0 for all |t| > r and all
x ∈ RN with |x| = 1,

where L′(t) = (d/dt)L(t), L′′(t) = (d2/dt2)L(t).
Under other suitable conditions he established the existence and multiplicity of
homoclinic solutions for (1.2). Later, his results were partially improved in [17, 18].

Recently, the authors in [19, 20], treated the special case where V (t, x) = a(t)|x|µ
with 1 < µ < 2 and L(t) is a positive definite matrix for all t ∈ R. They proved the
existence of a nontrivial homoclinic solution for (1.2) and (1.1) respectively; where
the system (1.1) was considered for the first time. Later, multiplicity of homoclinics
for (1.2) was studied in [15] for the same class of Hamiltonians. However, in math-
ematical physics, it is of frequent occurrence in (1.2) that the global definiteness of
L(t) is not satisfied (see [5] for an example).

As far as the authors know, there is no research concerning the existence and mul-
tiplicity of homoclinic solutions for (1.1) apart from [20]. In this paper, motivated
by [5, 20] mainly, we study the existence of infinitely many homoclinic solutions
for (1.1) in the case where L does not satisfy the global positive definiteness as-
sumption. Also, the potential V will be of subquadratic growth as |x| → +∞ and
is not necessarily of the form V (t, x) = a(t)|x|µ. In the first result we assume that
V (t, x) = a(t)W (x) with W ∈ C1(RN ,R), a ∈ C(R,R) ∩ L2(R,R) are nonnegative
functions and a 6≡ 0. The difficulty in studying this class of nonlinearities comes
essentially from the fact that inft∈R a(t) = 0 and then there is no constant b > 0
such that V (t, x) ≥ b|x|γ for all t ∈ R, which essential in previous works. Moreover,
in the case where A 6= 0, we are unable to verify the Palais-Smale condition. To
overcome this obstacle, we use a variant fountain theorem established in [22]. For
our first theorem use the following assumptions:

(L3) 0 /∈ σ
(
− (d2/dt2) + L(t)−A(d/dt)

)
,

(V1) W (0) = 0 and there exist positive constants a1, a2, r and 1 ≤ γ ≤ µ < 2
such that

a1|x|γ ≤W (x) ≤ a2|x|µ, for all |x| ≥ r,
(V2) there exist positive constants a3, ω and ν ∈ [1, 2) such that

W (x) ≥ a3|x|ν , for all |x| ≤ ω,
(V3) there exist constants a4 > 0 and β ∈ [1, 2) such that

|∇W (x)| ≤ a4(|x|β−1 + 1) for all x ∈ RN ,
(V4) W is even,
(V5) a ∈ L2(R,R) and meas{t ∈ R : a(t) = 0} = 0.

Theorem 1.1. Assume that L satisfies (L1)–(L3) and V satisfies (V1)–(V5). Then
system (1.1) has infinitely many homoclinic solutions.

In the particular for the case A = 0, we have the following result.
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Corollary 1.2. Under the assumptions of Theorem 1.1, system (1.2) has infinitely
many homoclinic solutions.

Remark 1.3. Consider

L(t) = (t2 − 1)IN and V (t, x) =
| sin t|
|t|+ 1

|x|5/4 log(1 + |x|1/2).

A straightforward computation shows that L and V satisfy the conditions of The-
orem 1.1 but since inft∈R V (t, x) = 0, the assumptions of [5, Theorem 1.2] and
[18, Theorem 1.1] do not hold. So, in some sense, Corollary 1.2 completes the
corresponding results in [5, 18] and the one in [21] for the case β = 0. Moreover,
Theorem 1.1 generalizes the result of [20].

Our second main result concerns a class of nonlinearities with bounded gradient
which cover the functions of the type V (t, x) = Ln(1 + |x|3/2) and which not
necessarily of the form V (t, x) = a(t)W (x). Homoclinic solutions to (1.2) for this
class of Hamiltonians was investigated in [5, Theorem 1.3] under the assumption
of positive definiteness of L(t). Here, we omit this condition mainly. Precisely we
have the following assumptions:

(V1’) V (t, 0) ≡ 0 and V (t, x)→∞ as |x| → ∞ uniformly in t ∈ R,
(V2’) there exist constants a1, ω > 0 and ν ∈ [1, 2) such that

V (t, x) ≥ a1|x|ν , for all |x| ≤ ω, t ∈ R,
(V3’) there exists a constant M > 0 such that

|∇V (t, x)| ≤M, for all (t, x) ∈ R× RN ,
(V4’) there exist constants a2, r > 0 and β ∈ [1/2, 1) such that

|∇V (t, x)| ≤ a2|x|β , for all |x| ≤ r, t ∈ R,
(V5’) V (t,−x) = V (t, x) ≥ 0, for all (t, x) ∈ R× RN .

Theorem 1.4. Assume that L satisfies (L1)–(L3) and V satisfies (V1’)–(V5’).
Then system (1.1) has infinitely many homoclinic solutions.

Corollary 1.5. Under the assumptions of Theorem 1.4, system (1.2) has infinitely
many homoclinic solutions.

Remark 1.6. Consider the function

V (t, x) = log(1 + |x|3/2).

A straightforward computation shows that V satisfies the conditions of Theorem
1.4 but does not satisfy condition (W4) in [18, Theorem 1.1]. Moreover, since L(t)
is unnecessarily positive definite, Corollary 1.5 improves the corresponding results
in [5, 18].

2. Preliminary results

We establish our results by using critical point theory, but we first give some
preliminaries (for details see [5]). We denote by B the selfadjoint extension of the
operator −(d2/dt2) + L(t) with the domain D(B) ⊂ L2 ≡ L2(R,RN ). Let |B| be
the absolute value of B and |B|1/2 be the square of |B|. Let E = D(|B|1/2), the
domain of |B|1/2, and define on E the inner product

(u, v)0 = (|B|1/2u, |B|1/2v)L2 + (u, v)L2
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and norm
‖u‖0 = (u, u)1/2

0 ,

where (., .)L2 denotes the inner product of L2. Then E is a Hilbert space.
It is easy to prove that the spectrum σ(B) consists of eigenvalues numbered in

λ1 ≤ λ2 ≤ · · · ↗ ∞ (counted with their multiplicities), and a corresponding system
of eigenfunctions {ei}i∈N of B forms an orthonormal basis in L2. Define

n− = #{i : λi < 0}, n0 = #{i : λi = 0}, n̄ = n− + n0 (2.1)

and

E− = span{e1, . . . , en−}, E0 = span{en−+1, . . . , en̄} = kerB,

E+ = span{en̄+1, . . . }.

Then one has the orthogonal decomposition E = E− ⊕ E0 ⊕ E+ with respect to
the inner product (·, ·)0. Now we introduce on E the following inner product and
norm:

(u, v) = (|B|1/2u, |B|1/2v)L2 + (u0, v0)L2

and
‖u‖ = (u, u)1/2,

where u = u− + u0 + u+ and v = v− + v0 + v+ ∈ E = E− ⊕ E0 ⊕ E+. Clearly
the norms ‖ · ‖0 and ‖ · ‖ are equivalent (see [5]). Furthermore, the decomposition
E = E− ⊕ E0 ⊕ E+ is orthogonal with respect to the inner products (·, ·) and
(·, ·)L2 . For the rest of this article, ‖ · ‖ will be the norm used on E. The following
fact on E will be needed.

Lemma 2.1 ([5]). Suppose that L(t) satisfies (L1). Then E is continuously em-
bedded in W 1,2(R,RN ), and consequently there exists δ > 0 such that

‖u‖W 1,2(R,RN ) ≤ δ‖u‖, for all u ∈ E,

where ‖u‖W 1,2(R,RN ) = (‖u‖2L2 + ‖u̇‖2L2)1/2.

Now, we make the following estimation on the norm of the matrix A,

|A| < 1
δ2
, (2.2)

where | · | is the standard norm of RN2
.

Moreover, using (V5), we note that a is bounded and can be seen as a weight
function. So, for p ≥ 1, the weighted norm ‖ · ‖Lp(a) will be defined on E by

‖u‖Lp(a) =
[ ∫

R
a(t)|u(t)|pdt

]1/p
.

From [5, Lemmas 2.2 and 2.3], we have the following two lemmas.

Lemma 2.2 ([5]). Suppose that L(t) satisfies (L1). Then E is compactly embedded
in Lp for any 1 ≤ p ≤ ∞, which implies that there exists a constant Cp > 0 such
that

‖u‖Lp ≤ Cp‖u‖, for all u ∈ E. (2.3)

Lemma 2.3 ([5]). Suppose that L(t) satisfies (L1), (L2). Then D(B) is continu-
ously embedded in W 2,2(R,RN ), and consequently, we have

|u(t)| → 0 and |u̇(t)| → 0 as |t| → ∞,
for all u ∈ D(B).
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Lemma 2.4. Suppose assumption (V5) holds. If qk ⇀ q (weakly) in E, then
∇V (t, qk)→ ∇V (t, q) in L2(R,RN ).

Proof. Assume that qk ⇀ q in E. By the Banach-Steinhaus Theorem the sequence
(qk)k∈N is bounded in E and by (2.3), there exists a constant d1 > 0 such that

sup
k∈N
‖qk‖L∞ ≤ d1, ‖q‖L∞ ≤ d1. (2.4)

Since ∇W is continuous, by (2.4) there exists a constant d2 > 0 such that

|∇W (qk(t))| ≤ d2, |∇W (q(t))| ≤ d2,

for all k ∈ N and t ∈ R. Hence,

|∇V (t, qk(t))−∇V (t, q(t))| ≤ 2d2a(t).

On the other hand, by Lemma 2.2, qk → q in L2, passing to a subsequence if nec-
essary, we obtain qk → q for almost every t ∈ R. Then, using (V5), the Lebesgue’s
Convergence Theorem gives the conclusion. �

Let E be a Banach space with the norm ‖ ·‖ and E = ⊕j∈NXj with dimXj <∞
for any j ∈ N. Set Yk = ⊕kj=1Xj and Zk = ⊕∞j=kXj . Consider the C1-functional
Φλ : E → R defined by

Φλ(u) := A(u)− λB(u), λ ∈ [1, 2].

Theorem 2.5 ([22, Theorem 2.2]). Assume that the functional Φλ defined above
satisfies

(T1) Φλ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2]. Moreover,
Φλ(−u) = Φλ(u) for all (λ, u) ∈ [1, 2]× E,

(T2) B(u) ≥ 0 for all z ∈ E;B(u) → ∞ as |z| → ∞ on any finite dimensional
subspace of E,

(T3) there exist ρk > rk > 0 such that

ak(λ) := inf
u∈Zk,‖u‖=ρk

Φλ(u) ≥ 0 > bk(λ) := max
u∈Yk,‖u‖=rk

Φλ(u),

for all λ ∈ [1, 2], and

dk(λ) := inf
u∈Zk,‖u‖≤ρk

Φλ(u)→ 0 as k →∞, uniformly for λ ∈ [1, 2].

Then there exist λn → 1, uλn ∈ Yn such that

Φ′λn |Yn(uλn) = 0, Φλn(uλn)→ fk ∈ [dk(2), bk(1)] as n→∞.
Particularly, if {uλn} has a convergent subsequence for every k ∈ N, then Φ1 has
infinitely many nontrivial critical points {uk} ∈ E\{0} satisfying Φ1(uk) → 0− as
k →∞.

3. Proof of Theorem 1.1

Let Φ be the functional defined on E by

Φ(u) =
1
2

∫
R

[
|u̇(t)|2 + (L(t)u(t), u(t))

]
dt+

1
2

∫
R

(Au(t), u̇(t))dt−
∫

R
V (t, u(t))dt

=
1
2

(
‖u+‖2 − ‖u−‖2

)
+

1
2

∫
R

(Au(t), u̇(t))dt−
∫

R
V (t, u(t))dt,

(3.1)
for all u = u− + u0 + u+ ∈ E = E− ⊕ E0 ⊕ E+.



6 A. DAOUAS, A. MOULAHI EJDE-2013/11

Lemma 3.1. Under the conditions of Theorem 1.1, Φ ∈ C1(E,R) and

Φ′(u)v =
∫

R

[
(u̇(t), v̇(t)) + (L(t)u(t), v(t))

]
dt+

∫
R

(Au(t), v̇(t))dt

−
∫

R
(∇V (t, u(t)), v(t))dt.

for all u = u− + u0 + u+, v = v− + v0 + v+ in E = E− ⊕E0 ⊕E+. Moreover, any
critical point of Φ on E is a homoclinic solution of (1.1).

Proof. Rewrite Φ = Ψ1 + Ψ2 −Ψ3 where

Ψ1(u) :=
1
2

∫
R

[
|u̇(t)|2 + (L(t)u(t), u(t))

]
dt, Ψ2(u) :=

1
2

∫
R

(Au(t), u̇(t))dt,

Ψ3(u) :=
∫

R
V (t, u(t))dt.

It is known [5] that Ψ1 ∈ C1(E,R) and for all u, v ∈ E,

Ψ′1(u)v =
∫

R

[
(u̇(t), v̇(t)) + (L(t)u(t), v(t))

]
dt.

Also, we have Ψ2 ∈ C1(E,R), and for all u, v ∈ E,

Ψ′2(u)v =
∫

R
(Au(t), v̇(t))dt.

Indeed, using Lemma 2.1, the quadratic form Ψ2 is continuous and therefore it is
of class C1. Furthermore, by the use of the antisymmetric property of A, we obtain
the result.

It remains to show that Ψ3 ∈ C1(E,R) and for all q, v ∈ E,

Ψ′3(q)v =
∫

R
(∇V (t, q(t)), v(t))dt.

Fix q ∈ E, let c1 = sup|x|≤‖q‖L∞ |∇W (x)| and define J(q) : E → R as follows

J(q)v =
∫

R
(∇V (t, q(t)), v(t))dt, ∀v ∈ E.

Then J(q) is linear and bounded. Indeed,

|∇V (t, q(t))| = a(t)|∇W (q(t))| ≤ c1a(t), ∀t ∈ R

and by (2.3), we obtain

|J(q)v| = |
∫

R
(∇V (t, q(t)), v(t))dt|

≤ c1
∫

R
a(t)|v(t)|dt

≤ c1‖a‖2‖v‖2
≤ c1C2‖a‖2‖v‖.

(3.2)

Moreover, for q, v ∈ E, by the Mean Value Theorem, we have∫
R
V (t, q(t) + v(t))dt−

∫
R
V (t, q(t))dt =

∫
R

(∇V (t, q(t) + h(t)v(t)), v(t))dt,
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where h(t) ∈ (0, 1). Also, by Lemma 2.4 and the Hölder inequality, we have∫
R

(∇V (t, q(t) + h(t)v(t)), v(t))dt−
∫

R
(∇V (t, q(t)), v(t))dt

=
∫

R
(∇V (t, q(t) + h(t)v(t))−∇V (t, q(t)), v(t))dt→ 0,

(3.3)

as v → 0 in E. Combining (3.2) and (3.3) we obtain the result.
Now, we prove that Ψ′3 is continuous. Suppose that q → q0 in E and note that

Ψ′3(q)v −Ψ′3(q0)v =
∫

R
(∇V (t, q(t))−∇V (t, q0(t)), v(t))dt.

By Lemma 2.4 and the Hölder inequality, we obtain

Ψ′3(q)v −Ψ′3(q0)v → 0, as q → q0.

Now, we check that critical points of Φ are homoclinic solutions for (1.1). In fact, if
u is a critical point of Φ, by Lemma 3.1, we have L(t)u(t)−∇V (t, u(t)) is the weak
derivative of u̇ + Au. Since L ∈ C(R,RN2

) and V ∈ C1(R × RN ,R), we see that
u̇+Au is continuous and consequently u̇ is continuous which yields u ∈ C2(R,RN );
i.e., u is a classical solution of (1.1).

Finally, to prove that u̇(t)→ 0 as |t| → ∞, note that by Lemma 2.3 it suffices to
show that any critical point of Φ on E is an element of D(B). Indeed, by Lemma
2.1, we know that u ∈ W 1,2(R,RN ) and hence u(t) → 0 as |t| → ∞. Moreover,
since W ∈ C1(RN ,R), there exists d > 0 such that

|∇W (u(t))| ≤ d, ∀t ∈ R. (3.4)

From (1.1) and this inequality, we receive

‖Bu‖2L2 = ‖Au̇+∇V (t, u)‖2L2

≤ 2
∫

R
|Au̇(t)|2dt+ 2d2

∫
R
|a(t)|2dt.

(3.5)

By (3.5) and the fact |u̇|, a ∈ L2(R,R) one sees that ‖Bu‖L2 < ∞; i.e., u ∈
D(B). �

To apply Theorem 2.5 for proving Theorem 1.1, we define the functionals A,B
and Φλ on the space E by

A(u) =
1
2
‖u+‖2 +

1
2

∫
R

(Au(t), u̇(t))dt, B(u) =
1
2
‖u−‖2 +

∫
R
V (t, u(t))dt,

Φλ(u) := A(u)− λB(u)

=
1
2
‖u+‖2 +

1
2

∫
R
(Au(t), u̇(t))dt− λ

(1
2
‖u−‖2 +

∫
R
V (t, u(t))dt

)
for all u = u− + u0 + u+ in E = E− ⊕ E0 ⊕ E+ and λ ∈ [1, 2]. From Lemma 3.1,
we know that Φλ ∈ C1(E,R) for all λ ∈ [1, 2]. Let Xj = span{ej} for all j ∈ N,
where {en;n ∈ N} is the system of eigenfunctions given below. Note that Φ1 = Φ,
where Φ is the functional defined in (3.1).

Lemma 3.2. Under the assumption (V1), we have B(u) ≥ 0 and B(u) → ∞ as
‖u‖ → ∞ on any finite dimensional subspace of E.
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Proof. Since a and W are nonnegative it is obvious, by the definition of B, that
B(u) ≥ 0. We claim that for any finite dimensional subspace F ⊂ E, there exists
ε > 0 such that

meas
(
{t ∈ R : a(t)|u(t)|γ ≥ ε‖u‖γ}

)
≥ ε, ∀u ∈ F\{0}. (3.6)

If not, for any n ∈ N, there exists un ∈ F\{0} such that

meas({t ∈ R : a(t)|un(t)|γ ≥ 1
n
‖un‖γ}) <

1
n
.

Let vn := un
‖un‖ . Then vn ∈ F , ‖vn‖ = 1 for all n ∈ N and

meas({t ∈ R : a(t)|vn(t)|γ ≥ 1
n
}) < 1

n
, ∀n ∈ N. (3.7)

Passing to a subsequence if necessary, we may assume vn → v0 in E for some v0 ∈ F
since F is of finite dimension. Evidently, ‖v0‖ = 1. By the equivalence of norms on
F , we have vn → v0 in Lγ(a); i.e.,∫

R
a(t)|vn − v0|γdt→ 0, as n→∞. (3.8)

Moreover, since ‖v0‖L∞ > 0, by (V5) and the definition of ‖ · ‖L∞ , it is easy to see
that there exists a constant δ0 > 0 such that

meas({t ∈ R; a(t)|v0(t)|γ ≥ δ0}) ≥ δ0. (3.9)

For any n ∈ N, let

Λn = {t ∈ R : a(t)|vn(t)|γ < 1
n
}, Λcn = R\Λn = {t ∈ R : a(t)|vn(t)|γ ≥ 1

n
}.

Set Λ0 = {t ∈ R : a(t)|v0(t)|γ ≥ δ0}. Then, for n large enough, by (3.7) and (3.9),
we have

meas(Λn ∩ Λ0) ≥ meas(Λ0)−meas(Λcn) ≥ δ0 − 1/n ≥ δ0/2.

Consequently, for n large enough, there holds∫
R
a(t)|vn − v0|γdt ≥

∫
Λn∩Λ0

a(t)|vn − v0|γdt

≥ 1
2γ−1

(∫
Λn∩Λ0

a(t)|v0|γdt−
∫

Λn∩Λ0

a(t)|vn|γdt
)

≥ 1
2γ−1

(δ0 − 1/n) meas(Λn ∩ Λ0)

≥ δ2
0

2γ+1
> 0.

This contradicts (3.8) and therefore (3.6) holds. For the ε given in (3.6). Let

Λu = {t ∈ R : a(t)|u(t)|γ ≥ ε‖u‖γ}, ∀u ∈ F\{0}.

Then
meas(Λu) ≥ ε, ∀u ∈ F\{0}. (3.10)

Observing that for u ∈ F with ‖u‖ ≥ r(‖a‖L∞/ε)1/γ , there holds

|u(t)| ≥ r, ∀t ∈ Λu. (3.11)



EJDE-2013/11 INFINITELY MANY HOMOCLINIC ORBITS 9

Combining (3.10), (3.11) and (V1), for any u ∈ F with ‖u‖ ≥ r(‖a‖L∞/ε)1/γ , we
obtain

B(u) =
1
2
‖u−‖2 +

∫
R
V (t, u(t))dt

≥
∫

Λu

V (t, u(t))dt

≥ a1

∫
Λu

a(t)|u(t)|γdt

≥ a1ε‖u‖γ meas(Λu) ≥ a1ε
2‖u‖γ ,

which implies that B(u)→∞ as ‖u‖ → ∞ on F . �

Lemma 3.3. Under the assumptions of Theorem 1.1, there exist a positive integer
k0 and a sequence ρk → 0+ as k →∞ such that

ak(λ) := inf
u∈Zk,‖u‖=ρk

Φλ(u) > 0, ∀k ≥ k0,

and

dk(λ) := inf
u∈Zk,‖u‖≤ρk

Φλ(u)→ 0 as k →∞, uniformly for λ ∈ [1, 2],

where Zk = ⊕∞j=kXj.

Proof. Note that Zk ⊂ E+ for all k ≥ n̄+ 1 where n̄ is the integer defined in (2.1).
So, for any k ≥ n̄+ 1 and (λ, u) ∈ [1, 2]× Zk, we have

Φλ(u) ≥ 1
2
‖u‖2 − 1

2
|A|‖u‖L2‖u̇‖L2 − 2

∫
R
V (t, u(t))dt

≥ 1
2

(
1− δ2|A|

)
‖u‖2 − 2

∫
R
V (t, u(t))dt,

(3.12)

with 1 − δ2|A| > 0 by (2.2). On the other hand, by the mean value theorem and
(V3), we have∫

R
V (t, u(t))dt =

∫
R

(∇V (t, θ(t)u(t)), u(t))dt

≤ a4

∫
R
a(t)|u(t)|βdt+ a4

∫
R
a(t)|u(t)|dt

(3.13)

where θ(t) ∈ (0, 1). Since the function a is bounded, by (3.13) there exists c1 > 0
such that ∫

R
V (t, u(t))dt ≤ c1

(
‖u‖β

Lβ
+ ‖u‖L1

)
. (3.14)

Combining (3.12) and (3.14), we obtain

Φλ(u) ≥ 1
2

(
1− δ2|A|

)
‖u‖2 − 2c1

(
‖u‖β

Lβ
+ ‖u‖L1

)
. (3.15)

For k ∈ N, define

l1(k) := sup
u∈Zk,‖u‖=1

‖u‖L1 , lβ(k) := sup
u∈Zk,‖u‖=1

‖u‖Lβ .

Since E is compactly embedded into L1 and Lβ respectively,

l1(k)→ 0, lβ(k)→ 0, as k →∞. (3.16)
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Consequently, for any k ≥ n̄+ 1, (3.15) implies

Φλ(u) ≥ 1
2

(
1− δ2|A|

)
‖u‖2 − 2c1

(
lββ(k)‖u‖β + l1(k)‖u‖

)
, (3.17)

for all (λ, u) ∈ [1, 2]× Zk. Let

ρk =
8c1

1− δ2|A|

(
lββ(k) + l1(k)

)
, ∀k ∈ N.

From (3.16), we obtain
ρk → 0 as k →∞, (3.18)

and there exists k0 > n̄+ 1 such that

ρk < 1, ∀k ≥ k0. (3.19)

Combining (3.17)-(3.19) and the definition of ρk, a straightforward computation
shows that

ak(λ) := inf
u∈Zk,‖u‖=ρk

Φλ(u) ≥ 1− δ2|A|
4

ρ2
k > 0, ∀k ≥ k0.

Furthermore, by (3.17), for any k ≥ k0 and u ∈ Zk with ‖u‖ ≤ ρk, we have

Φλ(u) ≥ −2c1
(
lβγ (k)ρβk + l1(k)ρk

)
.

Then
0 ≥ inf

u∈Zk,‖u‖≤ρk
Φλ(u) ≥ −2c1

(
lββ(k)ρβk + l1(k)ρk

)
, ∀k ≥ k0.

Combining (3.16) and (3.18), we obtain

dk(λ) := inf
u∈Zk,‖u‖≤ρk

Φλ(u)→ 0 as k →∞, uniformly for λ ∈ [1, 2].

�

Lemma 3.4. Under the assumptions of Theorem 1.1, there exists 0 < rk < ρk for
all k ∈ N such that

bk(λ) := max
u∈Yk,‖u‖=rk

Φλ(u) < 0, ∀k ∈ N,

where the sequence {ρk}k∈N is obtained in Lemma 3.3 and Yk = ⊕kj=1Xj.

Proof. For u = u− + u0 + u+ ∈ Yk with ‖u‖ ≤ ω
C∞

where C∞ is the constant given
by (2.3), one has ‖u‖L∞ ≤ ω and by (V2), we have

Φλ(u) ≤ 1
2
‖u+‖2 +

1
2
|A|‖u‖L2‖u̇‖L2 −

∫
R
V (t, u(t))dt

≤ 1
2

(
1 + δ2|A|

)
‖u‖2 − a3‖u‖νLν(a)

≤ 1
2

(
1 + δ2|A|

)
‖u‖2 − δk‖u‖ν

(3.20)

where the last inequality is obtained by the equivalence of norms ‖ · ‖Lν(a) and ‖ · ‖
on the finite dimensional space Yk and δk > 0 depending on Yk. Now, choosing

0 < rk < min{ρk,
ω

C∞
, δ

1/(2−ν)
k }, ∀k ∈ N.
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By (3.20), a direct computation gives

bk(λ) := max
u∈Yk,‖u‖=rk

Φλ(u) ≤ δ2|A| − 1
2

r2
k < 0, ∀k ∈ N.

�

Proof of Theorem 1.1. Combining Lemma 2.1, lemma 2.2, (3.1) and (3.14), it is
easy to see that Φλ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2].
Moreover, by (V4), Φλ(−u) = Φλ(u) for all (λ, u) ∈ [1, 2]× E. Thus the condition
(T1) of Theorem 2.5 holds. Lemma 3.2 shows that the condition (T2) holds, while
Lemma 3.3 together with Lemma 3.4 imply that the condition (T3) holds for all
k ≥ k0, where k0 is given in Lemma 3.3. Therefore, by Theorem 2.5, for each
k ≥ k0, there exist λn → 1, uλn ∈ Yn such that

Φ′λn |Yn(uλn) = 0, Φλn(uλn)→ fk ∈ [dk(2), bk(1)] as n→∞. (3.21)

It remains to prove that the sequence {uλn} is bounded. Otherwise, we suppose,
up to a subsequence, that

‖uλn‖ → ∞, as n→∞. (3.22)

Let un := uλn = u−n + u0
n + u+

n in E = E− ⊕ E0 ⊕ E+ and assume that

un/‖un‖⇀ w, u±n /‖un‖⇀ w±, u0
n/‖un‖⇀ w0.

By (3.21), we have

(u+
n , vn)− λn(u−n , vn) +

∫
R

(Aun(t), v̇n(t))dt− λn
∫

R
(∇V (t, un(t)), vn(t))dt = 0,

(3.23)
where vn = v|Yn , v =

∑∞
i=1 siei. Using (V3) and Lemma 2.2 we can find a constant

d > 0 such that∣∣ ∫
R

(∇V (t, un(t)), vn(t))dt
∣∣ ≤ a4

∫
R
a(t)|un(t)|β−1|vn(t)|dt+ a4

∫
R
a(t)|vn(t)|dt

≤ d
(
‖un‖β−1 + 1

)
‖vn‖

(3.24)
Since β − 1 < 1, from (3.22) and (3.24), we obtain

1
‖un‖

∫
R

(∇V (t, un(t)), vn(t))dt→ 0, as n→∞. (3.25)

Also, dividing by ‖un‖ in (3.23) and passing to the limit, we obtain

(w+, v)− (w−, v) +
∫

R
(Aw(t), v̇(t))dt = 0. (3.26)

If w 6= 0, (3.26) is equivalent to 0 ∈ σ
(
− (d2/dt2) + L(t) − A(d/dt)

)
which

contradicts assumption (L3).
If w = 0. From (3.21), we have

0 = λn

(
‖un‖2 − ‖u0

n‖2
)

+
∫

R
(Aun, λnu̇+

n − u̇−n )dt

− λn
∫

R
(∇V (t, un), λnu+

n − u−n )dt.
(3.27)
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Arguing as in (3.24)-(3.25), we obtain

1
‖un‖2

∫
R
(∇V (t, un), λnu+

n − u−n )dt→ 0 as n→∞. (3.28)

Combining (3.22), (3.27) and (3.28) we obtain

1
‖un‖2

∫
R

(Aun, λnu̇+
n − u̇−n )dt→ −1 as n→∞. (3.29)

On the other hand, by Lemma 2.2, passing if necessary to a subsequence, we have
un
‖un‖ → 0 in L2. Also, by Lemma 2.1, the sequence {λnu̇

+
n−u̇

−
n

‖un‖ } is bounded in L2,
so it is obvious that

1
‖un‖2

∫
R
(Aun, λnu̇+

n − u̇−n )dt→ 0 as n→∞.

This is in contradiction with (3.29). Therefore, {un} is bounded and by a standard
argument it possesses a strong convergent subsequence in E (see [18, 21]).

Now, from the last assertion of Theorem 2.5, we know that Φ = Φ1 has infinitely
many nontrivial critical points and by Lemma 3.1, system (1.1) possesses infinitely
many nontrivial homoclinic solutions. This completes the proof. �

4. Proof of Theorem 1.4

The proof is based on the following two lemmas.

Lemma 4.1. Under the conditions of Theorem 1.4, Φ ∈ C1(E,R) and

Φ′(u)v =
∫

R

[
(u̇(t), v̇(t)) + (L(t)u(t), v(t))

]
dt

+
∫

R
(Au(t), v̇(t))dt−

∫
R

(∇V (t, u(t)), v(t))dt.

for all u = u− + u0 + u+, v = v− + v0 + v+ in E = E− ⊕E0 ⊕E+. Moreover, any
critical point of Φ on E is a homoclinic solution of (1.1).

Proof. Using the notation of Lemma 3.1, we need to prove that Ψ3 ∈ C1(E,R) and

Ψ′3(q)v =
∫

R
(∇V (t, q(t)), v(t))dt, ∀q, v ∈ E.

Let u ∈ E, from Lemma 2.1, we know that u ∈W 1,2(R,RN ) and hence there exists
T0 > 0 such that

|u(t)| ≤ r/2, ∀|t| ≥ T0. (4.1)

By (2.3), for any v ∈ E with ‖v‖ ≤ r
2C∞

, we have

‖v‖L∞ ≤ r/2. (4.2)
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Combining (4.1), (4.2) and (V4’), by the mean value theorem and the Hölder in-
equality, for any T > T0 and v ∈ E with ‖v‖ ≤ r

2C∞
, we have∣∣∣ ∫

|t|>T

[
V (t, u+ v)− V (t, u)− (∇V (t, u), v)

]
dt
∣∣∣

=
∣∣∣ ∫
|t|>T

[ ∫ 1

0

(∇V (t, u+ sv)−∇V (t, u), v)ds
]
dt
∣∣∣

≤ 2a2

∫
|t|>T

(|u|+ |v|)β |v|dt

≤ 2a2

(∫
|t|>T

(|u|+ |v|)dt
)β
‖v‖

L
1

1−β

≤ 2a2C 1
1−β

(∫
|t|>T

(|u|+ |v|)dt
)β
‖v‖.

(4.3)

In view of Lemma 2.2, for any ε > 0, there exist 0 < δ1 ≤ r
2C∞

and Tε > T0 such
that

2a2C 1
1−β

(∫
|t|>Tε

(|u|+ |v|)dt
)β
≤ ε/2, ∀v ∈ E, ‖v‖ ≤ δ1. (4.4)

Define ΨT : W 1,2([−T, T ],RN )→ R by

ΨT (u) =
∫ T

−T
V (t, u)dt, ∀u ∈W 1,2([−T, T ],RN ).

It is known (see, e.g., [14]) that ΨT ∈ C1(W 1,2([−T, T ],RN )) for any T > 0.
Combining this with the fact E is continuously embedded in W 1,2(R,RN ) from
Lemma 2.1, for the ε and Tε given above, there exists δ2 = δ2(u, ε, Tε) such that∣∣ ∫ Tε

−Tε

[
V (t, u+ v)−V (t, u)− (∇V (t, u), v)

]
dt
∣∣ ≤ ε

2
‖v‖, ∀v ∈ E, ‖v‖ ≤ δ2. (4.5)

Combining (4.3)-(4.5) and taking δ = min{δ1, δ2}, we obtain∣∣ ∫
R

[
V (t, u+ v)− V (t, u)− (∇V (t, u), v)

]
dt
∣∣ ≤ ε‖v‖, ∀v ∈ E, ‖v‖ ≤ δ.

Thus Ψ3 is Fréchet differentiable and

Ψ′3(q)v =
∫

R
(∇V (t, q(t)), v(t))dt, ∀q, v ∈ E.

Next we prove that Ψ′3 is weakly continuous. Let un ⇀ u0 in E. Again, using
Lemma 2.2, un → u0 in Lp for all 1 ≤ p ≤ ∞. By the Hölder inequality,

‖Ψ′3(un)−Ψ′3(u0)‖E∗ = sup
‖v‖=1

‖(Ψ′3(un)−Ψ′3(u0))v‖

= sup
‖v‖=1

∣∣∣ ∫
R

(∇V (t, un)−∇V (t, u0), v)dt
∣∣∣

≤ sup
‖v‖=1

[( ∫
R
|∇V (t, un)−∇V (t, u0)|3dt

)1/3

‖v‖3/2
]

≤ C3/2

(∫
R
|∇V (t, un)−∇V (t, u0)|3dt

)1/3

, ∀n ∈ N,

(4.6)



14 A. DAOUAS, A. MOULAHI EJDE-2013/11

Since un → u0 in L1, there exists a constant M0 > 0 such that

‖un‖L1 ≤M0, ∀n ∈ N. (4.7)

By (V4’), for any ε > 0, there exists η > 0 such that

|∇V (t, u)| ≤ ε

2(M1/3
0 + ‖u0‖1/3L1 )

|u|1/3, ∀u ∈ R, |u| ≤ η. (4.8)

Due to (4.8), the fact that u0 ∈ W 1,2(R,RN ) and un → u0 in L∞, there exist
T ′ε > 0 and N1 ∈ N such that for all n > N1 and |t| ≥ T ′ε,

|∇V (t, un)| ≤ ε

2(M1/3
0 + ‖u0‖1/3L1 )

|un|1/3,

|∇V (t, u0)| ≤ ε

2(M1/3
0 + ‖u0‖1/3L1 )

|u0|1/3.
(4.9)

By (4.7) and (4.9), we have(∫
|t|≥T ′ε

|∇V (t, un)−∇V (t, u0)|3dt
)1/3

≤ ε

2(M1/3
0 + ‖u0‖1/3L1 )

(‖un‖1/3L1 + ‖u0‖1/3L1 )

≤ ε

2
, ∀n ≥ N.

(4.10)

On the other hand, using un → u0 in L∞ and (V3’), by Lebesgue’s Dominated
Convergence Theorem,(∫ T ′ε

−T ′ε
|∇V (t, un)−∇V (t, u0)|3dt

)1/3

→ 0 as n→∞.

Thus there exists N2 ∈ N such that for all n > N2,(∫ T ′ε

−T ′ε
|∇V (t, un)−∇V (t, u0)|3dt

)1/3

≤ ε/2.

Combining the last inequality with (4.10) and taking Nε = max{N1, N2}, we obtain(∫
R
|∇V (t, un)−∇V (t, u0)|3dt

)1/3

≤ ε, ∀n ≥ Nε. (4.11)

Inequality (4.11) with (4.6) imply the continuity of Ψ′3 and therefore Ψ3 ∈ C1(E,R).
The rest of the proof is similar to that of Lemma 3.1. �

Lemma 4.2. Under the assumption (V1’), B(u) ≥ 0 and B(u)→∞ as ‖u‖ → ∞
on any finite dimensional subspace of E.

Proof. Evidently, B(u) ≥ 0. An argument similar to but easier than the proof of
(3.6) allows to claim that for any finite dimensional subspace F ⊂ E, there exists
ε > 0 such that

meas({t ∈ R; |u(t)| ≥ ε‖u‖}) ≥ ε, ∀u ∈ F\{0}. (4.12)

By (V1’), for any A > 0, there exists B > 0 such that

V (t, x) ≥ A/ε, ∀ t ∈ R and |x| ≥ B. (4.13)

where ε is given in (4.12). Let

Λu = {t ∈ R : |u(t)| ≥ ε‖u‖}, ∀u ∈ F\{0}.
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Then by (4.12),
meas(Λu) ≥ ε, ∀u ∈ F\{0}. (4.14)

Observing that for u ∈ F with ‖u‖ ≥ B/ε, there holds

|u(t)| ≥ B, ∀ t ∈ Λu. (4.15)

Combining (4.13)-(4.15), for any u ∈ F with ‖u‖ ≥ B/ε, we have

B(u) =
1
2
‖u−‖2 +

∫
R
V (t, u(t))dt

≥
∫

Λu

V (t, u(t))dt

≥ meas(Λu)A/ε ≥ A,

which implies that B(u)→∞ as ‖u‖ → ∞ on F . �

To complete the proof of Theorem 1.4, we observe that since (V3’) is the partic-
ular case of (V3) where β = 1, then Lemma 3.3 remains true under the assumption
(V3’). Also, it is obvious that Lemma 3.4 still holds with (V2’) replacing (V2). The
remainder of the proof is analogous to Theorem 1.1.
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