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BEHAVIOR OF THE ENERGY FOR LAMÉ SYSTEMS IN
BOUNDED DOMAINS WITH NONLINEAR DAMPING AND

EXTERNAL FORCE

AHMED BCHATNIA, MOEZ DAOULATLI

Abstract. We study behavior of the energy for solutions to a Lamé system

on a bounded domain, with localized nonlinear damping and external force.

The equation is set up in three dimensions and under a microlocal geometric
condition. More precisely, we prove that the behavior of the energy is deter-

mined by a solution to a forced differential equation, an it depends on the L2

norm of the force.

1. Introduction and statement of the problem

Let Ω be a bounded smooth domain in R3. Let us consider the Lamé system
with localized nonlinear damping and external force,

∂2
t u−∆eu+ a(x)g(∂tu) = f(t, x), in R+ × Ω,

u = 0 on R+ × ∂Ω,

u(0, x) = ϕ1(x), ∂tu(0, x) = ϕ2(x) in Ω.
(1.1)

Here ∆e denotes the elasticity operator, which is the 3×3 matrix-valued differential
operator defined by

∆eu = µ∆u+ (λ+ µ)∇ div u, u = (u1, u2, u3),

and we assume that the Lamé constants λ and µ satisfy the conditions

µ > 0, λ+ 2µ > 0. (1.2)

Moreover, a(x) ∈ L∞(Ω) is a nonnegative real function, f is in (L2
loc(R+, L

2(Ω)))3

and
g(∂tu) = (g1(∂tu1), g2(∂tu2), g3(∂tu3)),

where gi : R→ R is a continuous monotone increasing function satisfying gi(0) = 0
and the following growth assumption:

c1s
2 ≤ gi(s)s ≤ c2s2, |s| ≥ 1, for i = 1, 2, 3, (1.3)

with c1, c2 > 0. We can find applications for this system in geophysics and seismic
waves propagation. In the case λ+µ = 0 we obtain a vector wave equation and we
aim in this article to generalize some well known results for the wave equation.
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In this framework, due to the nonlinear semi-group theory, it is well known that,
for every ϕ = (ϕ1, ϕ2) ∈ H = (H1

0 (Ω))3 × (L2(Ω))3, the system (1.1) admits a
unique global solution u(t, x) such that

u ∈ C0(R+, (H1
0 (Ω))3) ∩ C1(R+, (L2(Ω))3). (1.4)

The energy of u at time t is defined by

Eu(t) =
1
2

∫
Ω

(µ|∇u|2 + (λ+ µ)|div u|2 + |∂tu|2)(t, x)dx, (1.5)

and the following energy functional law holds

Eu(t) +
∫ t

s

∫
Ω

a(x)g(∂tu(σ, x)) · ∂tu(σ, x) dx dσ

= Eu(s) +
∫ t

s

∫
Ω

f(t, x) · ∂tu(σ, x) dx dσ,
(1.6)

for every t ≥ s ≥ 0.
For the literature we quote essentially the result of Bisognin et al [12] which

established that the solutions of a system in elasticity theory with a nonlinear
localized dissipation decay in an algebraic rate to zero using some energy identities
associated with localized multipliers. For more results on the energy decay for the
Lamé system with linear or nonlinear damping we refer the reader to Alabau and
Komornik [1, 2], Alabau [3], Guesmia [14], Horn [16, 17] and references therein. We
note that the method used in these papers is based on technical multipliers. In the
same spirit, we can also quote the work of Guesmia [15] for the observability, exact
controllability and internal or boundary stabilization of general elasticity systems
with variable coefficients depending on both time and space variables. See also
the work of Bellassoued [4] which investigate the decay property of the solutions
to the initial-boundary value problem for the elastic wave equation with a local
time-dependent nonlinear damping. We note moreover that Burq and Lebeau [5]
introduced the microlocal defect measures attached to sequences of solutions of the
Lamé system and proved a propagation result when the energy of the longitudinal
component goes to zero. Finally, Daoulatli et al [8] adapted the Lax-Philips theory,
and under the assumption (GC), gave the rate of decay of the local energy for
solutions of the Lamé system on exterior domain with nonlinear localized damping.
Let us indicated that all the result above are without external force and no result
seems to be known when f 6= 0. We specially mention the result of Daoulatli
[7], which study the behavior of the energy of solutions of the wave equation with
localized damping and an external force on compact Riemannian manifold with
boundary.

The main purpose of this work is to give the behavior of the energy of solutions
of (1.1). First we recall the following definition.

Definition 1.1. We will call generalized bicharacteristic path any curve which con-
sists of generalized bicharacteristics of the principal symbol p (where p(t, x; τ, ξ) =
(µ|ξ|2 − τ2)2((λ + 2µ)|ξ|2 − τ2)), with possibility of moving from a characteristic
manifold to another, at each point of T ∗(∂Ω), in the way indicated in [8].

Remark 1.2. A generalized geodesic path is constituted of segments living in Ω,
that intersect the boundary transversally (at hyperbolic points for pL(t, x; τ, ξ) =
c2L|ξ|2 − τ2 or pT (t, x; τ, ξ) = c2T |ξ|2 − τ2 (where cL =

√
λ+ 2µ and cT =

√
µ ),
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or tangentially (at diffractive points). These segments may be connected to arcs
of curves living on ∂Ω which are projections of glancing rays associated to pL or
pT . The projection of such a generalized bicharacteristic path on Ω̄ will be called
a generalized geodesic path.

Definition 1.3. Let ω be an open subset of Ω, T > 0 and consider the following
assumption:

(GC) every generalized geodesic path of Ω, issued at t = 0, meets R+×ω between
the limits 0 and T .

We shall relate the open subset ω with the damper a by ω = {x ∈ Ω : a(x) > µ > 0}.

Before stating the main result of this paper, we will define some functions. Ac-
cording to [18] there exists a concave continuous, strictly increasing functions hi
(i = 1, 2, 3), linear at infinity with hi(0) = 0 such that

hi(gi(s)s) ≥ ε0(|s|2 + |gi(s)|2), |s| ≤ η, (1.7)

for some ε0, η > 0. For example when gi is superlinear, odd and the function
s 7−→

√
sgi(
√
s) is convex, then h−1

i (s) =
√
sgi(
√
s) when |s| ≤ η. For further

information on the construction of a such function we refer the interested reader to
[6, 9, 18]. With this function, we define

h(s) = s+ h0(s), where h0(s) =
3∑
i=1

ma(ΩT )hi(
s

ma(ΩT )
), (1.8)

for s ≥ 0, dma = a(x) dx dt and ΩT = (0, T )× Ω.
In this article, we show that under the assumption (GC) we obtain the following

observability inequality:
Non-autonomous observability inequality: There exists a constant T > 0 such

that the solution u(t, x) to the nonlinear problem (1.1) with initial data ϕ = (ϕ0, ϕ1)
satisfies

Eu(t) ≤ CTh
(∫ t+T

t

∫
Ω

a(x)g(∂tu) · ∂tu+ |f(σ, x)|2 dx dσ
)
,

for every t ≥ 0.
From the observability inequality above, we infer that the behavior of the en-

ergy depends on ‖f(t, x)‖L2(Ω). More precisely, we will prove that this behavior is
governed by a forced differential equation and depends on

Γ(t) = 2
(
‖f(t, .)‖2L2(Ω) + ψ∗(‖f(t, .)‖L2(Ω))

)
,

where ψ∗ is the convex conjugate of the function ψ, defined by

ψ(s) =

{
1

2T h
−1( s2

8CT eT
) s ∈ R+,

+∞ s ∈ R∗−,

with CT ≥ 1 and T > 0. More precisely we have the following theorem.

Theorem 1.4. Let the function h be defined by (1.8). We assume that the assump-
tion (GC) holds and

Γ(t) = 2
(
‖f(t, .)‖2L2(Ω) + ψ∗(‖f(t, .)‖L2(Ω))

)
∈ L1

loc(R+).
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Let u(t) be the solution to (1.1) with initial condition (ϕ0, ϕ1) ∈ H. Then

Eu(t) ≤ 2eT (S(t− T ) +
∫ t

t−T
Γ(s)ds), t ≥ T, (1.9)

where S(t) is the positive solution of the ordinary differential equation

dS

dt
+

1
4T

h−1(
1
K
S) = Γ(t), S(0) = Eu(0), (1.10)

with K ≥ 2CT . Moreover,

• If there exists C > 0, such that
∫ t
t−T Γ(τ)dτ ≤ C, for every t ≥ T . Then

Eu(t) is bounded.
• If

∫ t
t−T Γ(τ)dτ → 0 as t → +∞, and if Eu(t) admits a limit at infinity,

then the limit is zero.
• If Γ ∈ L1(R+), then Eu(t)→ 0 as t→ +∞.
• If

∫ t
t−T Γ(τ)dτ → +∞ as t→ +∞, then S(t)→ +∞ as t→ +∞.

We discuss now the methods used for establishing the main result. We note
that the present work is compared to the work of [7] and [8]. Here, we follow the
same program and we study the behavior of the energy for the Lamé system with
Dirichlet boundary condition in a bounded domain and by adding the external
force. We consider the notion of bicharacteristic path and we adapt for our context
a propagation result for the microlocal defect measures attached to sequences of
solutions of (1.1). We deduce then a nonlinear observability estimate which is
needed to prove Theorem 1.4.

2. Proof of the main result

Before presenting the proof of our main theorem, we introduce some notation
and recall some results from the literature.

Proposition 2.1. Let u be a solution of (1.1) with initial data in the energy space.
Then

Eu(t) ≤ (1 +
1
ε

)eε(t−s)
(
Eu(s) +

1
ε

∫ t

s

∫
Ω

|f(σ, x)|2 dx dσ
)
, (2.1)

for every ε > 0 and for every t ≥ s ≥ 0.

Proof. Let t ≥ s ≥ 0. From the energy identity (1.6), we infer that

Eu(t) ≤ Eu(s) +
∫ t

s

∫
Ω

f(t, x) · ∂tu(σ, x) dx dσ.

Using Young’s inequality, we obtain

Eu(t) ≤ Eu(s) +
1
ε

∫ t

s

∫
Ω

|f(σ, x)|2 dx dσ + ε

∫ t

s

Eu(σ)dσ,

for every ε > 0. Now Gronwall’s inequality gives

Eu(t) ≤ eε(t−s)
(
Eu(s) +

1
ε

∫ t

s

∫
Ω

|f(σ, x)|2 dx dσ
)
.

�

By analogy with [8, Proposition 5.1], we obtain the following result.
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Proposition 2.2. Let (un) be a bounded sequence of solutions of the linear Lamé
system

∂2
t un −∆eun = 0 in R+ × Ω,

un = 0 on R+ × ∂Ω,

(un(0, x), ∂tun(0, x)) = ϕn(x) in Ω.
(2.2)

with initial data in H, weakly converging to 0 in H. We assume that (GC) holds and
that ∂tun → 0 in (L2

loc(]0, T [×ω))3. Then there exists a subsequence (still denoted
(un)) such that un → 0 in (H1

loc(]0, T [, H1(Ω)))3.

Before giving the proof of Proposition 2.2, we recall some facts on microlocal
defect measures associated to bounded sequences of solutions to the linear Lamé
system with Dirichlet boundary conditions. We give them within their original
statement [8], and we note that (with obvious modifications of their proofs) all
these results remain valid in our situation.

We consider the linear Lamé system on R× Ω.

∂2
t u−∆eu = 0, in R× Ω,

u = 0 on R× ∂Ω,

(u(0, x), ∂tu(0, x) = (ϕ1(x), ϕ2(x)) ∈ (H1
0 (Ω))3 × (L2(Ω))3.

(2.3)

We decompose first the solution of system (2.3) into

u = uL + uT , (2.4)

where the longitudinal wave uL and the transversal wave uT , respectively, satisfies
the wave system

(∂2
t − c2L∆)uL = 0, rotuL = 0,

(∂2
t − c2T∆)uT = 0, div uT = 0,
u = uL + uT = 0 on R× ∂Ω,

(2.5)

with cL =
√
λ+ 2µ and cT =

√
µ. Moreover, if (un)n is a bounded sequence of solu-

tions of (2.3) weakly converging to 0 in (H1
loc(Rt, H1(Ω)))3, the sequences (unL) and

(unT ) are also of bounded energy and weakly converging to 0 in (H1
loc(Rt, H1(Ω)))3.

In this way, according to [5], we can attach to (unL) (resp. (unT )) a microlocal de-
fect measure νL (resp. νT ). These measures are orthogonal in the measure theory
sense (see [5, Proposition 4.4] or [11, Lemme 3.30]). In addition, νL is supported
in the characteristic set

CharL = (CharL)Ω ∪ (CharL)∂Ω

= {(t, x, τ, ξ) : x ∈ Ω, t > 0, c2L|ξ|2 − τ2 = 0}
∪ {(t, y, τ, η) : y ∈ ∂Ω, t > 0, rL := τ2 − c2L|η|2 ≥ 0},

and νT is supported in

Char T ={(t, x, τ, ξ); x ∈ Ω, t > 0, c2T |ξ|2 − τ2 = 0}.
This fact is known as the elliptic regularity theorem for the m.d.m’s.

Let us now analyze the propagation properties of the measures νL and νT . In
the interior, i.e. in T ∗(R × Ω), we are in presence of two waves which propagate
independently, so we have at our disposal the classical measures propagation the-
orem of [13]. Near the boundary ∂Ω, we have to take into account, the nature of
the bicharacteristics hitting ∂Ω.
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Take ρ in CharP∂Ω = {(t, y, τ, η); y ∈ ∂Ω, t > 0, rT := τ2 − c2T |η|2 ≥ 0}; for
rL,T = rL,T (ρ) ≥ 0, we denote γ−L,T (resp. γ+

L,T ) the (longitudinal/transversal) in-
coming (resp. outgoing) bicharacteristic to (resp. from) ρ (this half bicharacteristic
does not contain ρ). Following then word by word the argument developed in [5,
proof of Theorem 4], we have

Proposition 2.3. With the notation above, we have
(1) rL < 0, ρ is an elliptic point for the longitudinal wave. Hence, νL = 0 near

ρ and
(a) νT = 0 near ρ if rT < 0,
(b) νT propagates from γ−T to γ+

T if 0 ≤ rT .
(2) 0 < rL ≤ rT , ρ is a hyperbolic point for the longitudinal and the transver-

sal wave. In this case, we obtain: If γ−L,T∩support(νL,T ) = ∅, then νT,L
propagates from γ−T,L to γ+

T,L.
(3) 0 = rL < rT , ρ is a glancing point for the longitudinal wave. Here we have:

If γ−L∩support (νL) = ∅, then νT propagates from γ−T to γ+
T .

As a consequence, using the conservation of the total mass (see [5]), we obtain
the following result.

Corollary 2.4. For 0 ≤ rL, we have the following equivalence:

(γ−L ∩ support(νL)) ∪ (γ−T ∩ support(νT )) = ∅
if and only if

(γ+
L ∩ support(νL)) ∪ (γ+

T ∩ support(νT )) = ∅ .

Proof of Proposition 2.2. Under the decomposition (2.4), it suffices to prove that
un,L,T → 0 in (H1

loc(]0, T [, H1(Ω)))3, and thanks to the orthogonality property of
the measures νL and νT and the elliptic regularity theorem, we have ∂tun,L,T → 0
in (L2

loc(]0, T [×ω))3 and then νL = νT on ]0, T [×ω. Therefore, to prove Proposition
(2.2), we have to establish the following implication:

νL = νT = 0 on ]0, T [×ω ⇒ νL = νT = 0 on ]0, T [×Ω.

We argue by contradiction. Let (un) be a bounded sequence of solutions of (2.2)
with initial data inH, and νL,T the microlocal defect measure associated to (un,L,T ).
Let q ∈ T ∗(]0, T [×Ω) such that q ∈ support(νL) ∪ support(νT ) and γ a general-
ized bicaracteristic path starting at q. The geometric assumption saying that any
straight line in Ω has only finite order contacts with ∂Ω, we may assume that q is
an interior point.

In this way one can find a bicharacteristic γ (γL or γT ) issued from q and
traced backward in time, contained in the support of the associated measure (i.e
γL ⊂ support(νL) or γT ⊂ support(νT )). As γ hits the boundary ∂Ω, we have two
possibilities:

(a) γ hits ∂Ω, for the first time, in some point ρ such that rL(ρ) < 0.
(b) γ hits ∂Ω, for the first time, in some point ρ such that 0 ≤ rL(ρ).

In the first case, we are near an elliptic point for the longitudinal wave, so the
measure is carried by the transversal component and propagates along the reflected
bicharacteristic. In the second case, thanks to Proposition 2.3 and Corollary 2.4,
one of the two incoming bicharacteristics γ−L or γ−T at ρ is, locally, in support(νL)
or in support(νT ). Thus, we can construct a bicharacteristic path Γ issued from q
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(the union of all these successive rays γL or γT charged by the measure νL or νT )
contained in support(νL)∪ support(νT ). According to assumption (GC) Γ meets
]0, T [×ω at t0 < T , and this contradicts the fact that Γ ⊂support(νL)∪support(νT ),
since νL = νT = 0 on ]0, T [×ω. The proof of Proposition 2.2 is complete. �

Now, we prove the observability estimate which constitute with the lemma 2.7
below the main ingredient of the proof of Theorem 1.4.

Proposition 2.5. Let the function h be defined by (1.8). We assume that the
assumption (GC) holds. Then there exists CT > 0, such that the following inequality
holds:

Eu(t) ≤ CTh
(∫ t+T

t

∫
Ω

a(x)g(∂tu) · ∂tu+ |f(σ, x)|2 dx dσ
)
, (2.6)

for every t ≥ 0,for every solution u of (1.1) with initial data in the energy space
H, and for every f in (L2

loc(R+, L
2(Ω)))3.

Proof. To prove this result we argue by contradiction. We assume that there exist a
sequence (un)n solution of (1.1) with initial data in the energy space, a non-negative
sequence (tn)nand fn in (L2

loc(R+, L
2(Ω)))3, such that

Eun(tn) ≥ nh
(∫ tn+T

tn

∫
Ω

a(x)g(∂tun) · ∂tun + |fn(σ, x)|2 dx dσ
)
.

Moreover, un has the following regularity:

un ∈ C
(
R+, (H1

0 (Ω))3
)
∩ C1

(
R+, (L2(Ω))3

)
.

Setting αn = (Eun(tn))1/2 > 0 and vn(t, x) = un(tn+t,x)
αn

. Then vn satisfies

∂2
t vn −∆evn +

1
αn

a(x)g(αn∂tvn) =
1
αn

fn(tn + t, x), in R+ × Ω,

vn = 0 on R+ × ∂Ω,

(vn(0, x), ∂tvn(0, x)) =
1
αn

(un(tn, x), ∂tun(tn, x)), in Ω.

(2.7)

Moreover Evn(0) = 1 and

1 ≥ n

α2
n

h
(∫ T

0

∫
Ω

a(x)g(αn∂tvn) · αn∂tvn + |fn(tn + t, x)|2 dx dt
)
.

Since h = I + h0 and h0 is non-negative and increasing function and from the
inequality above, we infer that∫ T

0

∫
Ω

| 1
αn

fn(tn + t, x)|2 dx dt ≤ 1
n
−→

n→+∞
0 (2.8)

and[
I +

3∑
i=1

ma(ΩT )hi ◦
I

ma(ΩT )

]( ∫ T

0

∫
Ω

a(x)g(αn∂tvn) ·αn∂tvn dx dt
)
≤ α2

n

n
. (2.9)

Re-using the fact that the function h0 is non-negative gives

α−1
n

∫ T

0

∫
Ω

a(x)g(αn∂tvn) · ∂tvn dx dt −→
n→+∞

0 (2.10)
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and

hi

( 1
ma(ΩT )

∫ T

0

∫
Ω

a(x)gi(αn∂tvn)αn(∂tvn)i dx dt
)
≤ α2

n

nma(ΩT )
, i = 1, 2, 3.

(2.11)
Denote Ω1,i = {(t, x) ∈ [0, T ]× Ω : |αn(∂tvn)i(t, x)| < µ} and Ω2,i = ΩT \Ω1,i.

Since gi has a linear behavior on {|s| ≥ η}, using (2.10), we infer that

‖a(x)(∂tvn)i‖2L2(Ω2,i)
≤ c1α−1

n

∫ T

0

∫
Ω

a(x)g(αn∂tvn) · ∂tvn dx dτ −→
n→+∞

0. (2.12)

Moreover, hi is concave, then using (the reverse) Jensen’s inequality

hi

( 1
ma(ΩT )

∫ T

0

∫
Ω

a(x)gi(αn∂tvn)αn(∂tvn)i dx dτ
)

≥ 1
ma(ΩT )

∫
ΩT

hi(gi(αn∂tvn)αn(∂tvn)i)dma,

which gives

α−2
n

∫
Ω1,i

hi(gi(αn∂tvn)αn(∂tvn)i)dma ≤
1
n
.

Therefore, from (1.7) we obtain∫
Ω1,i

a(x)[α−2
n |gi(αn(∂tvn)i)|2 + |(∂tvn)i|2] dx dt −→

n→+∞
0.

Combining the estimate above with (2.12) we obtain

‖a(x)∂tvn‖(L2(ΩT ))3 −→
n→+∞

0 (2.13)

and we conclude that

‖ 1
αn

a(x)g(αn∂tvn)‖(L2(ΩT ))3 −→
n→+∞

0. (2.14)

Hence, passing to the limit in (2.7), we see that the weak limit v ∈ (H1([0, T ]×Ω))3

satisfies the system
∂2
t v −∆ev = 0 in ]0, T [×Ω,

v = 0 on ]0, T [×Ω,

(v(0, x), ∂tv(0, x)) = ψ(x), in Ω .

(2.15)

Moreover, we obtain
a(x)∂tv = 0, on ΩT . (2.16)

Now, let wn be the solution of the system

∂2
twn −∆ewn = 0, in R+ × Ω,

wn = 0, on R+ × Ω,

(wn(0, x), ∂twn(0, x)) =
1
αn

(un(tn, x), ∂tun(tn, x)), in R+ × Ω.

(2.17)

It is clear that the sequence (wn)n is bounded in (H1
loc([0, T ]× Ω))3; moreover, by

the hyperbolic energy inequality, (2.8) and (2.14) we infer that

sup
0≤t≤T

Evn−wn(t) ≤ C(T )‖ 1
αn

a(x)g(∂tvn)− 1
αn

fn(tn+t, x)‖2L2(ΩT ) −→n→+∞
0. (2.18)
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Consequently, thanks to (2.13), we deduce that

‖a(x)∂twn‖(L2(ΩT ))3 →
n→+∞

0, (2.19)

to obtain a contradiction we use the following result for which we postpone its
proof.

Proposition 2.6. We assume that the assumption (GC) holds. Then there exists
αT > 0, such that the inequality

Ew(0) ≤ αT
(∫ T

0

∫
ω

|∂tw|2 dx ds
)

(2.20)

holds for every solution w of

∂2
tw −∆ew = 0, in R+ × Ω,
w = 0, on R+ × ∂Ω,

(w(0, x), ∂tw(0, x)) = (w0(x), w1(x)), in Ω
(2.21)

with initial data in the energy space H.

Now, using (2.19) and Proposition 2.6, we obtain

1 = Evn(0) = Ewn(0) ≤ αT
∫ T

0

∫
ω

|∂twn|2 dx dt −→
n→+∞

0 ,

and this concludes the Proof of Proposition 2.5. �

Proof of Proposition 2.6. We argue by contradiction: we suppose the existence of
a sequence (wn), solutions of (2.21) such that∫ T

0

∫
ω

|∂twn|2 dx dt ≤
Ewn(0)
n

.

Denote αn = Ewn(0)1/2 and zn = wn
αn

. Moreover zn satisfies

∂2
t zn −∆ezn = 0, in R+ × Ω,

zn = 0, in R+ × ∂Ω,

Ezn(0) = 1,
∫ T

0

∫
ω

|∂tzn|2 dx dt ≤
1
n
.

(2.22)

The sequence zn is bounded in C0([0, T ], (H1(Ω))3) ∩C1([0, T ], (L2(Ω))3), then, it
admits a subsequence, still denoted by zn, that is weakly-* convergent in the space
L∞([0, T ], (H1(Ω))3)∩W 1,∞((0, T ), (L2(Ω))3). In this way, zn ⇀ z in (H1([0, T ]×
Ω))3. Passing to the limit in the equation satisfied by zn we obtain

∂2
t z −∆ez = 0, in ]0, T [×Ω,

z = 0 in ]0, T [×∂Ω,

∂tz = 0 on ]0, T [×ω.
(2.23)

We need to check that the trivial solution, v = 0, is the only solution of (2.23)
in C0([0, T ], (H1(Ω))3) ∩ C1([0, T ], (L2(Ω))3). For this, we identify the function z
solution of (2.23) with its initial data φ ∈ H, and we consider the space G = {φ ∈
H, z is a solution of (2.23)}.

Every z in G is smooth on ]0, T [×ω; therefore, according to the geometric control
condition and the result of [21] on propagation of singularities, G is constituted of
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smooth functions. Moreover, G is obviously closed in H, and we deduce that it
is of finite dimension. On the other hand, ∂/∂t operates on G, so it admits an
eigenvalue λ, and there exists a nonzero function z0(x) on Ω such that ∆ez0 = λz0,
z0 ≡ 0 on ω, z0 = 0 on ∂Ω; and this is impossible by unique continuation property
of ∆e (see, for instance, [10]).

Now, we multiply Ezn(s) by ϕ(s), with ϕ ∈ C∞0 (]0, T [), ϕ = 1 on ]ε, T − ε[,
ϕ ≥ 0, and we integrate. This gives∫ T

0

ϕ(s)Ezn(s)ds

=
1
2

∫ T

0

∫
Ω

(µϕ(s)|∇zn|2 + (λ+ µ)ϕ(s)|div zn|2 + ϕ(s)|∂tzn|2)(s, x) dx ds.

Proposition 2.2 and (2.22) imply that the second member approaches 0 as n→ +∞.
Using the fact that Ezn(s) = 1, we obtain T − 2ε→ 0 as n→ +∞ and this gives a
contradiction. �

We recall now the following lemma due to [7] which is useful to determine the
behavior of the energy.

Lemma 2.7. Let T > 0 and
• Γ ∈ L1

loc(R+) and non-negative. Setting δ(t) =
∫ t+T
t

Γ(s)ds, for t ≥ 0.
• W (t) be a non-negative function for t ∈ R+. Moreover we assume that there

exists a positive, monotone, increasing function α with α(0) ≥ 1, such that

W (t) ≤ α(t− s)
[
W (s) +

∫ t

s

Γ(σ)dσ
]
, for every t ≥ s ≥ 0.

• Suppose that ` and I − ` : R+ → R are increasing functions with `(0) = 0
and

W ((m+ 1)T ) + `{W (mT ) + δ(mT )} ≤W (mT ) + δ(mT ), (2.24)

for m = 0, 1, 2, . . . , where `(s) does not depend on m.
Then

W (t) ≤ α(T )
(
S(t− T ) +

∫ t

t−T
Γ(s)ds

)
, ∀t ≥ T,

where S(t) is the non negative solution of the differential equation

dS

dt
+

1
T
`(S) = Γ(t); S(0) = W (0). (2.25)

Moreover, we assume that ` is continuous, strictly increasing and lims→+∞ `(s) =
+∞

• If there exists C > 0, such that
∫ t
t−T Γ(τ)dτ ≤ C, for every t ≥ T . Then

S(t) is bounded.
• If

∫ t
t−T Γ(τ)dτ → 0 as t→ +∞, and if S(t) admits a limit at infinity, then

this limit is zero.
• If Γ ∈ L1(R+), then S(t)→ 0 as t→ +∞.
• We assume that lims→+∞(I − `)(s) = +∞, then if

∫ t
t−T Γ(τ)dτ → +∞ as

t→ +∞, we have S(t)→ +∞ as t→ +∞.

We can now proceed the proof of the main result of this article.
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Proof of Theorem 1.4. We assume that the assumption (GC) holds. Let u be a
solution of (1.1) with initial data in the energy space. Then according to Proposition
2.5, we have

Eu(t) ≤ CTh
(∫ t+T

t

∫
Ω

a(x)g(∂tu) · ∂tu dx dσ +
∫ t+T

t

∫
Ω

|f(s, x)|2 dx ds
)
, (2.26)

for some CT ≥ 1. The energy identity (1.6) gives∫ t+T

t

∫
Ω

a(x)g(∂tu) · ∂tu dx dσ ≤ Eu(t)−Eu(t+T ) +
∫ t+T

t

∫
Ω

|f(σ, x) · ∂tu| dx dσ.

(2.27)
Let ψ be defined by

ψ(s) =

{
1

2T h
−1( s2

8CT eT
) s ∈ R+,

+∞ s ∈ R∗−.

It is clear that ψ convex is and proper function. Hence, we can apply Young’s
inequality [20]∫ t+T

t

∫
Ω

|f(σ, x) · ∂tu| dx dσ ≤
∫ t+T

t

‖f(σ, .)‖L2‖∂tu(σ, .)‖L2dσ

≤
∫ t+T

t

ψ∗(‖f(σ, .)‖L2) + ψ(‖∂tu(σ, .)‖L2)dσ,

where ψ∗ is the convex conjugate of the function ψ, defined by ψ∗(s) = supy∈R[sy−
ψ(y)]

Using the energy inequality (2.1) and the observability estimate (2.26), we infer
that∫ t+T

t

ψ(‖∂tu(σ, .)‖L2)dσ ≤ 1
2

(∫ t+T

t

∫
Ω

g(∂su)·∂sudma+
∫ t+T

t

∫
Ω

|f(s, x)|2 dx ds
)

then (2.27) gives∫ t+T

t

∫
Ω

a(x)g(∂tu) · ∂tu dx dσ

≤ 2
(
Eu(t)− Eu(t+ T ) +

∫ t+T

t

∫
Ω

|f(s, x)|2 dx ds+
∫ t+T

t

ψ∗(‖f(σ, .)‖L2)dσ
)
.

The inequality above combined with the observability estimate (2.26) and the fact
h = I + ma(ΩT )h0 ◦ I

ma(ΩT ) is increasing, gives

Eu(t) ≤ CTh
(

4
(
Eu(t)− Eu(t+ T ) + 2

∫ t+T

t

‖f(σ, .)‖2L2 + ψ∗(‖f(σ, .)‖L2)dσ
))
.

Setting
Γ(s) = 2(‖f(σ, .)‖2L2 + ψ∗(‖f(s, .)‖L2)).

Therefore,

Eu(t) +
∫ t+T

t

Γ(s)ds ≤ Kh
(

4
(
Eu(t)− Eu(t+ T ) +

∫ t+T

t

Γ(s) dx ds
))
,

with K ≥ 2CT . Setting θ(t) =
∫ t+T
t

Γ(s)ds. Thus

Eu(t+ T ) +
1
4
h−1

( 1
K

(Eu(t) + θ(t))
)
≤ Eu(t) + θ(t), (2.28)
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for every t ≥ 0. Take t = mt, m ∈ N,

Eu((m+ 1)T ) +
1
4
h−1

( 1
K

(Eu(mT ) + θ(mT ))
)
≤ Eu(mT ) + θ(mT ).

Setting W (t) = Eu(t), `(s) = 1
4h
−1 ◦ I

K and

Γ(s) = 2(‖f(s, .)‖2L2 + ψ∗(‖f(s, .)‖L2)).

It is clear that the functions ` and I − ` are increasing on the positive axis and
`(0) = 0. The function Γ ∈ L1

loc(R+) and non-negative on R+. According to lemma
2.7, we obtain

Eu(t) ≤ 2eT
(
S(t− T ) +

∫ t

t−T
Γ(s)ds

)
, ∀t ≥ T,

where S(t) is the solution of the following differential equation

dS

dt
+

1
T
`(S) = Γ(t), S(0) = W (0).

The function ` is continuous, strictly increasing and lims→+∞ `(s) = +∞, therefore
using Lemma 2.7, we infer that

• If there exists C > 0, such that
∫ t
t−T Γ(τ)dτ ≤ C for every t ≥ T . Then

S(t) is bounded, which gives Eu(t) is bounded.
• We assume that Eu(t) → α ≥ 0 as t → +∞ and

∫ t
t−T Γ(τ)dτ → 0 as

t→ +∞. Consequently (2.28) gives

Eu(t) + `
(
Eu(t− T ) +

∫ t

t−T
Γ(τ)dτ

)
≤ Eu(t− T ) +

∫ t

t−T
Γ(τ)dτ, (2.29)

for every t ≥ T . Passing to the limit in the inequality above, we infer
that `(α) = 0. Which means α = 0. Therefore, if Eu(t) admits a limit at
infinity, then the limit is zero.
• If Γ ∈ L1(R+), then S(t) → 0 as t → +∞, which gives Eu(t) → 0 as
t→ +∞.
• Since h−1 is linear at infinity, therefore (I − `) is positive and linear at

infinity, which gives lims→+∞(I−`)(s) = +∞. Thus, if
∫ t
t−T Γ(τ)dτ → +∞

as t→ +∞, we obtain S(t)→ +∞ as t→ +∞.

�

3. Applications

Preliminary results. In the following proposition we give a result on the behavior
of the solutions of (1.10) due to [7].

Proposition 3.1. Let p a differentiable, strictly increasing function on R+ with
p(0) = 0. We assume that there exists m1 > 0 such that, p(x) ≤ m1x for every
x ∈ [0, η] for some 0 < η << 1 and that the property

p(Kx) ≥ mp(K)p(x), (3.1)

holds, for some m > 0 and for every (K,x) ∈ [1,+∞[×R+.
We suppose that Γ ∈ C1(R+) and non-negative.
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(1) Let p̃ be a increasing function vanishing at the origin. Let S satisfy the
differential equation

dS

dt
+ p̃(S) = Γ(t), S(0) ≥ 0. (3.2)

Then S(t) ≥ 0 for every t ≥ 0.
(2) Let S be a non-negative function, satisfying the differential inequality

dS

dt
+ p(S) ≤ Γ(t), S(0) ≥ 0.

(a) If Γ(t) = 0, for every t ≥ 0, then S(t) ≤ ψ−1(t), for every t ≥ 0 where
ψ(x) =

∫ S(0)

x
ds
p(s) , x ∈]0, S(0)].

(b) If Γ(t) > 0, for every t ≥ 0, and
(i) There exist c > 0 and κ ≥ 1 such that

d

dt
p−1(Γ(t)) + cΓ(t) ≤ 0, for every t ≥ 0, (3.3)

mp(κ)− κc− 1 ≥ 0, κp−1 ◦ Γ(0) ≥ S(0), (3.4)

then S(t) ≤ κψ−1(ct) for every t ≥ 0, where

ψ(x) =
∫ p−1◦Γ(0)

x

ds

p(s)
, x ∈]0, p−1 ◦ Γ(0)].

Noting that in this case we have p−1 ◦Γ(t) ≤ ψ−1(ct), for every t ≥ 0.
(ii) There exist c > 0 and κ ≥ 1 such that d

dtp
−1(Γ(t)) + cΓ(t) ≥ 0, for

every t ≥ 0 and

mp(κ)− cκ− 1 ≥ 0, κp−1 ◦ Γ(0) ≥ S(0),

then S(t) ≤ κp−1 ◦ Γ(t), for every t ≥ 0. Noting that in this case we
have p−1 ◦ Γ(t) ≥ ψ−1(ct) for every t ≥ 0, where

ψ(x) =
∫ p−1◦Γ(0)

x

ds

p(s)
, x ∈]0, p−1 ◦ Γ(0)].

Examples. Setting

Γ(t) = 2
(
‖f(t, .)‖2L2(Ω) + ψ∗(‖f(t, .)‖L2(Ω))

)
,

where ψ∗ is the convex conjugate of the function ψ, defined by

ψ(s) =

{
1

2T h
−1( s2

8CT eT
) s ∈ R+

+∞ s ∈ R∗−,

and ψ∗(s) = sup
y∈R

[sy − ψ(y)]. To obtain the rate of decay, we use proposition 3.1.

gi is linearly bounded. We have h(s) = 2s, then

ψ∗
(
‖f(t, .)‖L2(M)

)
≤ C1‖f(t, .)‖2L2(M),

for some C1 > 0. The ODE (1.10) governing the energy bound reduces to

dS

dt
+ CS = Γ(t), (3.5)

where the constant C > 0 and does not depend on Eu(0).
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(1) If there are constants C0 > 0 and θ ∈ R, such that Γ(t) ≤ C0e
−θt. We have∫ t

t−T
e−θsds ≤

{
| 1θ |[e

|θ|T − 1]e−θt θ 6= 0
T θ = 0

for t ≥ T .
Multiply both sides of (3.5) by exp(Ct) and integrate from 0 to t, to obtain

(a) C > θ, Eu(t) ≤ c(1 + Eu(0))e−θt for t ≥ 0,
(b) C = θ, Eu(t) ≤ c(1 + Eu(0))(1 + t)e−θt for t ≥ 0,
(c) C < θ, Eu(t) ≤ c(1 + Eu(0))e−Ct for t ≥ 0.

(2) If there are constants C0 > 0 and θ ∈ R, such that Γ(t) ≤ C0(1 + t)−θ, then
we have ∫ t

t−T
(1 + s)−θds ≤

{
T (1 + t− T )−θ θ > 0
T (1 + t)−θ θ ≤ 0

for t ≥ T . Therefore,

Eu(t) ≤

{
c(1 + Eu(0))(1 + t− T )−θ θ > 0
c(1 + Eu(0))T (1 + t)−θ θ ≤ 0

(3.6)

for t ≥ T , where c > 0.

The nonlinear case. The rate of decay of the energy depends only on the behavior
of h−1 near zero. To determine it, we have only to find 0 < N0 ≤ 1, such that

C1h
−1
i

( s

2C2

)
≤ h−1(s) for every 0 ≤ s ≤ N0,

where C1 = min(ma(ΩT ), 1) and C2 = max(ma(ΩT ), 1).

(1) If Γ ∈ L1(R+), we choose K ≥ max(CT ,
Eu(0)+‖Γ‖L1(R+)

N0
). Equation (1.10)

governing the energy bound reduces to

dS

dt
+ C1h

−1
i

( S

2KC2

)
≤ Γ(t) on [0,+∞[,

with S(0) = Eu(0).
(2) If Γ ∈ L1

loc(R+) and∫ t

t−T
Γ(τ)dτ ≤ C for every t ≥ T,

then S(t) is bounded and therefore there exists A > 0 such that S(t) ≤ A, for every
t ≥ 0. We choose K ≥ max(CT , AN0

). The ODE (1.10) governing the energy bound
reduces to

dS

dt
+ C1h

−1
i (

S

2KC2
) ≤ Γ(t),

with S(0) = Eu(0).
(3) If Γ ∈ L1

loc(R+) and ∫ t

t−T
Γ(τ)dτ −→

t→+∞
+∞,
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then S(t) → +∞ as t → +∞. Therefore, there exists t0 > 0 such that S(t)
K >> 1

for t ≥ t0. Since the function h is strictly increasing and linear at infinity, then the
ODE (1.10) governing the energy bound reduces to

dS

dt
+
C

K
S ≤ Γ(t) on [t0,+∞[,

with S(t0) ≤ Eu(0) +
∫ t0

0
Γ(s)ds.

Example 1: Sublinear near the origin. Assume gi(s) = s|s|r0−1, |s| < 1,

r0 ∈ (0, 1). We choose h−1
i (s) =

√
sg−1
i (
√
s) = s

1+r0
2r0 , for 0 ≤ s ≤ 1. We have

ψ∗
(
‖f(t, .)‖L2(Ω)

)
≤ C̃

(
‖f(t, .)‖r0+1

L2(Ω) + ‖f(t, .)‖2L2(Ω)

)
,

for some C̃ > 0. The ODE (1.10) governing the energy bound reduces to
dS

dt
+ CS(1+r0)/2r0 ≤ Γ(t),

where C is positive and depends on K.
(1) If there are constants C0 > 0 and θ > 0 such that Γ(t) ≤ C0(1 + t)−θ, then
(1) θ ∈]0, 1+r0

1−r0 ] implies

Eu(t) ≤ c(1 + t− T )−
2r0θ
1+r0 , t ≥ T,

where c > 0.
(2) θ ≥ 1+r0

1−r0 implies

Eu(t) ≤ c(1 + t− T )−
2r0

1−r0 , t > T,

with c > 0 and depend on Eu(0).
(2) If there are constants C0 > 0 and θ > 0, such that Γ(t) ≤ C0e

−θt, then

Eu(t) ≤ c(t− T + 1)−
2r0

1−r0 , t > T,

where c is positive and depends on Eu(0).

Example 2: Different behavior. Assume

g1(s) =

{
s2e−1/s2 0 ≤ s < 1
−s2e−1/s2 −1 < s < 0

g2(s) = s|s|r−1, |s| < 1, r > 1

g3(s) = s|s|r0−1, |s| < 1, r0 ∈ (0, 1).

We choose

h−1
1 (s) =

√
sg1(
√
s) = s3/2e−1/s, 0 < s < η << 1,

h−1
2 (s) =

√
sg2(
√
s) = s

1+r
2 , 0 ≤ s ≤ η,

h−1
3 (s) =

√
sg−1

3 (
√
s) = s

1+r0
2r0 , 0 ≤ s ≤ η.

We have
ψ∗(s) ≤ C̃(s| ln(s)|−1/2 + s

r+1
r + s

r0−1
r0+1 + s2),

for some C̃ > 0 and s > 0. The ODE (1.10) governing the energy bound reduces to
dS

dt
+ CS3/2e−

1
CS ≤ Γ(t),
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where C is positive and depends on K. If there are constants C0 > 0 and θ > 0,
such that Γ(t) ≤ C0(1 + t)−θ, then

Eu(t) ≤ c0
ln(ct+ c1)

, t ≥ T,

with c, c0, c1 > 0. These constants depend on Eu(0).

References
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