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GENERALIZED HEAVISIDE FUNCTIONS IN THE COLOMBEAU
THEORY CONTEXT

FRANCISCO VILLARREAL

Abstract. We defined generalized Heaviside functions for a variable x in Rn,
and for variables (x, t) in Rn × Rm. Then study properties such as: compo-
sition, invertibility, and association relation (the weak equality). This work is
developed in the Colombeau generalized functions context.

Introduction

The study of Heaviside generalized functions considered in the work is devel-
oped in the Colombeau’s theory context [1, 3, 4]. These generalized functions are
introduced using basically products of the classical Heaviside’s step functions. In
particular, we present some basic properties of generalized functions of the form
ν ◦(a1H1 +b1, . . . , a`H`+b`), where ν is a real generalized function on R` satisfying
some conditions to be introduced in §4 and H1, . . . ,H` are real Heaviside general-
ized functions, in variables x in Rn or in variables (x, t) in Rn × Rm, obtained by
regularization way. One of the motivations for introducing this subject is its use
in the study of shock wave solutions of partial differential equations that modeling
some physics phenomena, for example (see [2, 7, 9, 10] and Remark 4.10).

In this work, unless otherwise stated, E,F1, . . . , F` and G denote K-Banach
spaces (where K denotes either R or C), F denotes a K-Banach algebra (as a K-
Banach space) and Ω (resp. Ω′) denotes an open subset of E (resp. F ). We
will briefly describe the content of this paper. Generally speaking we can affirm
that in the first three sections we collect the results to be used in the last one.
In §1 we fix some basic notation about the generalized functions theory that will
be used in the development of the work. In §2 and §3 we introduce the notion of
Heaviside generalized functions in Rn and in Rn×Rm, respectively. In §4 we present
some basic properties about these generalized functions involving composition and
invertibility. The main results of this work are proposition 2.7 and theorems 3.9,
3.11, 4.6, 4.8, 4.9.

Problems were studied in [2, 7] (resp. [9, 10]) involving real Heaviside generalized
functions in the variables x in R (resp. in the variables x in Rn, in the variables
x in Rn and (x, t) in Rn × R). In these works we use only the necessary results
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involving real Heaviside generalized functions. It is not made a deepened study on
these generalized functions such as here is presented.

This work constitutes a considerable advancement of the results contained in
[7]. In the present paper an additional complication arises from the expression
ν ◦ (a1H1 + b1, . . . , a`H` + b`), which requires the hard study of composition and
inverse multiplicative of generalized functions in the sense of Colombeau’s theory.
The basic references for Colombeau’s theory are [1, 3, 4]. The general notation not
mentioned in this work are those like [1].

1. The algebra Gs(Ω;F ) and association relation

We denote by (the same symbol) | · | the norms in the considered spaces. The
symbol L(F1, . . . , F`;G) denotes the space of continuous `-linear mappings from
product space (K-Banach space) F1 × · · · × F` into G endowed with the norm

| · |` : A ∈ L(F1, . . . , F`;G) 7→ sup
|yi|=1, 1≤i≤`

|A(y1, . . . , y`)| ∈ R+ .

If F1 = · · · = F` = F this space is denoted by L(`F ;G) and L(0F ;G) =: G.
Let Es[Ω;F ] := {u ∈ F ]0,1]×Ω : u(ε, ·) ∈ C∞(Ω;F ) for all ε ∈]0, 1]}.
If p ∈ N we consider the linear map u ∈ Es[Ω;F ] 7→ u(p) ∈ Es[Ω;L(pE;F )] where

u(p)(ε, x) := [u(ε, ·)](p)(x) and x ∈ Ω. The notation K b Ω means that K is a
compact subset of Ω and |u(p)(ε, ·)|p,K := supx∈K |u(p)(ε, x)|p.

Let Es,M [Ω;F ] denote the algebra of all u ∈ Es[Ω;F ] such that for each K b Ω
and each p ∈ N there is N ∈ N such that |u(p)(ε, ·)|p,K = O(ε−N ) as ε ↓ 0. This
algebra is called the algebra of moderate functions on Ω with values in F .

By Ns[Ω;F ] we denote the ideal of all u ∈ Es[Ω;F ] such that for each K b Ω
and each (p, q) ∈ N×N we have |u(p)(ε, ·)|p,K = O(εq) as ε ↓ 0. This ideal is called
the ideal of null functions on Ω with values in F .

The Colombeau algebra of generalized mappings on Ω with values in F is defined
as the quotient algebra ([1, 3, 4, 6, 7, 8])

Gs(Ω;F ) :=
Es,M [Ω;F ]
Ns[Ω;F ]

.

If F = K we write Gs(Ω) instead of Gs(Ω; K) and a similar notation is used for
sets that generate (as well as for subsets of) Gs(Ω; K).

We indicate by Gs,`b(Ω;F ) the set of maps f ∈ Gs(Ω;F ) so that f has a rep-
resentative f̂ such that for each K b Ω there are C > 0 and η ∈]0, 1] such that
supx∈K |f̂(ε, x)| ≤ C, (0 < ε < η).

If fi ∈ Gs(Ω;Fi), 1 ≤ i ≤ `, we denote by (f1, . . . , f`) the class of

(f̂1, . . . , f̂`) : (ε, x) ∈]0, 1]× Ω 7→
(
f̂1(ε, x), . . . , f̂`(ε, x)

)
∈ F1 × · · · × F`

in Gs(Ω;F1×· · ·×F`) where f̂i is an arbitrary representative of fi. Here (f1, . . . , f`)
is the generalized mapping on Ω with values in the K-Banach space F1×· · ·×F`. The
generalized mappings f1, . . . , f` are called the components of (f1, . . . , f`). Remark
that (f1, . . . , f`) ∈ Gs,`b(Ω;F1 × · · · × F`) if and only if fi ∈ Gs,`b(Ω;Fi), 1 ≤ i ≤ `.

Let Es,M [Ω;Ω′] := {u ∈ Es,M [Ω;F ] : u(]0, 1]× Ω) ⊂ Ω′} be.
We denote by Es,M,∗[Ω;Ω′] the set of all u ∈ Es,M [Ω;Ω′] so that for each K b Ω

there are K ′ ⊂⊂ Ω′ and η ∈]0, 1] such that u(]0, η[×K) ⊂ K ′. We indicate by
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Gs,∗(Ω; Ω′) the set of all elements of Gs(Ω;F ) so that each one has representative
in Es,M,∗[Ω;Ω′].

If (u,w) ∈ Es,M [Ω;Ω′]× Es,M [Ω′;G] let w ◦ u ∈ Es,M [Ω;G] be defined by

(w ◦ u)(ε, x) := w(ε, u(ε, x)) , ((ε, x) ∈]0, 1]× Ω) .

If dimF < +∞ and (f, g) ∈ Gs,∗(Ω; Ω′)×Gs(Ω′;G) we define the composite function

g ◦ f := ĝ ◦ f̂ +Ns[Ω;G]

where f̂ and ĝ are arbitrary representatives of f and g, respectively [1, 6, 7, 8].
Let Es,M (F ) be the set of all µ ∈ F ]0,1] such that there is N ∈ N satisfying

|µ(ε)| = O(ε−N ) as ε ↓ 0 and let Ns(F ) be the set of all functions µ ∈ Es,M (F )
such that for each q ∈ N we have |µ(ε)| = O(εq) as ε ↓ 0. The algebra of the
Colombeau generalized vectors in F is defined by

F̄s :=
Es,M (F )
Ns(F )

.

We can identify F with a subspace of F̄s and F̄s with a subspace of Gs(Ω;F ). The
elements of the image of F̄s in Gs(Ω;F ) are called generalized constants ([6, 7]).

In the cases E = Rn and F = K, we say that an element f in Gs(Ω) is associated
with the null function 0 (f ≈ 0) if for some representative f̂ of f we have f̂(ε, ·) → 0
in D′(Ω) as ε ↓ 0. We say that a map f = (f1, . . . , f`) in Gs(Ω; K`) is associated
with 0 if fj ≈ 0 for each j = 1, . . . , `. We say that two elements f , g ∈ Gs(Ω; K`)
are associated with each other if f − g ≈ 0.

Let Ω (resp. W ) be an open subset of Rn (resp. Rm). Let us suppose that (x, t) =
(x1, . . . , xn, t1, . . . , tm) denotes a generic element of Rn×Rm. If f ∈ Gs(Ω×W ; R),
we introduce the following notation: ∇tf :=

(
∂f
∂t1
, . . . , ∂f∂tm

)
;

divx f :=
∂f

∂x1
+ · · ·+ ∂f

∂xn
; ∂αx f :=

∂|α|f

∂xα1
1 . . . ∂xαn

n
,

for α = (α1, . . . , αn) ∈ Nn; ∂nxf := ∂nf
∂x1...∂xn

.
For a proof of the following result see [1, Thm. 6.3.1].

Proposition 1.1. If f ∈ Gs(Rn × Rm) and ∂nxf ≈ 0, there is Φ ∈ Gs(Rn × Rm)
such that ∂nxΦ = 0 and f ≈ Φ. In particular, if n = m = 1, Φ is a generalized
constant.

The next result follows from the dominated convergence theorem.

Proposition 1.2. Let (φ, f) ∈ KΩ × Gs,`b(Ω) be such that f̂(ε, ·) → φ a.e. in Ω
as ε ↓ 0 for some representative f̂ of f . Then, f̂(ε, ·) → φ in D′(Ω) as ε ↓ 0. In
particular, if φ ∈ C∞(Ω) then f ≈ φ.

Lemma 1.3. There is a function ψ ∈ D(Rn) such that
∫
(R∗

+)n divλ ψ(λ)dλ 6= 0
where R∗

+ := {λ ∈ R∗ : λ > 0} and R∗ := {λ ∈ R : λ 6= 0}.

Proof. Consider ψ : Rn → R defined by ψ(λ) = exp
(

1
|λ|2−1

)
if |λ| < 1 and ψ(λ) = 0

if |λ| ≥ 1, for example. �
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2. Heaviside GFs in Rn

In this section will be considered the cases E = Rn (or E = Rn × Rm), F = Rn
and G = K`. We indicate by δn the Dirac measure in Rn at x = 0; that is, the
function δn : ϕ ∈ D(Rn) 7→ ϕ(0) ∈ K. An element f ∈ Gs(Rn) is said to be a Dirac
generalized function in Rn if there is a representative f̂ of f such that f̂(ε, ·) → δn
in D′(Rn) as ε ↓ 0.

The Heaviside function in Rn is the function Yn : Rn → R defined by

Yn(λ1, . . . , λn) :=

{
0, if λj < 0 for some j = 1, . . . , n
1, if λj > 0 for each j = 1, . . . , n.

Lemma 2.1. The Heaviside and Dirac functions verifies ∂nλYn = δn in D′(Rn).

Proof. If ϕ ∈ D(Rn) and supp(ϕ) ⊂ [−a1, a1]× · · · × [−an, an] then

〈∂nλYn, ϕ〉 = (−1)n
∫ an

0

. . .

∫ a1

0

∂nϕ

∂λ1 . . . ∂λn
(λ1, . . . , λn)dλ1 . . . dλn = 〈δn, ϕ〉

since 〈∂nλYn, ϕ〉 = (−1)n
∫ +∞
−∞ . . .

∫ +∞
−∞ Yn(λ1, . . . , λn)∂nλϕ(λ1, . . . , λn)dλ1 . . . dλn.

�

An element H ∈ Gs(Rn) is said to be a Heaviside generalized function in Rn if
there is a representative Ĥ of H such that Ĥ(ε, ·) → Yn in D′(Rn) as ε ↓ 0. We
indicate by H(Rn) the set of all Heaviside generalized functions in Rn.

We denote by Hp(Rn) the set of all elements H of Gs,`b(Rn) so that it has
representative Ĥ such that Ĥ(ε, ·) → Yn in (R∗)n as ε ↓ 0.

We denote by (R+
−)n := {(x1, . . . , xn) ∈ Rn : xj < 0 for some j = 1, . . . , n}.

Proposition 2.2. (a) If H ∈ H(Rn) then ∂nλH is a Dirac generalized function.
(b) If H ∈ H(Rn) then H|(R+

−)n ≈ 0, H|(R∗
+)n ≈ 1 and ∂αλH|(R∗)n ≈ 0, (α in

Nn, α 6= 0).
(c) If (k,H) ∈ K×H(Rn), then k divλH ≈ 0 if and only if k = 0.
(d) Hp(Rn) ⊂ H(Rn) and if (H,K) ∈ H(Rn)×H(Rn) then H ≈ K.
(e) If (αj ,Hj) ∈ N∗ ×Hp(Rn), 1 ≤ j ≤ m, then Hα1

1 . . .Hαm
m ∈ Hp(Rn).

Proof. The statement (a) follows by using lemma 2.1. The statements (b) and (e)
result from given definitions. The statements (c) and (d) follow by using lemma 1.3
and Lebesgue’s dominated convergence theorem, respectively. �

We say that a function Ĥ ∈ Es,M [Rn] verifies the property (Hr)n if there is
µ = (µ1, . . . , µn) ∈

(
(R∗

+)n
)]0,1] such that limε↓0 µ(ε) = 0 and

Ĥ(ε, λ1, . . . , λn) =

{
0, if λj < −µj(ε) for some j = 1, . . . , n
1, if λj > µj(ε) for each j = 1, . . . , n.

(2.1)

We indicate by Hr(Rn) the set of all elements of Gs,`b(Rn) so that each one has
representative verifying the property (Hr)n.

Lemma 2.3. If Ĥ : ]0, 1× Rn → R verifies the property (Hr)n, hold:

(a) Ĥ(ε, ·) → Yn in (R∗)n as ε ↓ 0 and hence Hr(Rn) ⊂ Hp(Rn).
(b) For each K b (R∗)n there is η ∈]0, 1] such that 0 ≤ Ĥ ≤ 1 in ]0, η[×K.
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(c) If Ĥ ∈ EM [Rn; R] and H is the class of Ĥ then H|(R+
−)n = 0, H|(R∗

+)n = 1

and ∂H
∂λj

|(R∗)n = 0, (1 ≤ j ≤ n).

Proof. The statement (a) follows directly from conditions of property (Hr)n.
(b). From limε↓0 µ(ε) = 0 we have (∀K b (R∗)n) (∃η ∈]0, 1]) : K ⊂ Ωµ(ε),

(ε ∈]0, η[), which together with ( 2.1) implies the statement (b), where

Ωµ(ε) := {λ ∈ (R∗)n : λ > µ(ε)} ∪̇ {λ : λj < −µj(ε) for some j = 1, . . . , n}.

(c). From (2.1) we also have ∂ bH
∂λj

(ε, λ) = 0 for each ε ∈]0, 1] and λ ∈ Ωµ(ε),

(j = 1, . . . , n). From (b) for each open subset V of Rn with V b (R∗)n there
is η ∈]0, 1] such that V ⊂ Ωµ(ε) for each ε ∈]0, η[. From this, together with the
previus condition, it follows the third statement. �

We set Br[0] := {λ ∈ Rn : |λ| ≤ r}, (r ∈ R∗
+), and we denote by

Λ(n) := {ϕ ∈ D(Rn) : ϕ ≥ 0, ϕ(0) > 0, supp(ϕ) ⊂ B1[0] and
∫
ϕ(λ) dλ = 1} .

The following proposition shows concrete examples of Heaviside generalized func-
tions in Rn.

Proposition 2.4. If ϕ ∈ Λ(n) and Ĥϕ : ]0, 1]× Rn → R is defined by

Ĥϕ(ε, λ1, . . . , λn) :=
∫ λ1

−∞
. . .

∫ λn

−∞

1
εn
ϕ
( t1
ε
, . . . ,

tn
ε

)
dt1 . . . dtn

we have 0 ≤ Ĥϕ ≤ 1 in ]0, 1] × Rn and Ĥϕ(ε, λ) = 0 (resp. = 1) if λj ≤ −ε for
some j = 1, . . . , n ( resp. if λj ≥ ε for each j = 1, . . . , n), (λ = (λ1, . . . , λn)), for
all ε ∈]0, 1]. Furthermore, if δϕ is the class of δ̂ϕ : (ε, x) 7→ 1

εnϕ
(
x
ε

)
and if Hϕ is

the class of Ĥϕ then Hϕ ∈ Hr(Rn) and ∂nλHϕ = δϕ.

Proof. Since δ̂ϕ ≥ 0, for each (ε, λ1, . . . , λn) ∈]0, 1]× Rn, we have

0 ≤ Ĥϕ(ε, λ1, . . . , λn) ≤
∫

Rn

δ̂ϕ(ε, t)dt =
∫
Bε[0]

1
εn
ϕ
( t
ε

)
dt = 1 .

Let ε ∈]0, 1] and λ = (λ1, . . . , λn) ∈ Rn be fixed. Assume that λj ≥ ε for each
j = 1, . . . , n. As supp[δ̂ϕ(ε, ·)] ⊂ Bε[0], for each j = 1, . . . , n and tj ∈ [ε, λj ], we
have δ̂ϕ(ε, t1, . . . , tj , . . . , tn) = 0, (ti ∈]−∞, λi], i = 1, . . . , j−1, j+1, . . . , n). Thus
it follows that

Ĥϕ(ε, λ1, . . . , λn) =
∫ ε

−ε
. . .

∫ ε

−ε

1
εn
ϕ
( t1
ε
, . . . ,

tn
ε

)
dt1 . . . dtn =

∫
Bε[0]

δ̂ϕ(ε, t)dt = 1.

If λj ≤ −ε for some j = 1, . . . , n it is clear that Ĥϕ(ε, λ1, . . . , λn) = 0 consider-
ing that, for each i = 1, . . . , j − 1, j + 1, . . . , n and each ti ∈] − ∞, λi], we have
δ̂ϕ(ε, t1, . . . , tj , . . . , tn) = 0. Thus Hϕ ∈ Hr(Rn). Finally, as ∂nλ Ĥϕ = δ̂ϕ, we have
∂nλHϕ = δϕ. �

Remark 2.5. If n = 1, given ψ ∈ Λ(1) let Kψ ∈ H(R) be the class of K̂ψ defined
as in proposition 2.4. If pj : (λ1, . . . , λn) ∈ Rn 7→ λj ∈ R, (j = 1, . . . , n), we have
(K ◦ p1) . . . (K ◦ pn) = Hϕ where ϕ := (ψ ◦ p1) . . . (ψ ◦ pn) and Hϕ is the class of
(K̂ψ ◦ p1) . . . (K̂ψ ◦ pn).
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If Hn
Λ(Rn) := {(K ◦ p1) . . . (K ◦ pn) : K ∈ HΛ(R)} (see [7, Remark 2.1]) and if

HΛ(Rn) := {Hϕ ∈ Gs(Rn) : ϕ ∈ Λ(n)}, where Hϕ is defined as in proposition 2.4,
we have the following inclusions

Hn
Λ(Rn) ⊂ HΛ(Rn) ⊂ Hr(Rn) ⊂ Hp(Rn) ⊂ H(Rn) .

A proof of the next result can be found in [9, Prop. 3] or in [2, Prop. 2.11].

Proposition 2.6. If g ∈ Gs(Rn; K`), Ω is an open subset of Rn and S is a C∞ -
diffeomorphism on Rn such that JS(x) > 0 for all x ∈ Rn (JS denotes the jacobian
of S ) the following statements hold:

(a) (g◦S)|Ω ≈ 0 (resp. (g◦S)|Ω = 0) if and only if g|S(Ω) ≈ 0 (resp. g|S(Ω) = 0).
(b) If πm : (λ, t) ∈ Rn × Rm 7→ λ ∈ Rn then (g ◦ πm)|Ω×Rm ≈ 0 if and only if

g|Ω ≈ 0 and (g ◦ πm)|Ω×Rm = 0 if and only if g|Ω = 0.

The proof of the next result is similar at proof of [7, Prop. 2.2]. We present it
for the convenience of the reader.

Proposition 2.7. If µ ∈ Es,M (R) and µ ≥ 1, then there exists V̂ ∈ Es,M [Rn; R]
verifying the property (Hr)n and the two conditions: 0 ≤ V̂ (ε, ·) ≤ µ(ε) in Rn and
V̂ (ε, ·) ≡ µ(ε) in

Aε := ∪ni=1{x ∈ Rn : |xi| ≤ ε and xj ≥ −ε, (j = 1, . . . , n, j 6= i)}

for all ε ∈]0, 1]. Furthermore, if V is the class of V̂ then V /∈ HΛ(Rn).

Proof. If ϕ ∈ Λ(n) we consider the function u : (ε, x) 7→ [χ(ε, ·) ∗ δ̂ϕ(ε/4, ·)](x),
where δ̂ϕ : (ε, x) 7→ 1

εnϕ( xεn ) and χ(ε, ·) is the characteristic function of

Bε := ∪ni=1{x ∈ Rn : |xi| ≤ 3
ε

2
and xj ≥ −3

ε

2
, (j = 1, . . . , n, j 6= i)} .

For a fixed ε ∈]0, 1], we have supp[u(ε, ·)] ⊂ supp[χ(ε, ·)] + supp[δ̂ϕ( ε4 , ·)] = Dε,
where

Dε := ∪ni=1{x ∈ Rn : |xi| ≤ 7
ε

4
and xj ≥ −7

ε

4
, (j = 1, . . . , n, j 6= i)}

and u(ε, ·) ∈ C∞(Rn; R). Since 0 ≤ χ(ε, ·) ≤ 1 and ϕ ∈ Λ(n) it follows that
0 ≤ u(ε, ·) ≤ 1 in Rn. Moreover, we have

|∂αx u(ε, x)| ≤
4|α|

ε|α|

∫
|∂αy ϕ(y)‖dy , ((ε, x) ∈]0, 1]× Rn , α ∈ Nn)

since ∂αx u(ε, x) = [χ(ε, ·) ∗ (∂αx δ̂ϕ)( ε4 , ·)](x) and (∂αx δ̂ϕ)( ε4 , ·) = 4|α|

ε|α|
δ̂∂α

xϕ( ε4 , ·). Thus
u ∈ Es,M [Rn; R]. For fixed ε ∈]0, 1], if

Wε := ∪ni=1{x ∈ Rn : |xi| < 5
ε

4
and xj > −5

ε

4
, (j = 1, . . . , n, j 6= i)}

then Wε − supp[δ̂ϕ( ε4 , ·)] ⊂ Int(Bε) (interior set of Bε). So, for each x ∈ Wε and
each y ∈ supp[δ̂ϕ( ε4 , ·)], we have χ(ε, x− y) = 1. Therefore

u(ε, x) =
∫

supp[bδϕ( ε
4 ,·)]

δ̂ϕ
(ε
4
, y

)
χ(ε, x− y)dy =

∫
δ̂ϕ

(ε
4
, y

)
dy = 1, (x ∈Wε).

The function V̂ : (ε, x) 7→ 1+v(ε, x)[µ(ε)u(ε, x)−1] satisfies the required properties,
where v ∈ EM [Rn; R] is defined by v(ε, x) = 1 (resp. = u(ε, x)) if xi < 5 ε4 for some
i = 1, . . . , n (resp. if xi ≥ 5 ε4 for each i = 1, . . . , n). �
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The auxiliary functions y, y∗, πm and y∗. For a fixed y ∈ C∞(Rm; Rn), if
y∗ : (x, t) ∈ Rn × Rm 7→ x − y(t) ∈ Rn and y∗ : (x, t) ∈ Rn × Rm 7→ (y∗(x, t), t) ∈
Rn × Rm, we have

y∗ = πm ◦ y∗ in Rn × Rm (and hence y∗(Rn × Rm) = Rn) (2.2)

where πm : (λ, t) ∈ Rn × Rm 7→ λ ∈ Rn. Moreover,

y∗(Ω) = y∗(Ω)× Rn , for Ω = Ω+
− ,Ω+ ,Ω∗ ,Rn × Rm, (2.3)

where Ω∗ := Ω+
− ∪ Ω+, Ω+

− := {(x, t) : y∗j (x, t) < 0 for some j = 1, . . . , n},
Ω+ := {(x, t) : y∗j (x, t) > 0 for all j = 1, . . . , n} and y∗1 , . . . , y

∗
n are the compo-

nent functions of y∗ associated to the component functions of y = (y1, . . . yn),
respectively. From proposition 2.6 we have the following corollary.

Corollary 2.8. If f ∈ Gs(Rn; K`) and Ω is an open subset of Rn × Rm such that
y∗(Ω) = y∗(Ω)×Rm, then (f ◦y∗)|Ω ≈ 0 if and only if f |y∗(Ω) ≈ 0 and (f ◦y∗)|Ω = 0
if and only if f |y∗(Ω) = 0.

From the previous corollary and proposition 2.2 we have the next result.

Proposition 2.9. For each H ∈ H(Rn) the following statements hold.
(a) (H ◦ y∗)|Ω+ ≈ 1, (H ◦ y∗)|Ω+

−
≈ 0 and ∂αx (H ◦ y∗)|Ω∗ ≈ 0, (α ∈ Nn, α 6= 0).

(b) If k ∈ K, then k divx(H ◦ y∗) ≈ 0 if and only if k = 0.
(c) If (αj ,Hj) ∈ N∗ ×Hp(Rn), 1 ≤ j ≤ m, then (Hα1

1 . . .Hαm
m ) ◦ y∗ ≈ H ◦ y∗.

3. Heaviside GFs in Rn × Rm

In this section will be considered the cases E = Rn × Rm, F = K` and G = R.
The Heaviside function in Rn×Rm is the function Ynm : Rn×Rm → R defined by

Ynm(λ1, . . . , λn, t) =

{
0, if λj < 0 for some j = 1, . . . , n
1, if λj > 0 for each j = 1, . . . , n,

(t ∈ Rm).

Lemma 3.1. (a) ∇tYnm = 0 and divt Ynm = 0 in D′(Rn × Rm).
(b) Given a, b in R, a < b, let X : Rn × Rm 7→ R be defined by

X(λ1, . . . , λn, t) :=

{
b, if λj < 0 for some j = 1, . . . , n
a, if λj > 0 for each j = 1, . . . , n,

(t ∈ Rm).

Then ∇tX = 0 and divtX = 0 in D′(Rn × Rm).

Setting πm = (p1m, . . . , pnm), where pjm : (λ, t) ∈ Rn × Rm 7→ λj ∈ R, we have
Ynm = Yn◦πm. Then, since ∂nλYn = δn (lemma 2.1) and (pim)λj = δij (Kronecker’s
delta) for i, j = 1, . . . , n, by the chain rule we have

∂nλYnm = δn ◦ πm .

An element H ∈ Gs(Rn × Rm) is said to be a Heaviside generalized function in
Rn×Rm if there is a representative Ĥ ofH such that Ĥ(ε, ·) → Ynm in D′(Rn×Rm)
as ε ↓ 0. We indicate by H(Rn ×Rm) the set of all Heaviside generalized functions
in Rn × Rm.

We denote by Hp(Rn × Rm) the set of all H ∈ Gs,`b(Rn × Rm) so that it has
representative Ĥ such that Ĥ(ε, ·) → Ynm in (R∗)n ×Rm as ε ↓ 0. The next result
follows from the above definitions.
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Proposition 3.2. (a) For each J = H, Hp, if πm : (λ, t) ∈ Rn×Rm 7→ λ ∈ Rn
and K ∈ J (Rn) we have K ◦ πm ∈ J (Rn × Rm).

(b) Hp(Rn × Rm) ⊂ H(Rn × Rm) and if H, K ∈ H(Rn × Rm), then H ≈ K.
(c) If (αj ,Hj) ∈ N∗ ×Hp(Rn × Rm), 1 ≤ j ≤ k, then Hα1

1 . . .Hαk

k ∈ Hp(Rn ×
Rm).

(d) If H ∈ H(Rn × Rm), then H|(R+
−)n×Rm ≈ 0, H|(R∗

+)n×Rm ≈ 1, ∇tH ≈ 0
and divtH ≈ 0.

We say that a function Ĥ : ]0, 1]× Rn × Rm → R verifies the property (Hr)nm if
there is µ = (µ1, . . . , µn) : ]0, 1] → (R∗

+)n such that limε↓0 µ(ε) = 0 and

Ĥ(ε, λ, t) =

{
1, if λj > µj(ε) for each j = 1, . . . , n
0, if λj < −µj(ε) for some j = 1, . . . , n,

((ε, t) ∈]0, 1]× Rm)

where λ = (λ1, . . . , λn). We indicate by Hr(Rn × Rm) the set of all elements of
Gs,`b(Rn × Rm) so that each one has representative verifying the property (Hr)nm.
The next result follows from this definition.

Proposition 3.3. The following statements hold:

(a) If (αj ,Hj) ∈ N∗ ×Hr(Rn × Rm), 1 ≤ j ≤ k, then Hα1
1 . . .Hαk

k ∈ Hr(Rn ×
Rm).

(b) If πm : (λ, t) ∈ Rn × Rm 7→ λ ∈ Rn, then K ◦ πm ∈ Hr(Rn × Rm) for all
K ∈ Hr(Rn).

(c) If H ∈ Hr(Rn × Rm) and t ∈ Rm, then H(·, t) ∈ Hr(Rn).

The proof of the next result follows in an analogous way to the proof of lemma 2.3.

Proposition 3.4. If Ĥ : ]0, 1] × Rn × Rm → R verifies the property (Hr)nm, then
the following statements hold:

(a) Ĥ(ε, ·) → Ynm in (R∗)n×Rm as ε ↓ 0 and Hr(Rn × Rm) ⊂ Hp(Rn × Rm).
(b) For each K b (R∗)n there is η ∈]0, 1] such that 0 ≤ Ĥ ≤ 1 in ]0, η[×K × Rm.
(c) If Ĥ ∈ EM [Rn × Rm; R] and H is the class of Ĥ, then H|(R+

−)n×Rm = 0,

H|(R∗
+)n×Rm = 1 and ∂H

∂λj
|(R∗)n×Rm = 0, (1 ≤ j ≤ n).

Remark 3.5. Denoting by (see Remark 2.5)

HΛ(Rn × Rm) := {H ◦ πm : H ∈ HΛ(Rn)} = {Hϕ ◦ πm : ϕ ∈ Λ(n)},
Hn,m

Λ (Rn × Rm) := {H ◦ πm : H ∈ Hn
Λ(Rn)}

where Hϕ is defined as in proposition 2.4 and πm : (λ, t) ∈ Rn ×Rm 7→ λ ∈ Rn, we
have the following inclusions:

Hn,m
Λ (Rn×Rm) ⊂ HΛ(Rn×Rm) ⊂ Hr(Rn×Rm) ⊂ Hp(Rn×Rm) ⊂ H(Rn×Rm) .

From propositions 2.6, 3.2, 3.4 we have the following corollary.

Corollary 3.6. If y ∈ C∞(Rm; Rn) and (αj ,Hj) ∈ N∗×Hp(Rn×Rm), 1 ≤ j ≤ k,
then (Hα1

1 . . .Hαk

k ) ◦ y∗ ≈ H ◦ y∗, (H ∈ H(Rn × Rm).

Using the chain rule we have the following result.
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Proposition 3.7. If f = f(λ, t), g = g(x, t) ∈ Gs(Rn×Rm) and y ∈ C∞(Rm; Rn),
y = (y1, . . . , yn), hold: divx(f ◦ y∗) = (divλ f) ◦ y∗; ∂αx (f ◦ y∗) = (∂αλ f) ◦ y∗;
∂αλ

(
g ◦ y−1

∗
)

= (∂αx g) ◦ y−1
∗ , (α ∈ Nn);

∇t(f ◦ y∗) = −
n∑
i=1

( ∂f
∂λi

◦ y∗
)
∇yi + (∇tf) ◦ y∗,

∇t(g ◦ y−1
∗ ) =

n∑
i=1

( ∂g
∂xi

◦ y−1
∗

)
∇yi + (∇tg) ◦ y−1

∗

where ∇yi = (∂yi

∂t1
, . . . , ∂yi

∂tm
).

The next proposition follows from the above result, using formula (2.2).

Proposition 3.8. If f = f(λ) ∈ Gs(Rn) and y = (y1, . . . , yn) ∈ C∞(Rm; Rn), then
divx(f ◦ y∗) = (divλ f) ◦ y∗; ∂αx (f ◦ y∗) = (∂αλ f) ◦ y∗, (α ∈ Nn), and

∇t(f ◦ y∗) = −
n∑
i=1

∂(f ◦ y∗)
∂xi

∇yi .

From propositions 2.6, 3.2, 3.7, 3.8, using formulas given in (2.3), we have the
following result.

Theorem 3.9. If H ∈ H(Rn × Rm) and y = (y1, . . . , yn) ∈ C∞(Rm; Rn), then
(H ◦ y∗)|Ω+ ≈ 1; (H ◦ y∗)|Ω+

−
≈ 0; [∂αx (H ◦ y∗)] |Ω∗ ≈ 0, (α ∈ Nn, α 6= 0); (∇tH) ◦

y∗ ≈ 0 and

∇t(H ◦ y∗) ≈ −
n∑
i=1

(∂H
∂λi

◦ y∗
)
∇yi .

Proposition 3.10. Given y ∈ C∞(Rm; Rn) let Φ ∈ Gs(Rn × Rm; K`) be such
that ∂nxΦ = 0 and Φ|Ω ≈ 0 for some open subset Ω 6= ∅ of Rn × Rm such that
y∗(Ω) = y∗(Ω)× Rm. Then Φ ≈ 0.

The proof of the above Proposition follows by using proposition 2.6, with a
minor modification in the proof of [7, Prop. 2.5] (also see [5, p. 336]). By using
theorem 3.9 and propositions 1.1 and 3.10 we obtain the next result.

Theorem 3.11. If y ∈ C∞(Rm; Rn), (φ, ϕ) ∈ C∞(Rm; K`) × C∞(Rm; K`) and
H ∈ H(Rn × Rm), then the following statements hold:

(a) If f ∈ Gs(Rn × Rm; K`), f |Ω∗ ≈ 0 and (H ◦ y∗)φ + [∂nx (H ◦ y∗)]ϕ ≈ ∂nxf ,
then ϕ ≡ φ ≡ 0 and f ≈ 0.

(b) If ψ ∈ C∞(Rm; K`) and (H ◦y∗)φ+[∂nx (H ◦y∗)]ϕ ≈ ψ, then ψ ≡ ϕ ≡ φ ≡ 0.

Proof. (a) By restriction to Ω+ ⊂ Ω∗, being (H ◦ y∗)|Ω+ ≈ 1, [∂nx (H ◦ y∗)]|Ω+ ≈ 0
(theorem 3.9) and (∂nxf)|Ω+ ≈ 0, we obtain φ|Ω+ ≈ 0. From proposition 3.10 it
follows that φ ≈ 0. Since φ ∈ C∞(Rm; K`) we have φ ≡ 0, which together with
hypothesis, implies that [∂nx (H ◦ y∗)]ϕ ≈ ∂nxf . Hence, by proposition 1.1, one can
find a map Φ ∈ Gs(Rn × Rm; K`) such that ∂nxΦ = 0 and (H ◦ y∗)ϕ ≈ f + Φ. By
restriction to Ω+

− ⊂ Ω∗, as (H ◦ y∗)|Ω+
−
≈ 0 and f |Ω+

−
≈ 0, we have Φ|Ω+

−
≈ 0 and

hence Φ ≈ 0, by proposition 3.10. So we get (H◦y∗)ϕ ≈ f . From this, by restriction
to Ω+ and by a similar argument it was made to obtain φ ≡ 0, we conclude that
ϕ ≡ 0. Thus, from former condition, it follows that f ≈ 0. The proof of (b) it
follows in an analogous way at proof of (a). �



10 F. VILLARREAL EJDE-2012/87

From theorem 3.11, and using proposition 3.2 and (2.2), we have the analogous
result for the case of Heaviside generalized functions in Rn.

Corollary 3.12. If y ∈ C∞(Rm; Rn), (φ, ϕ) ∈ C∞(Rm; K`) × C∞(Rm; K`) and
H ∈ H(Rn) the following statements hold:

(a) If f ∈ Gs(Rn × Rm; K`), f |Ω∗ ≈ 0 and (H ◦ y∗)φ + [∂nx (H ◦ y∗)]ϕ ≈ ∂nxf ,
then ϕ ≡ φ ≡ 0 and f ≈ 0.

(b) If ψ ∈ C∞(Rm; K`) and (H ◦ y∗)φ + [∂nx (H ◦ y∗)]ϕ ≈ ψ, then ψ ≡ ϕ ≡
φ ≡ 0.

4. Additional properties of Heaviside GFs

More information about the special cases of composition and invertibility con-
sidered in what follows can be found in [6, Section 3] or in [7, Section 3].

Special case of composition. Here we suppose that F = R`. We fix α =
(α1, . . . , α`) and β = (β1, . . . , β`) in (R̃+)` (R̃+ := R+ ∪ {+∞}) with α < β.
We will use the notation

Iβα :=
∏̀
i=1

]αi, βi[⊂ (R∗
+)`, [α, β] :=

∏̀
i=1

[αi, βi] and ]α, β] :=
∏̀
i=1

]αi, βi];

and we will consider Ω′ = Iβα ⊂ (R∗
+)`.

We remark that Iβα = (R∗
+)` if α = 0 and β = (+∞, . . . ,+∞). In the case ` = 1:

Iβα =]α, β[ and Iβα = R∗
+, if α = 0 and β = +∞.

We denote by Es,M,�[Ω; Iβα ] the set of all u ∈ Es,M [Ω; R`] such that for each
K b Ω there are η ∈]0, 1]; a, b ∈ Iβα , a < b; and a function µ = (µ1, . . . , µ`) from
]0, 1] into ]α, a] such that (ε 7→ 1

µi(ε)−αi
) ∈ Es,M (R), (1 ≤ i ≤ `), and u(ε, x) ∈

[µ(ε), b] for all (ε, x) ∈]0, η[×K. We denote by Gs,⊗(Ω; Iβα) the set of all elements of
Gs(Ω; R`) so that each one has representative in (see Es,M [Ω; Iβα ] for Ω′ = Iβα in §1)

Es,M,⊗[Ω; Iβα ] := Es,M [Ω; Iβα ] ∩ Es,M,�[Ω; Iβα ].

We denote by Es,QM [Iβα ;G] the set of all functions w ∈ Es[Iβα ;G] such that for each
p ∈ N; each a, b ∈ Iβα , a < b; and each function µ = (µ1, . . . , µ`) from ]0, 1] into
]α, a] such that (ε 7→ 1

µi(ε)−αi
) ∈ Es,M (R), (1 ≤ i ≤ `), there are N ∈ N, C > 0 and

η ∈]0, 1] satisfying

sup
y∈[µ(ε),b]

|w(p)(ε, y)|p ≤ Cε−N , (0 < ε < η).

Note that Es,QM [Iβα ;G] ⊂ Es,M [Iβα ;G]. We define

C∞s,QM [Iβα ;G] := C∞(Iβα ;G) ∩ Es,QM [Iβα ;G].

Proving the next result follows by a similar argument as in [1, Prop. 2.1.5].

Proposition 4.1. We have w ∈ Es,QM [Iβα ;G] if and only if for each (γ, a, b) in
Nm × Iβα × Iβα , a < b, and for each µ = (µ1, . . . , µm) ∈ (]α, a])]0,1] such that
(ε 7→ 1

µi(ε)−αi
) ∈ Es,M (R), (1 ≤ i ≤ m), there are N ∈ N, C > 0 and η ∈]0, 1]

satisfying
sup

y∈[µ(ε),b]

|∂γyw(ε, y)| ≤ Cε−N , (0 < ε < η) .
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Given f ∈ Gs,⊗(Ω; Iβα) and ϕ ∈ C∞s,QM [Iβα ;G] we define the composite function

ϕ ◦ f := ϕ ◦ f̂ +Ns[Ω;G]

where f̂ ∈ Es,M [Ω; Iβα ] is any representative of f (see [6, Thm. 3.3]).

Special case of invertibility. In this part we consider F = G = R and Ω′ = R∗.
We denote by Es,M,�[Ω; R∗] the set of all u ∈ Es,M [Ω; R] such that for each K b Ω
there are η ∈]0, 1] and a function µ ∈ (R∗

+)]0,1] such that (ε 7→ 1
µ(ε) ) ∈ Es,M (R) and

µ(ε) ≤ |u(ε, x)| for all (ε, x) ∈]0, η[×K.
Note that Es,M,�[Ω; Iβα ] ⊂ Es,M,�[Ω; R∗] and hence, for all α and β in R̃+ with

α < β, we have Es,M,⊗[Ω; Iβα ] ⊂ Es,M,�[Ω; R∗].
We denote by Gs,◦(Ω; R∗) the set of all elements of Gs(Ω; R) so that each one has

representative in (see Es,M [Ω; R∗] for Ω′ = R∗ in §1)

Es,M,◦[Ω; R∗] := Es,M [Ω; R∗] ∩ Es,M,�[Ω; R∗].

Note that Es,M,⊗[Ω; Iβα ] ⊂ Es,M,◦[Ω; R∗], thus Gs,⊗(Ω; Iβα) ⊂ Gs,◦(Ω; R∗) for all α
and β in R̃+ with α < β.

The proof of the following result can be found in [6, Thm. 3.6].

Proposition 4.2. If dimE < +∞; α, β ∈ R̃+, α < β; and f ∈ Gs,⊗(Ω; Iβα) then
f (resp. f − α) has a multiplicative inverse and 1bf (resp. 1bf−α) is a representative

of 1
f (resp. 1

f−α), for every f̂ ∈ Es,M [Ω; Iβα ] representative of f .

Some properties of Heaviside GFs. In what follows, will consider the cases
E = Rn (or E = Rn × Rm), F = K` and G = R.
Hypothesis 4.1 (For proposition 4.3 and theorems 4.6, 4.9) We fix a = (a1, . . . , a`)
and b = (b1, . . . , b`) in C∞(Rm; R`) such that 0 < a(t) < b(t), (t ∈ Rm). For
i = 1, . . . , ` we define ∆i(t) := ai(t)− bi(t), (t ∈ Rm). We also fix α∗ = (α1, . . . , α`)
and β∗ = (β1, . . . , β`) in (R̃+)` with α∗ < β∗ and ν∗ = (ν1, . . . , ν`) in C∞(R∗

+; R`)
such that each component of ν∗ is an increasing function. Let us suppose that
{1, . . . , `} is a reunion of two disjoint subsets I and J such that for i ∈ I (resp. for
j ∈ J) νi is strictly increasing with Im(νi) = Iβi

αi
and inverse function ν−1

i (resp. νj
not strictly increasing with Im(νj) ⊂ [αj , βj [).

Let us consider the real numbers α(s) := α1 + · · · + α`, β(s) := β1 + · · · + β`
and ν(s) defined by ν(s)(y1, . . . , y`) := ν1(y1) + · · · + ν`(y`), ((y1, . . . , y`) ∈ (R∗

+)`).
Moroever, if αj > 0 for all j ∈ J, we consider α(π) := α1 . . . α`, β(π) := β1 . . . β` and
ν(π) defined by ν(π)(y1, . . . , y`) := ν1(y1) . . . ν`(y`).

With these notation, for each ν = ν(s), ν(π), we consider the associated map
(νR, νL,∆ν), where νR := ν ◦ a, νL := ν ◦ b and ∆ν := νR − νL. In the sequel
(ν, α, β) it indistinctly indicates (ν(s), α(s), β(s)) or (ν(π), α(π), β(π)).

Proposition 4.3. Given Hi ∈ Gs(Rn × Rm), 1 ≤ i ≤ `, let f = (f1, . . . , f`) be
being that fi := ∆iHi + bi. If each Hi has representative Ĥi such that

sup
λ∈Rn

|Ĥi(ε, λ, t)| ≤
ai(t)ε− bi(t)

∆i(t)
, ((ε, t) ∈]0, 1]× Rm)

then f̂ = (f̂1, . . . , f̂`) := (∆1Ĥ1 + b1, . . . ,∆`Ĥ` + b`) ∈ Es,M,⊗[Rn × Rm; (R∗
+)`].

Furthermore, if νi ∈ Es,QM [R∗
+; R], 1 ≤ i ≤ `, then ν ∈ Es,QM [(R∗

+)`; R] and the
following statements hold
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(1) if Ĥi(ε, ·) → Ynm in (R∗)n × Rm as ε ↓ 0, for each i = 1, . . . , `, then
ν◦f−νL

∆ν ∈ Hp(Rn × Rm).
(2) if 1 ∈ I and

(
ε 7→ 1

ν1(rε)−α1

)
∈ Es,M (R) for each r > 0, then the map

ν ◦ f̂ ∈ Es,M,⊗[Rn × Rm; Iβα ], ν1◦f1−α1
ν◦f−α ∈ Gs,`b(Rn × Rm) and(ν1 ◦ f̂1 − α1

ν ◦ f̂ − α

)
(ε, ·) →

{
ν1(b1)−α1
νL−α in (R+

−)n × Rm
ν1(a1)−α1
νR−α in (R∗

+)n × Rm
as ε ↓ 0

In the case of (ν, α, β) = (ν(π), α(π), β(π)) we set the additional assumption
αk > 0 whenever 2 ≤ k ≤ `.

The above result follows by using proposition 4.1 (to check ν ∈ Es,QM [(R∗
+)`; R]),

and by a minor modification in the proof of [7, Prop. 4.2].
Hypothesis 4.2 (For propositions 4.4, 4.5) We fix (α, β) in R+ × R̃+ with α < β,
ν ∈ C∞(R∗

+; R) strictly increasing such that Im(ν) = Iβα (ν−1 denotes the inverse
function of ν) and (a, b) in R∗

+ × R∗
+ with a < b. Let ∆ := a − b be, νR := ν(a),

νL := ν(b), ∆ν := νR − νL and θ := α−νL

∆ν .

Proposition 4.4. If ν−1 ∈ Es,QM [Iβα ; R], then for each µ : ]0, 1] → [1, θ[ such that(
ε ∈]0, 1] 7→ 1

∆νµ(ε)+νL−α ∈ R
)
∈ Es,M (R) and ν(aε) ≤ ∆νµ(ε) + νL, for all

ε ∈]0, 1]), there is Ĥ ∈ Es,M [Rn; R] verifying the property (Hr)n and the following
conditions:

sup
x∈Rn

|Ĥ(ε, x)| ≤ aε− b

∆
, (ε ∈]0, 1]), (4.1)

(∀K b (R∗)n)(∃η ∈]0, 1]) : sup
(ε,x)∈]0,η[×K

|Ĥ(ε, x)| < − b

∆
(4.2)

and Ĥ(ε, ·) ≡ µ∗(ε) in Aε, (ε ∈]0, 1]), where

Aε := ∪ni=1{x ∈ Rn : |xi| ≤ ε and xj ≥ −ε, (j = 1, . . . , n, j 6= i)}

and µ∗ : ε ∈]0, 1] 7→ ν−1
(
∆νµ(ε)+νL

)
−b

∆ ∈ [1,− b
∆ [. Furthermore, if H is the class of

Ĥ, then H ∈ Hr(Rn) \ HΛ(Rn).

The proof of the above result follows from proposition 2.7 and lemma 2.3, by a
minor modification of the proof in [7, Prop. 4.1].

Proposition 4.5. Let Ĥ ∈ Es,M [Rn; R] be such that (Ĥ, a, b,∆) verifies (4.1) and
let f be the class of ∆Ĥ + b. If ν ∈ Es,QM [R∗

+; R], then for each n ∈ N, n ≥ 2,
there is a strictly increasing function ϕ ∈ C∞s,QM [R∗

+; R] such that

∂(ϕ ◦ f)
∂λj

=
ν ◦ f − α

fn
∂f

∂λj
, (1 ≤ j ≤ n) .

Furthermore, if Ĥ(ε, ·) → Yn in (R∗)n as ε ↓ 0 and if (Ĥ, b,∆) verifies (4.2) then
(ϕ ◦ f)|(R+

−)n ≈ ϕ(b) and (ϕ ◦ f)|(R∗
+)n ≈ ϕ(a).

The above result follows from propositions 4.1, 1.2, by a minor modification of
the in the proof of [7, Prop. 4.4]. In what follows assume that the elements a and
b in hypothesis 4.1 are constant functions. More precisely, we give the following
additional hypothesis.
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Hypothesis 4.3 (For theorems 4.6, 4.9) We fix a = (a1, . . . , a`) and b = (b1, . . . , b`)
in R` with 0 < a < b. For i = 1, . . . , `, let ∆i := ai − bi. For ν = ν(s), ν(π) (see
hypothesis 4.1), the components of (νR, νL,∆ν) are given by νR := ν(a), νL := ν(b)
and ∆ν := νR − νL.

Theorem 4.6. We assume that νi ∈ Es,QM [R∗
+; R] and ν−1

i ∈ Es,QM [Iβi
αi

; R] for i ∈
I and that νj ≡ αj in R∗

+ for j ∈ J. Then there are H1, . . . ,H` in Hr(Rn)\HΛ(Rn)
verifying the following properties.

(a) Each Hi, i = 1, . . . , `, has representative Ĥi such that

sup
λ∈Rn

|Ĥi(ε, λ)| ≤ aiε− bi
∆i

, (ε ∈]0, 1]),

(∀K b (R∗)n) (∃η ∈]0, 1]) : sup
(ε,λ)∈]0,η[×K

|Ĥi(ε, λ)| < − bi
∆i

.

(b) For each H ∈ Hn
Λ(Rn) we have [ν ◦ (∆1H1 + b1, . . . ,∆`H`+ b`)−α] ∂H∂λj

≈ 0
and [ν ◦ (∆1H1 + b1, . . . ,∆`H` + b`)− α]H ∂H

∂λj
≈ 0, for j = 1, . . . , n.

(c) For each H ∈ HΛ(Rn) we have [ν ◦(∆1H1+b1, . . . ,∆`H`+b`)−α]∂nλH ≈ 0
and [ν ◦ (∆1H1 + b1, . . . ,∆`H` + b`)− α]H∂nλH ≈ 0.

Proof. Fix j ∈ J. Since − bj

∆j
> 1 and ajε−bj

∆j
≥ 1, (ε ∈]0, 1]), by proposition

2.7 and lemma 2.3, there is Hj ∈ Hr(Rn) \ HΛ(Rn) having a representative Ĥj

verifying the conditions of statement (a). On the other hand, for a fixed i ∈ I,
as νi is strictly increasing with Im(νi) = Iβi

αi
, we can choose η ∈]0, 1] such that

νi(ai)ε + νi(aiε) ≤ νi(ai), (0 < ε < η). If ∆νi := νi(ai) − νi(bi), θi := αi−νi(b)
∆νi

and µi : ]0, 1] → [1, θi[ is given by µi(ε) := νi(ai)ε+νi(aiε)−νi(bi)
∆νi

(resp. := 1) for
ε ∈]0, η[ (resp. ε ∈ [η, 1]) we have that νi(aiε) ≤ ∆νiµi(ε) + νi(b), (ε ∈]0, 1]),
limε↓0 µi(ε) = θi, and [since ∆νiµi(ε)+νi(b)−αi = νi(ai)ε+νi(aiε)−αi ≥ νi(ai)ε,
(ε ∈]0, 1])] (

ε 7→ 1
∆νiµi(ε) + νi(b)− αi

)
∈ Es,M (R) .

Then, as ν−1
i ∈ Es,QM [Iβi

αi
; R], by proposition 4.4, there is Hi in Hr(Rn) \ HΛ(Rn)

having a representative Ĥi satisfying the conditions of the statement (a) and

Ĥi(ε, ·) ≡ µ∗i (ε) in Aε, where µ∗i : ε ∈]0, 1] 7→ ν−1
i (∆νiµi(ε)+νi(bi))−bi

∆i
∈ [1,− bi

∆i
[ and

Aε := ∪nk=1{λ ∈ Rn : |λk| ≤ ε and λr ≥ −ε, (r = 1, . . . , n, r 6= k)}. Therefore,[
νi ◦

(
∆iĤi

)
+ bi

]
(ε, ·) ≡ ∆νiµi(ε) + νi(bi) in Aε, (ε ∈]0, 1], i ∈ I). If f̂ :=

ν ◦ (∆1Ĥ1 + b1, . . . ,∆`Ĥ` + b`), we have the formulas

ν(s) ◦ f̂ =
∑
i∈I

νi ◦
(
∆iĤi + bi

)
+

∑
j∈J

αj , ν(π) ◦ f̂ =
∏
i∈I

[
νi ◦

(
∆iĤi + bi

)] ∏
j∈J

αj

If µ(s) : ]0, 1] → [α(s), ν(s)(a)[ is defined by

µ(s)(ε) :=
∑
i∈I

[∆νiµi(ε) + νi(bi)] +
∑
j∈J

αj , (ε ∈]0, 1])

we have that (ν(s) ◦ f̂)(ε, ·) ≡ µ(s)(ε) in Aε, (ε ∈]0, 1]), and (since µi(ε) → θi as
ε ↓ 0, for each i ∈ I) we also have that µ(s)(ε) → α(s) as ε ↓ 0. In a similar way, if
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µ(π) : ]0, 1] → [α(π), ν(π)(a)[ is defined by

µ(π)(ε) :=
∏
i∈I

[∆νiµi(ε) + νi(bi)]
∏
j∈J

αj , (ε ∈]0, 1])

we have that µ(π)(ε) → α(π) as ε ↓ 0 and that (ν(π) ◦ f̂)(ε, ·) ≡ µ(π)(ε) in Aε,
(ε ∈]0, 1]). Thus, if µ indistinctly denotes µ(s) or µ(π), we have that µ(ε) → α as
ε ↓ 0 and that (ν ◦ f̂)(ε, ·) ≡ µ(ε) in Aε, (ε ∈]0, 1]).

(b) For a fix H ∈ Hn
Λ(Rn), let φ ∈ Λ(1) be such that H is the class of the

function Ĥ : ]0, 1] × Rn → R defined by Ĥ(ε, λ) := K̂(ε, λ1) . . . K̂(ε, λn) where
K̂ : (ε, s) ∈]0, 1] × R 7→

∫ s
−ε δ̂(ε, t)dt ∈ R and δ̂ : (ε, t) 7→ 1

εφ( tε ). To check that H
verifies the required relations, for the sake of simplicity, it will be worked with ∂H

∂λ1
.

To prove the first, fix ϕ ∈ D(Rn), it is sufficient to see that I(ε) → 0 as ε ↓ 0 where

I(ε) :=
∫

Rn

[(ν ◦ f̂)(ε, λ)− α]
∂Ĥ

∂λ1
(ε, λ)ϕ(λ)dλ , (ε ∈]0, 1]) .

Since (ν ◦ f̂)(ε, ·) ≡ µ(ε) in Aε, ∂ bH
∂λ1

(ε, λ) = δ̂(ε, λ1)K̂(ε, λ2) . . . K̂(ε, λn) and

supp[
∂Ĥ

∂λ1
(ε, ·)] ⊂ {λ ∈ Rn : |λ1| ≤ ε and λk ≥ −ε for some k = 2, . . . , n} ⊂ Aε

we have I(ε) = [µ(ε)− α]
∫ ε
−ε δ̂(ε, λ1)u(ε, λ1)dλ1 where

u(ε, λ1) :=
∫ +∞

−ε
. . .

∫ +∞

−ε
K̂(ε, λ2) . . . K̂(ε, λn)ϕ(λ1, λ2, . . . , λn)dλ2 . . . dλn .

Choosing C > 0 such that |u(ε, λ1)| ≤ C for all (ε, λ1) ∈]0, 1]× R we have

|I(ε)| ≤ C|µ(ε)− α|
∫ ε

−ε
δ̂(ε, λ1)dλ1 = C|µ(ε)− α| , (ε ∈]0, 1])

thus it follows that I(ε) → 0 as ε ↓ 0. Proving the second relation and the statement
(c) follows in similar way. �

What follows we present an auxiliary lemma of theorem 4.8.

Lemma 4.7. Given ν ∈ C∞(R∗
+; R) with Im(ν) = Iβα , α, β in R̃∗

+ (α < β) and
θ > 0 we consider ϕ : y ∈ R∗

+ 7→
∫ y
θ
ν(s)−α
s2 ds ∈ R. If ν is strictly increasing and

ν ∈ Es,QM [R∗
+; R], then ϕ is strictly increasing, ϕ ∈ C∞s,QM [R∗

+; R] and

|ϕ(y)| ≤

{
[ν(θ)− α]( 1

y −
1
θ ), if y < θ

[ν(y)− α]( 1
θ −

1
y ), if y ≥ θ .

(4.3)

Proof. Since ϕ′(y) = ν(y)−α
y2 and ν(y) > α, (y > 0), it follows that ϕ is strictly

increasing, and hence

If A,B ∈ R∗
+ and y ∈ [A,B], then |ϕ(y)| ≤ |ϕ(A)|, or |ϕ(y)| ≤ |ϕ(B)|. (4.4)

To check ϕ ∈ Es,QM [R∗
+; R], fix p ∈ N, a, b ∈ R∗

+, a < b, and µ from ]0, 1] in ]0, a]
such that (ε 7→ 1

µ(ε) ) ∈ Es,M (R), we must find N ∈ N, C > 0 and η ∈]0, 1] verifying

sup
y∈[µ(ε),b]

|ϕ(p)(y)| ≤ Cε−N , (0 < ε < η). (4.5)
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In fact, since ν ∈ Es,QM [R∗
+; R] and ϕ(p)(y) =

∑p−1
q=0 C

p
q (ν − α)(q)(y)yq−p−n+1,

(y > 0, p ≥ 1), where

Cpq := (−1)p−q−1n(n+ 1) . . . (n+ p− q − 2)
(
p− 1
q

)
it is enough to check (4.5) in the case p = 0. For b′ := max{θ, b}, let N ∈ N be,
C > 0 and η ∈]0, 1] such that

sup
s∈[µ(ε),b′]

|ν(s)− α| ≤ Cε−N , (0 < ε < η). (4.6)

For a fixed ε ∈]0, 1] and y ∈ [µ(ε), b], we have |ϕ(y)| ≤ |ϕ(b)| or |ϕ(y)| ≤ |ϕ(µ(ε))|
(by (4.4)). In the last case, by definition of ϕ and using (4.6), it follows that

|ϕ(y)| ≤ Cε−N |1
θ
− 1
µ(ε)

|, (0 < ε < η, y > 0)

which together with condition (ε 7→ 1
µ(ε) ) ∈ Es,M (R) implies (4.5).

To prove the inequalities in (4.3), let y ∈ R∗
+ be fixed. If y < θ we have

ϕ(y) =
∫ y

θ

ν(s)− α

s2
ds =

∫ θ

y

α− ν(s)
s2

ds

thus, as ν(s) > α for s > 0, it follows that

|ϕ(y)| ≤
∫ θ

y

|α− ν(s)|
s2

ds =
∫ θ

y

ν(s)− α

s2
ds

and hence, since ν(s) ≤ ν(θ) for s ∈ [y, θ], we have

|ϕ(y)| ≤ [ν(θ)− α]
∫ θ

y

1
s2
ds = [ν(θ)− α]

(1
y
− 1
θ

)
.

On the other hand, if y ≥ θ we have |ϕ(y)| = ϕ(y) =
∫ y
θ
ν(s)−α
s2 ds and thus, being

α(s) ≤ ν(y) for s ∈ [θ, y], it follows that

|ϕ(y)| ≤ [ν(y)− α]
∫ y

θ

1
s2
ds = [ν(y)− α]

(1
θ
− 1
y

)
.

�

Hypothesis 4.4 (For theorem 4.8) We fix (α, β) ∈ R∗
+ × R∗

+, α < β, and ν in
C∞(R∗

+; R) with Im(ν) = Iβα . For each τ = ρ, u also will be considered

• τr, τ` ∈ C∞(Rm; R) such hat 0 < τr(t) < τ`(t), (t ∈ Rm)
• ∆τ ∈ C∞(Rm; R) defined by ∆τ := τr − τ`
• Ĥτ ∈ Es,M [Rn × Rm; R] such that Ĥτ (ε, ·) → Ynm in (R∗)n × Rm as ε ↓ 0

and

sup
λ∈Rn

|Ĥτ (ε, λ, t)| ≤
τr(t)ε− τ`(t)

∆τ(t)
, ((ε, t) ∈]0, 1]× Rm) (4.7)

• the generalized function τ∗ as being the class of τ̂∗ := ∆τĤτ + τ`.
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Theorem 4.8. If ν is strictly increasing and ν ∈ Es,QM [R∗
+; R], then there is a

strictly increasing function ϕ ∈ C∞s,QM [R∗
+; R] satisfying the following conditions

∂(ϕ ◦ ρ∗)
∂λj

=
ν ◦ ρ∗ − α

ρ2
∗

∂ρ∗
∂λj

, (1 ≤ j ≤ n),

∇t(ϕ ◦ ρ∗) =
ν ◦ ρ∗ − α

ρ2
∗

∇tρ∗;
(4.8)

lim
ε↓0

[ρ̂∗(ϕ ◦ ρ̂∗)](ε, ·) = (∆ρYnm + ρ`)[ϕ ◦ (∆ρYnm + ρ`)] in D′(Rn × Rm); (4.9)

|(R+
−)n×Rm ≈ ρ`(u` − c)(ϕ ◦ ρ`),

[(u∗ − c)ρ∗(ϕ ◦ ρ∗)]|(R∗
+)n×Rm ≈ ρr(ur − c)(ϕ ◦ ρr);

(4.10)

for all c ∈ C∞(Rm; R). In particular, if c, (ρr, ρ`) and (ur, u`) are constant func-
tions, we have ∇t[ρ∗(ϕ ◦ ρ∗)] ≈ 0, [(u∗ − c)ρ∗(ϕ ◦ ρ∗)]|(R+

−)n×Rm ≈ ρ`(u` − c)ϕ(ρ`)
and [(u∗ − c)ρ∗(ϕ ◦ ρ∗)]|(R∗

+)n×Rm ≈ ρr(ur − c)ϕ(ρr).

Proof. Fix θ > 0. By lemma 4.7, ϕ : y 7→
∫ y
θ
ν(s)−α
s2 ds is strictly increasing, ϕ in

C∞QM [R∗
+; R] and satisfies the inequalities (4.3). From (4.7) and definition of τ̂∗,

τ = ρ, u, it follows that

τ̂∗(ε, λ, t) ∈ [ετr(t), 2τ`(t)] for all (ε, λ, t) ∈]0, 1]× Rn × Rm .

Fix K b Rm. For each τ = ρ, u, let Aτ > 0 and Bτ > 0 be such that Aτ ≤ τr(t)
and 2τ`(t) ≤ Bτ , (t ∈ K). From above conditions it follows that

τ̂∗(ε, λ, t) ∈ [Aτε,Bτ ], ((ε, λ, t) ∈]0, 1]× Rn ×K, τ = ρ, u) . (4.11)

This condition shows that ρ̂∗ ∈ Es,M,⊗[Rn × Rm; R∗
+] and, by proposition 4.2, ρ∗

has multiplicative inverse in Gs(Rn × Rm; R) and 1bρ∗ is a representative of 1
ρ∗

. By
the chain rule we have

∂(ϕ ◦ ρ∗)
∂λj

= (ϕ′ ◦ ρ∗)
∂ρ∗
∂λj

, (j = 1, . . . , n)

∂(ϕ ◦ ρ∗)
∂ti

= (ϕ′ ◦ ρ∗)
∂ρ∗
∂ti

, (i = 1, . . . ,m).

From ϕ′(y) = ν(y)−α
y2 it follows that ϕ′ ◦ ρ̂∗ = ν◦bρ∗−αbρ2∗ and hence ϕ′ ◦ ρ∗ = ν◦ρ∗−α

ρ2∗
which together with previous formulas implies the required equalities in (4.8).

On the other hand, from (4.3) we have

|yϕ(y)| ≤ [ν(θ)− α](1− y

θ
), if y < θ

|yϕ(y)| ≤ [ν(y)− α](
y

θ
− 1), if y ≥ θ .

Thus, noting that 0 < 1 − y
θ < 1 and by using (4.11) two times in the second

inequality, we have

|[ρ̂∗(ϕ ◦ ρ̂∗)](ε, λ, t)| ≤ [ν(θ)− α], if ρ̂∗(ε, λ, t) < θ

|[ρ̂∗(ϕ ◦ ρ̂∗)](ε, λ, t)| ≤ [ν(Bρ)− α](
Bρ
θ
− 1), if ρ̂∗(ε, λ, t) ≥ θ

for each (ε, λ, t) ∈]0, 1]× Rn ×K. Thus, if

M := max{[ν(θ)− α], [ν(Bρ)− α](
Bρ
θ
− 1)}
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we have sup(λ,t)∈Rn×K |[ρ̂∗(ϕ ◦ ρ̂∗)](ε, λ, t)| ≤ M , (0 < ε ≤ 1), which together with
(4.11) implies

sup
(λ,t)∈Rn×K

|[(û∗ − c)ρ̂∗(ϕ ◦ ρ̂∗)] (ε, λ, t)| ≤M(Bu +Bc), (0 < ε ≤ 1),

where Bc > 0 is such that supt∈K |c(t)| ≤ Bc. From the last two conditions it
follows that ρ∗(ϕ ◦ ρ∗), (u∗ − c)ρ∗(ϕ ◦ ρ∗) ∈ Gs,`b(Rn × Rm; R).

From hypothesis 4.4, remarking that |∆τ(t)| > 0, (t ∈ Rm), we have

τ̂∗(ε, ·) → ∆τYnm + τ` in (R∗)n × Rm as ε ↓ 0, (τ = ρ, u) (4.12)

and thus (ϕ ◦ ρ̂∗)(ε, ·) → ϕ ◦ (∆ρYnm + ρ`) in(R∗)n ×Rm as ε ↓ 0. From these two
conditions it follows that

lim
ε↓0

[ρ̂∗(ϕ ◦ ρ̂∗)](ε, ·) = (∆ρYnm + ρ`) [ϕ ◦ (∆ρYnm + ρ`)] in (R∗)n × Rm. (4.13)

Like this, as ρ∗(ϕ ◦ ρ∗) ∈ Gs,`b(Rn×Rm; R), by proposition 1.2 the statement (4.9)
is verified.

Using (4.12) and (4.13) we have

[(û∗ − c)ρ̂∗(ϕ ◦ ρ̂∗)] (ε, ·) → ρ`(u` − c)(ϕ ◦ ρ`) in (R+
−)n × Rm as ε ↓ 0

[(û∗ − c)ρ̂∗(ϕ ◦ ρ̂∗)] (ε, ·) → ρr(ur − c)(ϕ ◦ ρr) in (R∗
+)n × Rm as ε ↓ 0.

Therefore, as (u∗− c)ρ∗(ϕ ◦ ρ∗) ∈ Gs,`b(Rn×Rm; R) and ρ`(u`− c)(ϕ ◦ ρ`), ρr(ur −
c)(ϕ ◦ ρr) ∈ C∞(Rm; R), by proposition 1.2 the statements in (4.10) hold.

Finally, if ρr and ρ` are constants we have

(∆ρYnm + ρ`)[ϕ ◦ (∆ρYnm + ρ`)] =

{
ρ`ϕ(ρ`), in (R+

−)n × Rm

ρrϕ(ρr), in (R∗
+)n × Rm

and hence, by lemma 3.1, we have
∂

∂ti

{
(∆ρYnm + ρ`) [ϕ ◦ (∆ρYnm + ρ`)]

}
= 0 in D′(Rn × Rm), (i = 1, . . . , n)

and, from hypothesis 4.4, for each i = 1, . . . , n, we have

lim
ε↓0

{
∂

∂ti
[ρ̂∗(ϕ ◦ ρ̂∗)]

}
(ε, ·) =

∂

∂ti
{(∆ρYnm + ρ`) [ϕ ◦ (∆ρYnm + ρ`)]}

in D′(Rn × Rm). From these two conditions it follows that ∇t[ρ∗(ϕ ◦ ρ∗)] ≈ 0. �

Theorem 4.9. We assume that νi ∈ Es,QM [R∗
+; R] and ν−1

i ∈ Es,QM [Iβi
αi

; R] for
each i ∈ I and that νj ≡ αj in R∗

+ for each j ∈ J. Then there are generalized func-
tions H1, . . . ,H` in Hr(Rn×Rm)\HΛ(Rn×Rm) verifying the following properties.

(1) Each Hi, i = 1, . . . , `, has representative Ĥi such that

sup
(x,t)∈Rn×Rm

|Ĥi(ε, x, t)| ≤
aiε− bi

∆i
, (ε ∈]0, 1]),

(∀K b (R∗)n) (∃η ∈]0, 1]) : sup
(ε,x,t)∈]0,η[×K×Rm

|Ĥi(ε, x, t)| < − bi
∆i
.

(2) If H ∈ Hn,m
Λ (Rn×Rm) we have [ν ◦(∆1H1 +b1, . . . ,∆`H`+b`)−α] ∂H∂xj

≈ 0
and [ν ◦ (∆1H1 + b1, . . . ,∆`H` + b`)− α]H ∂H

∂xj
≈ 0, for j = 1, . . . , n.

(3) If H ∈ HΛ(Rn×Rm) we have [ν ◦ (∆1H1 + b1, . . . ,∆`H`+ b`)−α]∂nxH ≈ 0
and [ν ◦ (∆1H1 + b1, . . . ,∆`H` + b`)− α]H∂nxH ≈ 0.
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The proof of the above theorem follows from theorem 4.6 and propositions 3.3,
2.6.

Remark 4.10. (1) The existence of shock wave solutions for the following system
of hydrodynamic equations, with viscosity ν, was studied in [7]:

ρt + (ρu)x ≈ 0

(ρu)t + (p+ ρu2)x ≈ {[ν ◦ (ρ, p, e)− α]ux}x
et + [(e+ p)u]x ≈ {[ν ◦ (ρ, p, e)− α]uux}x

e ≈ λp+
1
2
ρu2, λ ∈ R∗,

(4.14)

where ρ is the density, u the velocity, p the pressure, e the total energy, ν in
C∞

(
(R∗

+)3; Iβα
)

(α, β ∈ R̃+, α < β) satisfying some adequate conditions and ≈
denotes the association relation in Gs(R2; R). In [7] was also studied the nonexis-
tence of shock wave solutions for the system obtained by replacing in the two first
equations of (4.14) the association relation by the equality of generalized functions.
In [2] was studied the existence and nonexistence of shock wave solutions for the
systems: (4.14) and the system obtained by replacing in the first equation of (4.14)
the association by the equality, in the cases α = 0 and ν ◦ (ρ, p, e) = ν ◦ (ρ). These
studies were realized using Heaviside generalized functions in variables x in R.

(2) The existence of shock wave solutions for the following system, using Heavi-
side generalized functions in variables x in Rn, was studied in [9]:

ρt + divx(ρu) ≈ 0

(ρu)t + divx(p+ ρu2) ≈ 0

et + divx[(e+ p)u] ≈ 0

e ≈ λp+
1
2
(ρu2), λ ∈ R∗

where ρ, u, p and e are real generalized functions in Rn × R. The introduction of
this system was suggested by the system considered in (1), in the case ν = 0.

(3) The existence and nonexistence of shock wave solutions for Burger’s equations
ut + u divx u ≈ 0 and ut + u divx u = 0, where u ∈ Gs(Rn × R; R), was studied
in [10], using Heaviside generalized functions in variables x in Rn and in variables
(x, t) in Rn × R.

(4) The existence and nonexistence of shock wave solutions for systems suggested
by the systems in (1), in the case ν 6= 0, are being studied by the author of this
article. These studies are realized using Heaviside generalized functions in variables
x in Rn and in variables (x, t) in Rn×R and the tools considered in this work. The
results will be stated in a work which is in preparation and it will appear in a
forthcoming publication.

5. Appendix: notation and definitions

• A := B means that A is defined as being equal to B
• R∗ := {x ∈ R : x 6= 0}, R∗

+ := {x ∈ R∗ : x > 0}, R̃+ := R+ ∪ {+∞}
• (R+

−)n := {(x1, . . . , xn) ∈ Rn : xj < 0 for some j = 1, . . . , n}
• K denotes either R or C
• Br[0] := {x ∈ Rn : |x| ≤ r}, (r > 0)
• K b Ω means that K is a compact subset of Ω



EJDE-2012/87 GENERALIZED HEAVISIDE FUNCTIONS 19

• L(F1, . . . , F`;G) is the space of continuous `-linear mappings from F1 ×
· · · × F` into G endowed with the norm

|A|` = sup
|yi|=1, 1≤i≤`

|A(y1, . . . , y`)|

for A ∈ L(F1, . . . , F`;G). When F1 = · · · = F` = F this space is denoted
by L(`F ;G), and L(0F ;G) =: G

• Es[Ω;F ] := {u ∈ F ]0,1]×Ω : u(ε, ·) ∈ C∞(Ω;F ) for all ε ∈]0, 1]}
• if p ∈ N, K b Ω and u ∈ Es[Ω;F ]

(
u(p) ∈ Es[Ω;L(pE;F )]

)
,

u(p)(ε, x) := [u(ε, ·)](p)(x) and |u(p)(ε, ·)|p,K := supx∈K |u(p)(ε, x)|p
• Es,M [Ω;F ], Ns[Ω;F ] and Gs(Ω;F ) are defined on page 2
• Gs,`b(Ω;F ) is defined on page 2
• (f1, . . . , f`) denotes the class of the function

(f̂1, . . . , f̂`) : ]0, 1]× Ω → F1 × · · · × F`, (ε, x) 7→
(
f̂1(ε, x), . . . , f̂`(ε, x)

)
• Es,M [Ω;Ω′] := {u ∈ Es,M [Ω;F ] : u(]0, 1]× Ω) ⊂ Ω′}
• Es,M,∗[Ω;Ω′] and Es,M,∗[Ω;Ω′] are defined on page 3
• If (f, g) ∈ Gs,∗(Ω; Ω′)× Gs(Ω′;G), then g ◦ f := ĝ ◦ f̂ +Ns[Ω;G]
• Es,M (F ), Ns(F ) and F̄s are dfined on page 3
• Definition of f ≈ g for f and g in Gs(Ω; K`) are provided on page 3
• ∇tf :=

(
∂f
∂t1
, . . . , ∂f∂tm

)
, divx f := ∂f

∂x1
+ · · ·+ ∂f

∂xn
,

∂αx f := ∂|α|f
∂x

α1
1 ...∂xαn

n
, ∂nxf := ∂nf

∂x1...∂xn

• Definition of Dirac GFs in Gs(Rn) is provided on page 4
• Yn : Rn → R denotes the Heaviside function in Rn
• H(Rn) is the set of Heaviside GFs in Rn

• Hp(Rn) is the set of H in Gs,`b(Rn) so that has representative Ĥ such that
Ĥ(ε, ·) → Yn in (R∗)n as ε ↓ 0

• Property (Hr)n is defined on page 5
• Hr(Rn) is the set of elements of Gs,`b(Rn) so that each one has representa-

tive verifying the property (Hr)n

• Λ(n) := {ϕ ∈ D(Rn) : ϕ ≥ 0, ϕ(0) > 0, supp(ϕ) ⊂ B1[0] and
∫
ϕ(λ) dλ = 1}

• If ϕ ∈ Λ(n), then Ĥϕ : ]0, 1]× Rn → R is defined by

Ĥϕ(ε, λ1, . . . , λn) :=
∫ λ1

−∞
. . .

∫ λn

−∞

1
εn
ϕ
( t1
ε
, . . . ,

tn
ε

)
dt1 . . . dtn

• Hϕ denotes the class of Ĥϕ

• Hn
Λ(Rn) := {(K ◦ p1) . . . (K ◦ pn) : K ∈ HΛ(R)}

• HΛ(Rn) := {Hϕ ∈ Gs(Rn) : ϕ ∈ Λ(n)}
• If y ∈ C∞(Rm; Rn), we have y∗ : Rn × Rm → Rn: (x, t) 7→ x − y(t) and
y∗ : Rn × Rm → Rn × Rm: (x, t) 7→ (y∗(x, t), t); which are the functions
associated with y = (y1, . . . yn)

• Ω∗ := Ω+
− ∪ Ω+, Ω+

− := {(x, t) : y∗j (x, t) < 0 for some j = 1, . . . , n}, Ω+ :=
{(x, t) : y∗j (x, t) > 0 for all j = 1, . . . , n}, which are the sets associated with
y = (y1, . . . yn) ∈ C∞(Rm; Rn)

• Ynm : Rn × Rm → R denotes the Heaviside function in Rn × Rm
• H(Rn × Rm) is the set of Heaviside GFs in Rn × Rm
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• Hp(Rn × Rm) is the set of H ∈ Gs,`b(Rn × Rm) so that Ĥ(ε, ·) → Ynm in
(R∗)n × Rm as ε ↓ 0 for some representative Ĥ

• Property (Hr)nm is defined on page 9
• Hr(Rn×Rm) is the set of elements in Gs,`b(Rn×Rm) so that each one has

representative verifying the property (Hr)nm;
• HΛ(Rn × Rm) := {H ◦ πm : H ∈ HΛ(Rn)} = {Hϕ ◦ πm : ϕ ∈ Λ(n)}
• Hn,m

Λ (Rn × Rm) := {H ◦ πm : H ∈ Hn
Λ(Rn)}

• if α = (α1, . . . , α`) and β = (β1, . . . , β`) in (R̃+)`:

Iβα :=
∏̀
i=1

]αi, βi[⊂ (R∗
+)`, [α, β] :=

∏̀
i=1

[αi, βi], ]α, β] :=
∏̀
i=1

]αi, βi]

• Note that Iβα = (R∗
+)` if α = 0 and β = (+∞, . . . ,+∞)

• If ` = 1, then Iβα =]α, β[. Also Iβα = R∗
+, if α = 0 and β = +∞

• Es,M,�[Ω; Iβα ], Es,M,⊗[Ω; Iβα ] := Es,M [Ω; Iβα ] ∩ Es,M,�[Ω; Iβα ] and Gs,⊗(Ω; Iβα)
are dfined on page 12

• Es,QM [Iβα ;G] and C∞s,QM [Iβα ;G] := C∞(Iβα ;G) ∩ Es,QM [Iβα ;G] are dfined on
page 12

• If f ∈ Gs,⊗(Ω; Iβα) and ϕ ∈ C∞s,QM [Iβα ;G], then ϕ ◦ f := ϕ ◦ f̂ +Ns[Ω;G];
• Es,M,�[Ω; R∗], Es,M,◦[Ω; R∗] := Es,M [Ω; R∗] ∩ Es,M,�[Ω; R∗] and Gs,◦(Ω; R∗)

are defined on page 13
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