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SCHRÖDINGER SYSTEMS WITH A CONVECTION TERM FOR
THE (p1, . . . , pd)-LAPLACIAN IN RN

DRAGOS-PATRU COVEI

Abstract. The main goal is to study nonlinear Schrödinger type problems
for the (p1, . . . , pd)-Laplacian with nonlinearities satisfying Keller- Osserman
conditions. We establish the existence of infinitely many positive entire radial
solutions by an application of a fixed point theorem and the Arzela-Ascoli
theorem. An important aspect in this article is that the solutions are obtained
by successive approximations and hence the proof can be implemented in a
computer program.

1. Introduction

Nonreactive scattering of atoms and molecules, and related bound state energy
eigenvalue problems can be formulated by the radial Schrödinger system

U ′′ +
N − 1

r
U ′ = A(r)U(r)

U(r) → U∞ as r →∞
(1.1)

where r := |x| (| · | is the Euclidean norm), the wave function U(r) is a d× 1 vector
and the potential function A(r) is a d × d symmetric matrix. We refer the reader
to [12, 7] for some additional details.

In recent years, much effort has been devoted to the problems which arise in
connection with the system (1.1) and that are related to nonlinear differential equa-
tions. However, most of the treatments are either for coupled systems of equations
or for scalar equations (see [1]-[22]).

The object of this work is to develop an existence theory for radial solutions of
the basic nonlinear elliptic system

∆p1u1 + h1(|x|)|∇u1|p1−1 = a1(|x|)g1(u1, . . . , ud) for x ∈ RN ,

. . .

∆pd
ud + hd(|x|)|∇ud|pd−1 = ad(|x|)gd(u1, . . . , ud) for x ∈ RN ,

(1.2)

where d ≥ 1, 1 < pi ≤ N − 1, i = 1, . . . , d and ∆pi
is the so called pi-Laplacian

operator defined by
∆piui := div(|∇ui|pi−2∇ui).
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The operator ∆pi with pi 6= 2 occurs in many mathematical models of physical pro-
cesses: it is used in non-Newtonian fluids where the shear stress −→τ and the velocity
gradient ∇ui of the fluid are related in the manner that −→τ (x) = ri(x)|∇ui|pi−2∇ui

(for pi = 2 (respectively, pi < 2, pi > 2) if the fluid is Newtonian (respectively,
pseudoplastic, dilatant)), in some reaction-diffusion problems, in nonlinear elastic-
ity (pi > 2), glaciology (1 < pi < 4

3 ), of flow through porous media (pi = 3
2 ), in

petroleum extraction as well as in torsional creep problems, see the book of Diaz
[5] and Lions [15] where are collected detailed references on physical background
and presented mathematical treatments of free boundary problem associated with
the operator ∆pi .

In the mathematical context several interesting results about blowup theorems
for solutions of nonlinear system like (1.2) are known and have been obtained by
several authors. For further discussion, examples and references, in the particular
case d = 2 and p1 = p2 = 2 we refer to [4], [22] and [20]. The case p1 6= · · · 6= pd 6= 2
is not yet well understood, but is the subject of much current research. Some
very recent existence results on the pi-Laplacian can be found in a recent paper
of Hamydy-Massar and Tsouli [9] where they study entire large solutions to the
system (1.2) when pj ≥ 2 (d = 2, j = 1, 2) and for the functions hj , aj , gj that
satisfy

(A1) hj , aj : [0,∞) → [0,∞) are radial continuous functions;
(G1) gj : [0,∞)d → [0,∞) are continuous in all variables;
(G2) gj are non-decreasing on [0,∞)d in all variables;
(G3) for all M > 0

lim
t→∞

g1(Mg2(t)
1

p2−1 )
tp1−1

= 0.

Under these hypotheses and the integral condition∫ ∞

1

(r1−Ne−
R r
0 hj(t)dt

∫ t

0

rN−1e
R r
0 hj(t)dtaj(s)ds)

1
pj−1 dt = ∞, j = 1, . . . , d

they proved that the system (1.2) has infinitely many positive entire large solutions.
Regarding the case d = 2 and p1 = p2 = 2, Zhang and Liu [22] studied the

existence of entire large positive solutions of the system

∆u1 + |∇u1| = a1(r)g1(u1, u2),

∆u2 + |∇u2| = a2(r)g2(u1, u2),

where r := |x|, x ∈ RN . They generalized the results of several authors by con-
sidering a1, a2, g1 and g2 satisfying (A1), (G1), (G2) and instead of (G3) the
condition ∫ ∞

a

ds

g1(s, s) + g2(s, s)
= ∞ for r ≥ a > 0. (1.3)

It is interesting that for a single equation of the form ∆u = g(u) where g(u)
is positive, real continuous function defined for all real u and nondecreasing the
existence of entire large solutions is equivalent to a condition on g known as the
Keller-Osserman condition∫ ∞

u0

( ∫ t

0

g(s)ds
)−1/2

dt = ∞ for u0 > 0, (1.4)

(see [10, 18]) and that for systems, no such a result exists yet.
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Motivated by the references mentioned above it is interested whether similar
results can be obtained for nonlinearities gi (i = 1, . . . , d) of the type (1.4), which
includes, as a special case, a similar result of [4]. Also, we are interested in the
existence results allowing any p1, . . . , pd > 1. The answers of these questions are
certainly not trivial and seems to be applicable to more general nonlinearities e.g.,
those studied in [10, 17] or more suggestive in the works of [6] respectively [20].

Let us finish our presentation to announce our main result that can be stated as
follows.

Theorem 1.1. Suppose the functions aj, hj satisfy (A1), gj satisfy (G1), (G2)
and the “Keller-Osserman type” condition

I(∞) := lim
r→∞

I(r) = ∞ (1.5)

where

I(r) :=
∫ r

a

[G(s)]−1/ min{p1,...,pd}ds

for r ≥ a > 0, and G(s) :=
∫ s

0

∑d
i=1 gi(t, . . . , t)dt+1. Under these hypotheses there

are infinitely many positive entire radial solutions of (1.2). Suppose furthermore
that

pj

pj − 1
s

pj(N−1)
pj−1 e

pj
pj−1

R s
0 hj(t)dt

aj(s) for j = 1, . . . , d,

is nondecreasing for large s. Then
(i) The solutions are bounded if there exists a positive number ε such that∫ ∞

0

t1+ε(e
pj

pj−1

R t
0 hj(t)dt

aj(t))2/pj dt < ∞ for all j = 1, . . . , d, (1.6)

(ii) The solutions are large if∫ ∞

0

(
e−

R t
0 hj(s)ds

tN−1

∫ t

0

sN−1e
R s
0 hj(t)dtaj(s)ds)1/(pj−1)dt = ∞ (1.7)

for j = 1, . . . , d.

As far as we know, there is no such a result in any work from the literature,
because no solutions have been detected yet for the system of the form (1.2) under
the Keller-Osserman conditions (1.5).

2. Proof of the Theorem 1.1

In this section, we show the existence of positive radial solutions of (1.2). The
proof is inspired by [4] with some new ideas. Now we remark that (1.2) has a solu-
tion (u1, . . . , ud) := (u1(r), . . . , ud(r)) if and only if (u1, . . . , ud) solves the system
of second-order ordinary differential equations

(p1 − 1)(u′1)
p1−2u′′1 +

N − 1
r

(u′1)
p1−1 + h1(r)|u′1|p1−1 = a1(r)g1(u1, . . . , ud),

. . .

(pd − 1)(u′d)
pd−2u′′d +

N − 1
r

(u′d)
pd−1 + hd(r)|u′d|pd−1 = ad(r)gd(u1, . . . , ud),

u′i(0) = 0 for i = 1, . . . , d

(2.1)
where we can assume in the next that u′i(r) ≥ 0 for i = 1, . . . , d.
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However, in view of the symmetry of (u1, . . . , ud), we have that radial solutions
of (2.1) are positive solutions (u1, . . . , ud) of the integral equations

u1(r) = u1(0) +
∫ r

0

(e−
R t
0 h1(s)ds

tN−1

∫ t

0

sN−1e
R s
0 h1(s)dta1(s)g1(u1, . . . , ud)ds

) 1
p1−1

dt,

. . .

ud(r) = ud(0) +
∫ r

0

(e−
R t
0 hd(s)ds

tN−1

∫ t

0

sN−1e
R s
0 hd(s)dtad(s)gd(u1, . . . , ud)ds

) 1
pd−1

dt.

(2.2)
Our first idea in the proof of the main result is to regard (2.2) as an operator
equation

S(u1(r), . . . , ud(r)) = (u1(r), . . . , ud(r))

with
S : C[0,∞)× · · · × C[0,∞) → C[0,∞)× · · · × C[0,∞)

defined by

S(u1(r), . . . , ud(r))

=

u1(0) +
∫ r

0
( e−

R t
0 h1(s)ds

tN−1

∫ t

0
sN−1e

R s
0 h1(s)dta1(s)g1(u1, . . . , ud)ds)

1
p1−1 dt

. . .

ud(0) +
∫ r

0
( e−

R t
0 hd(s)ds

tN−1

∫ t

0
sN−1e

R s
0 hd(s)dtad(s)gd(u1, . . . , ud)ds)

1
pd−1 dt


(2.3)

where u1(0) = · · · = ud(0) = b/d with b ≥ a > 0 are the central values for the
system. The integration in this operator implies that a fixed point

(u1, . . . , ud) ∈ C[0,∞)× · · · × C[0,∞)

is in fact in the space C1[0,∞) × · · · × C1[0,∞). Then a solution of (2.1) will
be obtained as a fixed point of the operator (2.3). To establish a solution to this
operator, we use successive approximation which constitutes an indispensable tool
for solving nonlinear systems (1.2) at this point. We define, recursively, sequences
{uk

i }
k≥1

i=1,...,d
on [0,∞) by

u0
1 = · · · = u0

d =
b

d
for all r ≥ 0 and b ≥ a > 0

and

(uk
1 , . . . , uk

d) = S(uk−1
1 (r), . . . , uk−1

d (r))

=

 b
d +

∫ r

0
( e−

R t
0 h1(s)ds

tN−1

∫ t

0
sN−1e

R s
0 h1(s)dta1(s)g1(uk−1

1 , . . . , uk−1
d )ds)

1
p1−1 dt

. . .
b
d +

∫ r

0
( e−

R t
0 hd(s)ds

tN−1

∫ t

0
sN−1e

R s
0 hd(s)dtad(s)gd(uk−1

1 , . . . , uk−1
d )ds)

1
pd−1 dt


T

.

(2.4)

It is easy to see that, for all r ≥ 0, i = 1, . . . , d and k ∈ N we have

uk
i (r) ≥ b

d
,

and that {uk
i }

k≥1
i=1,...,d is an increasing sequence of nonnegative and non-decreasing

functions.
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We note that {uk
i }

k≥1
i=1,...,d satisfy

(p1 − 1)[(uk
1)′]p1−2(uk

1)′′ + (
N − 1

r
+ h1(r))[(uk

1)′]p1−1

= a1(r)g1(uk−1
1 (r), . . . , uk−1

d (r)),
. . .

(pd − 1)[(uk
d)′]pd−2(uk

d)′′ + (
N − 1

r
+ h1(r))[(uk

d)′]pd−1

= ad(r)gd(uk−1
1 (r), . . . , uk−1

d (r)).

(2.5)

Using the monotonicity of {uk
i }

k≥1
i=1,...,d we have

a1(r)g1(uk−1
1 (r), . . . , uk−1

d (r)) ≤ a1(r)g1(uk
1 , . . . , uk

d)

≤ a1(r)
d∑

i=1

gi

( d∑
i=1

uk
i , . . . ,

d∑
i=1

uk
i

)
,

. . .

ad(r)gd(uk−1
1 (r), . . . , uk−1

d (r)) ≤ ad(r)gd(uk
1 , . . . , uk

d)

≤ ad(r)
d∑

i=1

gi

( d∑
i=1

uk
i , . . . ,

d∑
i=1

uk
i

)
;

(2.6)

moreover,

(p1 − 1)[(uk
1(r))′]p1−1(uk

1)′′ + (
N − 1

r
+ h1(r))[(uk

1(r))′]p1

≤ a1(r)
d∑

i=1

gi

( d∑
i=1

uk
i , . . . ,

d∑
i=1

uk
i

)
(uk

1(r))′,

. . .

(pd − 1)[(uk
d(r))′]pd−1(uk

d)′′ + (
N − 1

r
+ hd(r))[(uk

d(r))′]pd

≤ ad(r)
d∑

i=1

gi

( d∑
i=1

uk
i , . . . ,

d∑
i=1

uk
i

)
(uk

d(r))′,

(2.7)

which implies

(p1 − 1)[(uk
1(r))′]p1−1(uk

1)′′ + (
N − 1

r
+ h1(r))[(uk

1(r))′]p1

≤ a1(r)
d∑

i=1

gi

( d∑
i=1

uk
i , . . . ,

d∑
i=1

uk
i

)( d∑
i=1

uk
i (r)

)′
,

. . .

(pd − 1)[(uk
d(r))′]pd−1(uk

d)′′ + (
N − 1

r
+ hd(r))[(uk

d(r))′]pd

≤ ad(r)
d∑

i=1

gi

( d∑
i=1

uk
i , . . . ,

d∑
i=1

uk
i

)( d∑
i=1

uk
i (r)

)′
.

(2.8)

Now if we let
aR

i = max{ai(r) : 0 ≤ r ≤ R}, i = 1, . . . , d, (2.9)
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we can prove that uk
i (R) and (uk

i (R))′, both of them are nonnegative and bounded
above independent of k. Using (2.9) and the fact that (uk

i )′ ≥ 0 for i = 1, . . . , d, we
observe that (2.8) yields

(p1 − 1)[(uk
1)′]p1−1(uk

1)′′ ≤ aR
1

d∑
i=1

gi

( d∑
i=1

uk
i , . . . ,

d∑
i=1

uk
i

)( d∑
i=1

uk
i (r)

)′
. . .

(pd − 1)[(uk
d)′]pd−1(uk

d)′′ ≤ aR
d

d∑
i=1

gi

( d∑
i=1

uk
i , . . . ,

d∑
i=1

uk
i

)( d∑
i=1

uk
i (r)

)′
or, equivalently

p1 − 1
p1

{[(uk
1)′]p1}′ ≤ aR

1

d∑
i=1

gi

( d∑
i=1

uk
i , . . . ,

d∑
i=1

uk
i

)( d∑
i=1

uk
i (r)

)′
,

. . .

pd − 1
pd

{[(uk
d)′]pd}′ ≤ aR

d

d∑
i=1

gi

( d∑
i=1

uk
i , . . . ,

d∑
i=1

uk
i

)( d∑
i=1

uk
i (r)

)′
.

(2.10)

An integration of (2.10) in (0, r) gives[
(uk

1(r))′
]p1 ≤ p1

p1 − 1
aR
1

∫ Pd
i=1 uk

i (r)

b

d∑
i=1

gi(s, . . . , s)ds

≤ p1

p1 − 1
aR
1

∫ Pd
i=1 uk

i (r)

0

d∑
i=1

gi(s, . . . , s)ds,

(2.11)

. . .[
(uk

d(r))′
]pd ≤ pd

pd − 1
aR

d

∫ Pd
i=1 uk

i (r)

b

d∑
i=1

gi(s, . . . , s)ds

≤ pd

pd − 1
aR

d

∫ Pd
i=1 uk

i (r)

0

d∑
i=1

gi(s, . . . , s)ds.

(2.12)

At this stage, it is clear that

(uk
1(r))′ ≤ p1

√
p1

p1 − 1
aR
1

( ∫ Pd
i=1 uk

i (r)

0

d∑
i=1

gi(s, . . . , s)ds + 1
)1/ min{p1,...,pd}

, (2.13)

. . .

(uk
d(r))′ ≤ pd

√
pd

pd − 1
aR

d

( ∫ Pd
i=1 uk

i (r)

0

d∑
i=1

gi(s, . . . , s)ds + 1
)1/ min{p1,...,pd}

, (2.14)

Summing (2.13)-(2.14) and simplifying, we obtain( d∑
i=1

uk
i (r)

)′( ∫ Pd
i=1 uk

i (r)

0

d∑
i=1

gi(s, . . . , s)ds + 1
)−1/ min{p1,...,pd}

≤
d∑

j=1

pj

√
pj

pj − 1
aR

j for 0 ≤ r ≤ R.

(2.15)
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Integrating (2.15) between 0 and R, we have∫ Pd
i=1 uk

i (R)

b

[ ∫ t

0

d∑
i=1

gi(s, . . . , s)ds + 1
]−1/ min{p1,...,pd}

dt

= I
( d∑

i=1

uk
i (R)

)
− I(b) ≤ R

d∑
j=1

pj

√
pj

pj − 1
aR

j .

Since I is a bijection with I−1 increasing we obtain
d∑

i=1

uk
i (R) ≤ I−1

(
R

d∑
j=1

pj

√
pj

pj − 1
aR

j + I(b)
)

for all r ≥ 0, (2.16)

as in [8]. We are now in the position to observe that from the Keller-Osserman
condition (1.5) we can conclude that

∑d
i=1 uk

i (R) is uniformly bounded above
independent of k and using this fact in (2.15) shows that the same is true of( ∑d

i=1 uk
i (R)

)′. Then, since uk
i (r) ≤ uk

i (R) (r ≤ R and uk
i (r) is non-decreasing

sequence!) for i = 1, . . . , d we obtain the conclusion that the sequences uk
i (r) are

uniformly bounded above independent of k. Also, we clearly have uk
i (r) > 0 for all

r ≥ 0 and so our sequence is equi-continuous on [0, R] for arbitrary R > 0. A reca-
pitulation of the above information says that uk

i (r) (i = 1, . . . , d) is a monotonic,
uniformly bounded, equi-continuous sequence of functions on [0, R] and then there
exists a function

(u1, . . . , ud) ∈ C([0, R])× · · · × C([0, R])
such that uk

i (r) → ui(r) (i = 1, . . . , d) uniformly. Therefore, by an argument of
a Fixed Point Theorem, it follows that (u1, . . . , ud) is a fixed point of (2.4) in
C([0, R])× · · · × C([0, R]).

Next, we extend this result to show that S has a fixed point in C1([0,∞))×· · ·×
C1([0,∞)). Let {uk

i (r)}k≥1
i=1,...,d be a sequence of fixed points defined by

(uk
1(r), . . . , uk

d(r)) = S(uk
1(r), . . . , uk

d(r)) on [0, k],

(uk
1(r), . . . , uk

d(r)) ∈ C([0, k])× · · · × C([0, k]),
(2.17)

for k = 1, 2, 3, . . . . As earlier, we may show that both uk
1(r), . . . and uk

d(r) are
bounded and equi-continuous on [0, 1]. Thus by applying the Arzela-Ascoli Theorem
to each sequence separately, we can derive that {(uk

1(r), . . . , uk
d(r))}k≥1 contains a

convergent subsequence, (uk1
1

1 (r), . . . , uk1
d

d (r)), that converges uniformly on [0, 1] ×
· · · × [0, 1]. Let

(uk1
1

1 (r), . . . , uk1
d

d (r)) → (u1
1, . . . , u

1
d) uniformly on [0, 1]× · · · × [0, 1]

as k1
1, . . . , k

1
d → ∞. Likewise, the subsequences u

k1
1

1 (r), . . . , uk1
d

d (r) are bounded

and equi-continous on [0, 2] so there exists a subsequence (uk2
1

1 (r), . . . , uk2
d

d (r)) of

(uk1
1

1 (r), . . . , uk1
d

d (r)) such that (uk2
1

1 (r), . . . , uk2
d

d (r)) → (u2
1, . . . , u

2
d) uniformly on

[0, 2]× · · · × [0, 2] as k2
1, . . . , k

2
d →∞. Note that

{(uk2
1

1 (r), . . . , uk2
d

d (r))} ⊆ {(uk1
1

1 (r), . . . , uk1
d

d (r))} ⊆ {(uk
1(r), . . . , uk

d(r))}∞k≥1

so
(u2

1, . . . , u
2
d) = (u1

1, . . . , u
1
d) on [0, 1]× · · · × [0, 1].
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Continuing this reasoning, we obtain a sequence, denoted (uk
1(r), . . . , uk

d(r)), such
that

(uk
1(r), . . . , uk

d(r)) ∈ C([0, k])× · · · × C([0, k]), k = 1, 2, . . .

(uk
1(r), . . . , uk

d(r)) = (u1
1(r), . . . , u

1
d(r)) for r ∈ [0, 1]

(uk
1(r), . . . , uk

d(r)) = (u2
1(r), . . . , u

2
d(r)) for r ∈ [0, 2]

. . .

(uk
1(r), . . . , uk

d(r)) = (uk−1
1 (r), . . . , uk−1

d (r)) for r ∈ [0, k − 1],

and these functions are radially symmetric. Therefore (uk
1(r), . . . , uk

d(r)) converges
pointwise to some (u1(r), . . . , ud(r)) which satisfies

(u1(r), . . . , ud(r)) = (uk
1(r), . . . , uk

d(r)) if 0 ≤ r ≤ k.

Hence, (u1(r), . . . , ud(r)) is radially symmetric. Further, since (uk
1(r), . . . , uk

d(r)) is
in the form (2.17), we have that (uk

1(r), . . . , uk
d(r)) is also equi-continuous. Pointwise

convergence and equi-continuity imply uniform convergence and thus the conver-
gence is uniform on bounded sets. Thus

(u1(r), . . . , ud(r)) ∈ C1([0,∞))× · · · × C1([0,∞))

is a fixed point of (2.4) and a solution to (1.2) with central value ( b
d , . . . , b

d ). Since
b ≥ a > 0 was chosen arbitrarily, it follows that (1.2) has infinitely many positive
entire solutions and so the first part of our theorem is proved.
Proof of (i) Assume that (1.6) holds. Finally, we show that any entire positive
radial solution (u1, . . . , ud) of system (1.2) is bounded. We choose R > 0 so that

pj

pj − 1
r

pj(N−1)
pj−1 e

pj
pj−1

R r
0 hj(t)dt

aj(r)

are non-decreasing for r ≥ R and j = 1, . . . , d. Multiply each line of the system

(p1 − 1)[(u1(r))′]p1−1(u1)′′ + (
N − 1

r
+ h1(r))[(u1(r))′]p1

≤ a1(r)
d∑

i=1

gi

( d∑
i=1

ui, . . . ,

d∑
i=1

ui

)( d∑
i=1

ui(r)
)′

,

. . .

(pd − 1)[(ud(r))′]pd−1(ud)′′ + (
N − 1

r
+ hd(r))[(ud(r))′]pd

≤ ad(r)
d∑

i=1

gi

( d∑
i=1

ui, . . . ,

d∑
i=1

ui

)( d∑
i=1

ui(r)
)′

.

by
pi

pi − 1
r

pi(N−1)
pi−1 e

pi
pi−1

R r
0 hi(t)dt

i = 1, . . . , d,

where i represent the equation of the system that will be multiplied by. Then
summing we have[

r
p1(N−1)

p1−1 e
p1

p1−1

R r
0 h1(t)dt(u′1)

p1

]′
≤ r

p1(N−1)
p1−1

p1

p1 − 1
e

p1
p1−1

R r
0 h1(t)dta1(r)

d∑
i=1

gi

( d∑
i=1

ui, . . . ,

d∑
i=1

ui

)( d∑
i=1

ui

)′
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. . .[
r

pd(N−1)
pd−1 e

pd
pd−1

R r
0 hd(t)dt(u′d)

pd

]′
≤ r

pd(N−1)
pd−1

pd

pd − 1
e

pd
pd−1

R r
0 hd(t)dt

ad(r)
d∑

i=1

gi

( d∑
i=1

ui, . . . ,

d∑
i=1

ui

)( d∑
i=1

ui

)′
.

Integrating this gives∫ r

R

[
s

p1(N−1)
p1−1 (e

1
p1−1

R s
0 h1(t)dtu′1)

p1

]′
ds

≤
∫ r

R

s
p1(N−1)

p1−1
p1

p1 − 1
e

p1
p1−1

R s
0 h1(t)dta1(s)

d∑
i=1

gi

( d∑
i=1

ui, . . . ,

d∑
i=1

ui

)( d∑
i=1

ui

)′
ds,

(2.18)
. . .∫ r

R

[
s

pd(N−1)
pd−1 (e

1
pd−1

R s
0 hd(t)dt

u′d)
pd

]′
ds

≤
∫ r

R

s
pd(N−1)

pd−1
pd

pd − 1
e

pd
pd−1

R s
0 hd(t)dt

ad(s)
d∑

i=1

gi

( d∑
i=1

ui, . . . ,

d∑
i=1

ui

)( d∑
i=1

ui

)′
ds.

(2.19)

With the use of (2.18)-(2.19) we obtain

r
p1(N−1)

p1−1

(
e

1
p1−1

R r
0 h1(t)dtu′1(r)

)p1

−R
p1(N−1)

p1−1

(
e

1
p1−1

R R
0 h1(t)dt(u′1(R))

)p1

≤
∫ r

R

s
p1(N−1)

p1−1
p1

p1 − 1
e

p1
p1−1

R s
0 h1(t)dta1(s)

d∑
i=1

gi

( d∑
i=1

ui, . . . ,

d∑
i=1

ui

)( d∑
i=1

ui

)′
ds,

. . .

r
pd(N−1)

pd−1

(
e

1
pd−1

R r
0 hd(t)dt

u′d(r)
)pd

−R
pd(N−1)

pd−1

(
e

1
pd−1

R R
0 hd(t)dt

u′d(R)
)pd

≤
∫ r

R

s
pd(N−1)

pd−1
pd

pd − 1
e

pd
pd−1

R s
0 hd(t)dt

ad(s)
d∑

i=1

gi

( ∑
i=1

ui, . . . ,

d∑
i=1

ui

)( d∑
i=1

ui

)′
ds,

for r ≥ R.
Noting that, by the monotonicity of

pj

pj − 1
s

pj(N−1)
pj−1 e

pj
pj−1

R s
0 hj(t)dt

aj(s)

for j = 1, . . . , d and r ≥ s ≥ R, we obtain

r
p1(N−1)

p1−1
(
e

1
p1−1

R r
0 h1(t)dtu′1

)p1

≤ C +
p1

p1 − 1
r

p1(N−1)
p1−1

e
p1

p1−1

R r
0 h1(t)dta1(r)G

( d∑
i=1

ui

)
,

. . . ,

r

pd(N−1)
pd−1

(
e

1
pd−1

R r
0 hd(t)dt

u′d

)pd
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≤ C +
pd

pd − 1
r

pd(N−1)
pd−1

e
pd

pd−1

R r
0 hd(t)dt

ad(r)G
( d∑

i=1

ui

)
,

which yields

r
N−1
p1−1

e
1

p1−1

R r
0 h1(t)dtu′1

≤
[
C +

p1

p1 − 1
r

p1(N−1)
p1−1

e
p1

p1−1

R r
0 hd(t)dta1(r)G

( d∑
i=1

ui(r)
)]1/p1

(2.20)

. . .

r
N−1
pd−1

e
1

pd−1

R r
0 h1(t)dt

u′d

≤
[
C +

pd

pd − 1
r

pd(N−1)
pd−1

e
pd

pd−1

R r
0 hd(t)dt

ad(r)G
( d∑

i=1

ui(r)
)]1/pd

(2.21)

where

C = max
{

R
p1(N−1)

p1−1
[
e

1
p1−1

R R
0 h1(t)dt(u1(R))′

]p1
, . . . ,

R
pd(N−1)

pd−1
[
e

1
pd−1

R R
0 hd(t)dt(ud(R))′

]pd
}

.

We need to recall an important inequality which is the key ingredient of our next
proof. Since (1/pi) < 1 we know that

(b1 + b2)1/pi ≤ b
1/pi

1 + b
1/pi

2

for any non-negative constants bi and i = 1, 2. Therefore, by applying these in-
equalities in (2.20) and (2.21) we obtain

u′1 ≤ e
1

p1−1

R r
0 h1(t)dtu′1

≤ p1
√

Cr
1−N
p1−1 + r

1−N
p1−1

[ p1

p1 − 1
r

p1(N−1)
p1−1

e
p1

p1−1

R r
0 h1(t)dta1(r)

]1/p1[
G(

d∑
i=1

ui)
]1/p1

. . .

u′d ≤ e
1

pd−1

R r
0 hd(t)dt

u′d

≤ pd
√

Cr
1−N
pd−1 + r

1−N
pd−1

[ pd

pd − 1
r

pd(N−1)
pd−1

e
pd

pd−1

R r
0 hd(t)dt

ad(r)
]1/pd[

G(
d∑

i=1

ui)
]1/pd .

Summing the above inequalities and integrating, we obtain

d

dr

∫ Pd
i=1 ui(r)

Pd
i=1 ui(R)

[G(t)]−1/ min{p1,...,pd}dt

≤
d∑

j=1

pj
√

Cr
1−N
pj−1

[
G(

d∑
i=1

ui(r))
]−1/ min{p1,...,pd}

+
d∑

i=1

( pi

pi − 1
e

pi
pi−1

R r
0 hi(t)dt

ai(r)
)1/pi

.

(2.22)
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Inequality (2.22) combined with(
e

pi
pi−1

R r
0 hi(t)dt

ai(s)
)1/pi

=
(
spi(1+ε)/2e

pi
pi−1

R r
0 hi(t)dt

ai(s)s−pi(1+ε)/2
)1/pi

≤ (
1
2
)1/pi

[
s1+ε(e

pi
pi−1

R r
0 hi(t)dt

ai(r))2/pi + s−1−ε
]
,

for each ε > 0, yields∫ Pd
i=1 ui(r)

Pd
i=1 ui(R)

[G(t)]−1/ min{p1,...,pd}dt

≤
∫ r

R

d∑
j=1

pj
√

Ct
1−N
pj−1

[
G

( d∑
i=1

ui(t)
)]−1/ min{p1,...,pd}

dt

+
d∑

i=1

(
1
2
)1/pi pi

√
pi

pi − 1

[ ∫ r

R

t1+ε
(
e

pi
pi−1

R t
0 hi(s)ds

ai(t)
)2/pi

dt +
∫ r

R

t−1−εdt
]

≤
d∑

j=1

pj
√

C
[
G

( d∑
i=1

ui(R)
)]−1/ min{p1,...,pd} pj − 1

pj −N
R

pj−N

pj−1

+
d∑

i=1

(
1
2
)1/pi pi

√
pi

pi − 1

[ ∫ r

R

t1+ε(e
pi

pi−1

R t
0 hi(s)ds

ai(t))2/pidt +
1

εRε

]
.

(2.23)
Since the right side of this inequality is bounded (note that ui(t) ≥ b/d), so is the
left side and hence, in light of Keller-Osserman condition, the sequence

∑d
i=1 ui(r)

is bounded and finally ui(r) (i = 1, . . . , d) is a bounded function. Thus, for every
x ∈ RN the function (u1(|x|), . . . , ud(|x|)) is a positive bounded solution of (1.2).
Proof of (ii) Suppose that ai (i = 1, . . . , d) satisfies 1.7). Now, let (u1, . . . , ud) be
any positive entire radial solution of (1.2) determined in the first step of the proof.
Clearly

(u1(r), . . . , ud(r)) ≥ (
b

d
, . . . ,

b

d
)

and since gj are non-decreasing on [0,∞)d in all variables it follows

gj(u1(r), . . . , ud(r)) ≥ gj(
b

d
, . . . ,

b

d
). (2.24)

On the other hand, substituting (2.24) in the system (2.1) we obtain

(p1 − 1)(u′1)
p1−2u′′1 +

N − 1
r

(u′1)
p1−1 + h1(r)|u′1|p1−1 ≥ a1(r)g1(

b

d
, . . . ,

b

d
),

. . .

(pd − 1)(u′d)
pd−2u′′d +

N − 1
r

(u′d)
pd−1 + hd(r)|u′d|pd−1 ≥ ad(r)gd(

b

d
, . . . ,

b

d
),

or, equivalently[
rN−1e

R r
0 h1(t)dt(u′1)

p1−1
]′ ≥ rN−1e

R r
0 h1(t)dta1(r)g1(

b

d
, . . . ,

b

d
),

. . .[
rN−1e

R r
0 hd(t)dt(u′d)

pd−1
]′ ≥ rN−1e

R r
0 hd(t)dtad(r)gd(

b

d
, . . . ,

b

d
).
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However, this system of inequalities may be written as

u1(r) ≥
b

d
+ g

1
p1−1

1 (
b

d
, . . . ,

b

d
)
∫ r

0

(e−
R t
0 h1(s)ds

tN−1

∫ t

0

sN−1e
R s
0 h1(s)dsa1(s)ds

) 1
p1−1

dt,

. . .

ud(r) ≥
b

d
+ g

1
pd−1

d (
b

d
, . . . ,

b

d
)
∫ r

0

(e−
R t
0 hd(s)ds

tN−1

∫ t

0

sN−1e
R s
0 hd(s)dsad(s)ds

) 1
pd−1

dt.

It is evident that r → ∞ implies (u1(r), . . . , ud(r)) → (∞, . . . ,∞). The proof is
complete.

From the above proof and the work [4] we can easy obtain the following remark.

Remark 2.1. Under the same assumptions as in Theorem 1.1 on aj , hj and gj

except for (i)-(ii). If (2.2) has a nonnegative entire large solution, then aj (j =
1, . . . , d) satisfy

d∑
j=1

(
1
2
)1/pj pj

√
pj

pj − 1

∫ ∞

0

t1+ε
(
e

pj
pj−1

R t
0 hj(s)ds

aj(t)
)2/pj

dt = ∞, (2.25)

for every ε > 0.
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