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PERIODIC RANDOM ATTRACTORS FOR STOCHASTIC
NAVIER-STOKES EQUATIONS ON UNBOUNDED DOMAINS

BIXIANG WANG

Abstract. This article concerns the asymptotic behavior of solutions to the
two-dimensional Navier-Stokes equations with both non-autonomous deter-
ministic and stochastic terms defined on unbounded domains. First we intro-
duce a continuous cocycle for the equations and then prove the existence and
uniqueness of tempered random attractors. We also characterize the structures
of the random attractors by complete solutions. When deterministic forcing
terms are periodic, we show that the tempered random attractors are also pe-
riodic. Since the Sobolev embeddings on unbounded domains are not compact,
we establish the pullback asymptotic compactness of solutions by Ball’s idea
of energy equations.

1. Introduction

In this article, we investigate the pullback attractors for the two-dimensional
Navier-Stokes equations on unbounded domains with non-autonomous determinis-
tic and stochastic terms. Let Q be an unbounded open set in R2 with boundary ∂Q.
Given τ ∈ R, consider the stochastic Navier-Stokes equations with multiplicative
noise:

∂u

∂t
− ν∆u+ (u · ∇)u = f(x, t)−∇p+ αu ◦ dw

dt
, x ∈ Q and t > τ, (1.1)

div u = 0, x ∈ Q and t > τ, (1.2)

together with homogeneous Dirichlet boundary condition, where ν, α ∈ R with
ν > 0, f is a given function defined on Q × R, and w is a two-sided real valued
Wiener process defined in a probability space. The stochastic equation (1.1) is
understood in the sense of Stratonovich integration.

The attractors of the Navier-Stokes equations have been extensively studied in
the literature; see, e.g. [2, 3, 8, 9, 15, 18, 20, 21] for deterministic equations and
[13, 14, 19] for stochastic equations. Particularly, in the deterministic case (i.e.,
α = 0), the autonomous global attractors and the non-autonomous pullback at-
tractors of (1.1)-(1.2) on unbounded domains have been studied in [18] and [8, 9],
respectively. For the stochastic equations with additive noise and time-independent
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f , the asymptotic compactness of solutions on unbounded domains has been inves-
tigated in [6]. As far as the author is aware, there is no result available in the
literature on the existence of random attractors for the stochastic equations (1.1)-
(1.2) with time-dependent f even on bounded domains. The purpose of the present
article is to investigate this problem and examine the periodicity of random attrac-
tors when f is periodic in time.

It is worth mentioning that the concept of pullback attractors for random systems
with time-independent f was introduced in [13, 14, 19] and the existence of such
attractors for compact systems was proved in [1, 7, 11, 12, 13, 14, 16, 17, 19] and the
references therein. For non-compact systems, the existence of pullback attractors
was established in [4, 5, 22, 23]. In the present paper, we study pullback attractors
for the stochastic equations (1.1)-(1.2) on unbounded domains with time-dependent
f . In this case, the random dynamical systems associated with the equations are
non-compact.

To deal with the stochastic equations with non-autonomous f , we need to com-
bine the ideas of non-autonomous deterministic dynamical systems and that of
random dynamical systems. Particularly, the concept of dynamical systems defined
over two parametric spaces, say Ω1 and Ω2, is needed, where Ω1 is a nonempty set
used to deal with the non-autonomous deterministic terms, and Ω2 is a probability
space responsible for the stochastic terms. The existence and uniqueness of random
attractors for dynamical systems over two parametric spaces have been recently es-
tablished in [24]. For the stochastic Navier-Stokes equations (1.1)-(1.2), we may
take Ω1 as the set of all translations of f . We can also take Ω1 as the collection of
all initial times; i.e., Ω1 = R. In this paper, we will choose Ω1 = R. We first define
a continuous cocycle for (1.1)-(1.2) over Ω1 and Ω2, and then prove the existence
of tempered random absorbing sets. Since the Sobolev embeddings on unbounded
domains are no longer compact, we have to appeal to the idea of energy equations
to establish the pullback asymptotic compactness of solutions. This method was
introduced by Ball in [3] for deterministic equations, and used by the authors in
[8, 9, 18] for the deterministic Navier-Stokes equations on unbounded domains and
in [6] for the stochastic equations with time-independent f . We will adapt this
approach to the stochastic equations (1.1)-(1.2) with time-dependent f , and prove
the existence of tempered random attractors for the equations. We also consider
the random attractors in the case where f is a periodic function in time. If f is
periodic, we will show that the tempered random attractors are also periodic in
some sense. Following [24], the structures of the tempered random attractors will
be characterized by the tempered complete solutions.

In the next section, we will recall some results on pullback attractors for ran-
dom dynamical systems over two parametric spaces. A continuous cocycle for the
stochastic Navier-Stokes equations (1.1)-(1.2) with non-autonomous f is defined in
Section 3. We then derive uniform estimates of the solutions in Section 4 and prove
the existence and uniqueness of pullback attractors in Section 5.

In the sequel, we will use ‖·‖ and (·, ·) to denote the norm and the inner product
of L2(Q), respectively. The norm of a Banach space X is generally written as ‖·‖X .
The letters c and ci (i = 1, 2, . . . ) are used to denote positive constants whose values
are not significant in the context.
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2. Theory of pullback attractors

In this section, we recall some results on pullback attractors for random dynami-
cal systems with two parametric spaces as presented in [24]. This sort of dynamical
systems can be generated by differential equations with both deterministic and sto-
chastic non-autonomous external terms. All results given in this section are not
original and they are presented here just for the reader’s convenience. We also refer
the reader to [4, 12, 13, 14, 19] for the theory of pullback attractors for random
dynamical systems with one parametric space.

Let Ω1 be a nonempty set and {θ1,t}t∈R be a family of mappings from Ω1 into
itself such that θ1,0 is the identity on Ω1 and θ1,s+t = θ1,t, ◦ θ1,s for all t, s ∈ R.
Let (Ω2,F2, P ) be a probability space and θ2 : R×Ω2 → Ω2 be a (B(R)×F2,F2)-
measurable mapping such that θ2(0, ·) is the identity on Ω2, θ2(s+ t, ·) = θ2(t, ·) ◦
θ2(s, ·) for all t, s ∈ R and Pθ2(t, ·) = P for all t ∈ R. We usually write θ2(t, ·) as
θ2,t and call both (Ω1, {θ1,t}t∈R) and (Ω2,F2, P, {θ2,t}t∈R) a parametric dynamical
system.

Let (X, d) be a complete separable metric space with Borel σ-algebra B(X).
Given r > 0 and D ⊆ X, the neighborhood of D with radius r is written as
Nr(D). Denote by 2X the collection of all subsets of X. A set-valued mapping
K : Ω1 × Ω2 → 2X is called measurable with respect to F2 in Ω2 if the value
K(ω1, ω2) is a closed nonempty subset of X for all ω1 ∈ Ω1 and ω2 ∈ Ω2, and
the mapping ω2 ∈ Ω2 → d(x,K(ω1, ω2)) is (F2, B(R))-measurable for every fixed
x ∈ X and ω1 ∈ Ω1. If K is measurable with respect to F2 in Ω2, then we say that
the family {K(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} is measurable with respect to F2 in Ω2.
We now define a cocycle on X over two parametric spaces.

Definition 2.1. Let (Ω1, {θ1,t}t∈R) and (Ω2,F2, P, {θ2,t}t∈R) be parametric dy-
namical systems. A mapping Φ: R+×Ω1×Ω2×X → X is called a continuous co-
cycle on X over (Ω1, {θ1,t}t∈R) and (Ω2,F2, P, {θ2,t}t∈R) if for all ω1 ∈ Ω1, ω2 ∈ Ω2

and t, τ ∈ R+, the following conditions (i)-(iv) are satisfied:

(i) Φ(·, ω1, ·, ·) : R+×Ω2×X → X is (B(R+)×F2×B(X), B(X))-measurable;
(ii) Φ(0, ω1, ω2, ·) is the identity on X;
(iii) Φ(t+ τ, ω1, ω2, ·) = Φ(t, θ1,τω1, θ2,τω2, ·) ◦ Φ(τ, ω1, ω2, ·);
(iv) Φ(t, ω1, ω2, ·) : X → X is continuous.

If, in addition, there exists a positive number T such that for every t ≥ 0, ω1 ∈ Ω1

and ω2 ∈ Ω2,
Φ(t, θ1,Tω1, ω2, ·) = Φ(t, ω1, ω2, ·),

then Φ is called a continuous periodic cocycle on X with period T .

In the sequel, we use D to denote a collection of some families of nonempty
subsets of X:

D = {D = {D(ω1, ω2) ⊆ X : D(ω1, ω2) 6= ∅, ω1 ∈ Ω1, ω2 ∈ Ω2}}. (2.1)

Two elements D1 and D2 of D are said to be equal if D1(ω1, ω2) = D2(ω1, ω2) for
any ω1 ∈ Ω1 and ω2 ∈ Ω2. Sometimes, we require that D is neighborhood closed
which is defined as follows.

Definition 2.2. A collection D of some families of nonempty subsets of X is said
to be neighborhood closed if for each D = {D(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} ∈ D,
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there exists a positive number ε depending on D such that the family{
B(ω1, ω2) : B(ω1, ω2) is a nonempty subset of Nε(D(ω1, ω2)),

∀ ω1 ∈ Ω1,∀ ω2 ∈ Ω2

} (2.2)

also belongs to D.

Definition 2.3. Let D = {D(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} be a family of nonempty
subsets of X. We say D is tempered in X with respect to (Ω1, {θ1,t}t∈R) and
(Ω2,F2, P, {θ2,t}t∈R) if there exists x0 ∈ X such that for every c > 0, ω1 ∈ Ω1 and
ω2 ∈ Ω2,

lim
t→−∞

ectd(x0, D(θ1,tω1, θ2,tω2)) = 0.

Definition 2.4. Suppose T ∈ R and D is a collection of some families of nonempty
subsets of X as given by (2.1). For every D = {D(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} ∈ D,
we write

DT = {DT (ω1, ω2) : DT (ω1, ω2) = D(θ1,Tω1, ω2), ω1 ∈ Ω1, ω2 ∈ Ω2}.
The family DT is called the T -translation of D. Let DT be the collection of T -
translations of all elements of D, that is,

DT = {DT : DT is the T -translation of D, D ∈ D}.
Then DT is called the T -translation of the collection D. If DT ⊆ D, we say D is
T -translation closed. If DT = D, we say D is T -translation invariant.

One can check that D is T -translation invariant if and only if D is both −T -
translation closed and T -translation closed. For later purpose, we need the concept
of a complete orbit of Φ which is given below.

Definition 2.5. Let D be a collection of some families of nonempty subsets of X.
A mapping ψ : R×Ω1×Ω2 → X is called a complete orbit of Φ if for every τ ∈ R,
t ≥ 0, ω1 ∈ Ω1 and ω2 ∈ Ω2, the following holds:

Φ(t, θ1,τω1, θ2,τω2, ψ(τ, ω1, ω2)) = ψ(t+ τ, ω1, ω2). (2.3)

If, in addition, there exists D = {D(ω1, ω2) : ω1 ∈ Ω, ω2 ∈ Ω2} ∈ D such that
ψ(t, ω1, ω2) belongs to D(θ1,tω1, θ2,tω2) for every t ∈ R, ω1 ∈ Ω1 and ω2 ∈ Ω2, then
ψ is called a D-complete orbit of Φ.

Definition 2.6. Let B = {B(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} be a family of nonempty
subsets of X. For every ω1 ∈ Ω1 and ω2 ∈ Ω2, let

Ω(B,ω1, ω2) = ∩τ≥0∪t≥τΦ(t, θ1,−tω1, θ2,−tω2, B(θ1,−tω1, θ2,−tω2)). (2.4)

Then the family {Ω(B,ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} is called the Ω-limit set of B
and is denoted by Ω(B).

Definition 2.7. Let D be a collection of some families of nonempty subsets of X
and K = {K(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} ∈ D. Then K is called a D-pullback
absorbing set for Φ if for all ω1 ∈ Ω1, ω2 ∈ Ω2 and for every B ∈ D, there exists
T = T (B,ω1, ω2) > 0 such that

Φ(t, θ1,−tω1, θ2,−tω2, B(θ1,−tω1, θ2,−tω2)) ⊆ K(ω1, ω2) for all t ≥ T. (2.5)

If, in addition, for all ω1 ∈ Ω1 and ω2 ∈ Ω2, K(ω1, ω2) is a closed nonempty subset
of X and K is measurable with respect to the P -completion of F2 in Ω2, then we
say K is a closed measurable D-pullback absorbing set for Φ.
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Definition 2.8. Let D be a collection of some families of nonempty subsets of X.
Then Φ is said to be D-pullback asymptotically compact in X if for all ω1 ∈ Ω1

and ω2 ∈ Ω2, the sequence

{Φ(tn, θ1,−tn
ω1, θ2,−tn

ω2, xn)}∞n=1 has a convergent subsequence in X (2.6)

whenever tn →∞, and xn ∈ B(θ1,−tn
ω1, θ2,−tn

ω2) with {B(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈
Ω2} ∈ D.

Definition 2.9. Let D be a collection of some families of nonempty subsets of X
and A = {A(ω1, ω2) : ω1 ∈ Ω1, ω2 ∈ Ω2} ∈ D. Then A is called a D-pullback
attractor for Φ if the following conditions (i)-(iii) are fulfilled:

(i) A is measurable with respect to the P -completion of F2 in Ω2 and A(ω1, ω2)
is compact for all ω1 ∈ Ω1 and ω2 ∈ Ω2.

(ii) A is invariant, that is, for every ω1 ∈ Ω1 and ω2 ∈ Ω2,

Φ(t, ω1, ω2,A(ω1, ω2)) = A(θ1,tω1, θ2,tω2), ∀ t ≥ 0.

(iii) A attracts every member of D, that is, for every B = {B(ω1, ω2) : ω1 ∈
Ω1, ω2 ∈ Ω2} ∈ D and for every ω1 ∈ Ω1 and ω2 ∈ Ω2,

lim
t→∞

d(Φ(t, θ1,−tω1, θ2,−tω2, B(θ1,−tω1, θ2,−tω2)),A(ω1, ω2)) = 0.

If, in addition, there exists T > 0 such that

A(θ1,Tω1, ω2) = A(ω1, ω2), ∀ω1 ∈ Ω1,∀ ω2 ∈ Ω2,

then we say A is periodic with period T .

The following result on the existence and uniqueness of D-pullback attractors for
Φ can be found in [24]. The reader is referred to [4, 13, 14, 19] for similar results
for random dynamical systems.

Proposition 2.10. Let D be a neighborhood closed collection of some families of
nonempty subsets of X, and Φ be a continuous cocycle on X over (Ω1, {θ1,t}t∈R)
and (Ω2,F2, P, {θ2,t}t∈R). Then Φ has a D-pullback attractor A in D if and only if
Φ is D-pullback asymptotically compact in X and Φ has a closed measurable (w.r.t.
the P -completion of F2) D-pullback absorbing set K in D. The D-pullback attractor
A is unique and is given by, for each ω1 ∈ Ω1 and ω2 ∈ Ω2,

A(ω1, ω2) = Ω(K,ω1, ω2) = ∪B∈DΩ(B,ω1, ω2) (2.7)

= {ψ(0, ω1, ω2) : ψ is a D-complete orbit of Φ}. (2.8)

The periodicity of D-pullback attractors is proved in [24] as given below.

Proposition 2.11. Let T be a positive number. Suppose Φ is a continuous periodic
cocycle with period T on X over (Ω1, {θ1,t}t∈R) and (Ω2,F2, P, {θ2,t}t∈R). Let D
be a neighborhood closed and T -translation invariant collection of some families of
nonempty subsets of X. If Φ is D-pullback asymptotically compact in X and Φ has
a closed measurable (w.r.t. the P -completion of F2) D-pullback absorbing set K in
D, then Φ has a unique periodic D-pullback attractor A ∈ D with period T ; i.e.,
A(θ1,Tω1, ω2) = A(ω1, ω2).
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3. Cocycles for Navier-Stokes equations on unbounded domains

This section is devoted to the existence of a continuous cocycle for the stochastic
Navier-Stokes equations with non-autonomous deterministic terms. Suppose Q is
an unbounded open set in R2 with boundary ∂Q. Then consider the following
stochastic equations with multiplicative noise defined on Q× (τ,∞) with τ ∈ R:

∂u

∂t
− ν∆u+ (u · ∇)u = f(x, t)−∇p+ αu ◦ dw

dt
, x ∈ Q and t > τ, (3.1)

div u = 0, x ∈ Q and t > τ, (3.2)

with boundary condition

u = 0, x ∈ ∂Q and t > τ, (3.3)

and initial condition
u(x, τ) = uτ (x), x ∈ Q, (3.4)

where ν and α are constants, ν > 0, f is a given function defined on Q×R, and w
is a two-sided real valued Wiener process defined in a probability space. Note that
equation (3.1) must be understood in the sense of Stratonovich integration.

To reformulate problem (3.1)-(3.4), we recall the standard function space:

V = {u ∈ C∞0 (Q)× C∞0 (Q) : div u = 0}.
LetH and V be the closures of V in L2(Q)×L2(Q) andH1

0 (Q)×H1
0 (Q), respectively.

The dual space of V is denoted by V ∗ with norm ‖ · ‖V ∗ . The duality pair between
V and V ∗ is denoted by 〈·, ·〉. Given u, v ∈ V , we set

(Du,Dv) =
2∑

i,j=1

∫
Q

∂ui

∂xj

∂vi

∂xj
dx and ‖Du‖ = (Du,Du)1/2.

For convenience, we write, for each u, v, w ∈ V ,

b(u, v, w) =
2∑

i,j=1

∫
Q

ui
∂uj

∂xi
wjdx.

Let {θ1,t}t∈R be a family of shift operators on R which is given by, for each t ∈ R,

θ1,t(τ) = τ + t, for all τ ∈ R. (3.5)

For the probability space we will use later, we write

Ω = {ω ∈ C(R,R) : ω(0) = 0}.
Let F1 be the Borel σ-algebra induced by the compact-open topology of Ω, and
P be the corresponding Wiener measure on (Ω,F1). As usual, for each t ∈ R and
ω ∈ Ω, we may write wt(ω) = ω(t). Denote by {θ2,t}t∈R the standard group on
(Ω,F1, P ):

θ2,tω(·) = ω(·+ t)− ω(t), ω ∈ Ω, t ∈ R. (3.6)
Then (Ω,F , P, {θ2,t}t∈R) is a parametric dynamical system. In addition, there
exists a θ2,t-invariant set Ω̃ ⊆ Ω of full P measure such that for each ω ∈ Ω̃,

ω(t)
t

→ 0 as t→ ±∞. (3.7)

From now on, we only consider the space Ω̃ instead of Ω, and hence we will write
Ω̃ as Ω for convenience.
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Next, we define a continuous cocycle for (3.1)-(3.4) in H over (R, {θ1,t}t∈R)
and (Ω,F1, P, {θ2,t}t∈R). To this end, we need to transfer the stochastic equation
into a deterministic one with random parameters. Given t ∈ R and ω ∈ Ω, let
z(t, ω) = e−αω(t). Then we find that z is a solution of the equation

dz = −αz ◦ dw. (3.8)

Let v be a new variable given by

v(t, τ, ω, vτ ) = z(t, ω)u(t, τ, ω, uτ ) with vτ = z(τ, ω)uτ . (3.9)

Formally, from (3.1)-(3.4) and (3.8) we get that

∂v

∂t
− ν∆v +

1
z(t, ω)

(v · ∇)v = z(t, ω) (f(x, t)−∇p) , x ∈ Q and t > τ, (3.10)

div v = 0, x ∈ Q and t > τ, (3.11)

with boundary condition

v = 0, x ∈ ∂Q and t > τ, (3.12)

and initial condition

v(x, τ) = vτ (x), x ∈ Q. (3.13)

Let τ ∈ R, ω ∈ Ω, and vτ ∈ H. A mapping v(·, τ, ω, vτ ): [τ,∞) → H is called a
solution of problem (3.10)-(3.13) if for every T > 0,

v(·, τ, ω, uτ ) ∈ C([τ,∞),H) ∩ L2((0, T ), V )

and v satisfies

(v(t), ζ) + ν

∫ t

τ

(Dv,Dζ)ds+
∫ t

τ

1
z(s, ω)

b(v, v, ζ)ds

= (vτ , ζ) +
∫ t

τ

z(s, ω)〈f(·, s), ζ〉ds,
(3.14)

for every t ≥ τ and ζ ∈ V . If, in addition, v is (F1,B(H))-measurable with respect
to ω ∈ Ω, we say v is a measurable solution of problem (3.10)-(3.13). Since (3.10)
is a deterministic equation, it follows from [21] that for every τ ∈ R, vτ ∈ H and
ω ∈ Ω, problem (3.10)-(3.13) has a unique solution v in the sense of (3.14) which
continuously depends on vτ with the respect to the norm of H. Moreover, the
solution v is (F1,B(H))-measurable in ω ∈ Ω. This enables us to define a cocycle
Φ : R+ × R × Ω × H → H for problem (3.1)-(3.4) by using (3.9). Given t ∈ R+,
τ ∈ R, ω ∈ Ω and uτ ∈ H, let

Φ(t, τ, ω, uτ ) = u(t+ τ, τ, θ2,−τω, uτ ) =
1

z(t+ τ, θ2,−τω)
v(t+ τ, τ, θ2,−τω, vτ ),

(3.15)
where vτ = z(τ, θ2,−τω)uτ . By (3.15) we have, for every t ≥ 0, τ ≥ 0, r ∈ R, ω ∈ Ω
and u0 ∈ H,

Φ(t+ τ, r, ω, u0) =
1

z(t+ τ + r, θ2,−rω)
v(t+ τ + r, r, θ2,−rω, v0), (3.16)
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where v0 = z(r, θ2,−rω)u0. Similarly, we have

Φ (t, τ + r, θ2,τω,Φ(τ, r, ω, u0))

=
1

z(t+ τ + r, θ2,−rω)
v(t+ τ + r, τ + r, θ2,−rω, z(τ + r, θ2,−rω)Φ(τ, r, ω, u0))

=
1

z(t+ τ + r, θ2,−rω)
v(t+ τ + r, τ + r, θ2,−rω, v(τ + r, r, θ2,−rω, v0)

=
1

z(t+ τ + r, θ2,−rω)
v(t+ τ + r, r, θ2,−rω, v0).

(3.17)

It follows from (3.16)-(3.17) that

Φ(t+ τ, r, ω, u0) = Φ (t, τ + r, θ2,τω,Φ(τ, r, ω, u0)) . (3.18)

Since v is the measurable solution of problem (3.10)-(3.13) which is continuous in
initial data in H, we find from (3.18) that Φ is a continuous cocycle on H over
(R, {θ1,t}t∈R) and (Ω,F1, P, {θ2,t}t∈R). The rest of this paper is devoted to the
existence of pullback attractors for Φ in H. To this end, we assume that the open
set Q is a Poincare domain in the sense that there exists a positive number λ such
that ∫

Q

|∇φ(x)|2dx ≥ λ

∫
Q

|φ(x)|2dx, for all φ ∈ H1
0 (Q). (3.19)

Given a bounded nonempty subset B of H, we write ‖B‖ = sup
φ∈B

‖φ‖H . Suppose

D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} is a tempered family of bounded nonempty subsets
of H, that is, for every c > 0, τ ∈ R and ω ∈ Ω,

lim
r→∞

e−cr‖D(τ − r, θ2,−rω)‖ = 0. (3.20)

Let D be the collection of all tempered families of bounded nonempty subsets of
H; i.e.,

D = {D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} : D satisfies (3.20)}. (3.21)

We see that D is neighborhood closed. For later purpose, we assume that the
external term f satisfies the following condition: there exists a number δ ∈ [0, νλ)
such that ∫ τ

−∞
eδr‖f(·, r)‖2

V ∗dr <∞, ∀ τ ∈ R. (3.22)

When proving the existence of tempered pullback absorbing sets for the Navier-
Stokes equations, we also assume that there exists δ ∈ [0, νλ) such that for every
positive number c,

lim
r→−∞

ecr

∫ 0

−∞
eδs‖f(·, s+ r)‖2

V ∗ds = 0. (3.23)

Note that (3.23) implies (3.22) if f ∈ L2
loc(R, V ∗). It is worth pointing out that

both conditions (3.22) and (3.23) do not require that f is bounded in V ∗ at ±∞.
For instance, for any β ≥ 0 and f1 ∈ V ∗, the function f(·, t) = tβf1 satisfies both
(3.22) and (3.23).
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4. Uniform estimates of solutions

In this section, we derive uniform estimates on the solutions of problem (3.10)-
(3.13) and then prove the D-pullback asymptotic compactness of the solutions by
the idea of energy equations as introduced by Ball in [3] for deterministic systems.

Lemma 4.1. Suppose (3.19) and (3.22) hold. Then for every τ ∈ R, ω ∈ Ω and
D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exists T = T (τ, ω,D) > 0 such that for
all t ≥ T and s ≥ τ − t, the solution v of problem (3.10)-(3.13) with ω replaced by
θ2,−τω satisfies

‖v(s, τ − t, θ2,−τω, vτ−t)‖2 ≤ eνλ(τ−s) +
2
ν
e−νλs

∫ s

−∞
eνλrz2(r, θ2,−τω)‖f(·, r)‖2

V ∗dr,

and ∫ s

τ−t

eνλr‖Dv(r, τ − t, θ2,−τω, vτ−t)‖2dr

≤ 2
ν
eνλτ +

4
ν2

∫ s

−∞
eνλrz2(r, θ2,−τω)‖f(·, r)‖2

V ∗dr,

where vτ−t ∈ D(τ − t, θ2,−tω).

Proof. Formally, it follows from (3.10)-(3.12) that for each τ ∈ R, t ≥ 0 and ω ∈ Ω,

1
2
d

dt
‖v‖2 + ν‖Dv‖2 = z(t, ω)〈f(·, t), v〉. (4.1)

The right-hand side of (4.1) is bounded by

|z(t, ω)〈f(·, t), v〉| ≤ 1
4
ν‖Dv‖2 +

1
ν
z2(t, ω)‖f(·, t)‖2

V ∗ .

Therefore, from (4.1) we get

d

dt
‖v‖2 +

3
2
ν‖Dv‖2 ≤ 2

ν
z2(t, ω)‖f(·, t)‖2

V ∗ . (4.2)

By (3.19) and (4.2) we have

d

dt
‖v‖2 + νλ‖v‖2 +

1
2
ν‖Dv‖2 ≤ 2

ν
z2(t, ω)‖f(·, t)‖2

V ∗ . (4.3)

Multiplying (4.3) by eνλt and then integrating the inequality on [τ− t, s], we obtain

‖v(s, τ − t, ω, vτ−t)‖2 +
1
2
ν

∫ s

τ−t

eνλ(r−s)‖Dv(r, τ − t, ω, vτ−t)‖2dr

≤ eνλ(τ−s)e−νλt‖vτ−t‖2 +
2
ν

∫ s

τ−t

eνλ(r−s)z2(r, ω)‖f(·, r)‖2
V ∗dr.

Replacing ω by θ2,−τω in the above, we get that

‖v(s, τ − t, θ2,−τω, vτ−t)‖2 +
1
2
ν

∫ s

τ−t

eνλ(r−s)‖Dv(r, τ − t, θ2,−τω, vτ−t)‖2dr

≤ eνλ(τ−s)e−νλt‖vτ−t‖2 +
2
ν
e−νλs

∫ s

τ−t

eνλrz2(r, θ2,−τω)‖f(·, r)‖2
V ∗dr.

(4.4)
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We now estimate the last term on the right-hand side of (4.4). Let ω̃ = θ2,−τω.
Then by (3.7) we find that there exists R < 0 such that for all r ≤ R,

−2αω̃(r) ≤ −(νλ− δ)r,

where δ is the positive constant in (3.22). Therefore, for all r ≤ R,

z2(r, ω̃) = e−2αω̃(r) ≤ e−(νλ−δ)r. (4.5)

By (4.5) we have for all r ≤ R,

eνλrz2(r, θ2,−τω)‖f(·, r)‖2
V ∗ = e(νλ−δ)rz2(r, ω̃)eδr‖f(·, r)‖2

V ∗ ≤ eδr‖f(·, r)‖2
V ∗ ,

which along with (3.22) shows that for every s ∈ R, τ ∈ R and ω ∈ Ω,∫ s

−∞
eνλrz2(r, θ2,−τω)‖f(·, r)‖2

V ∗dr <∞. (4.6)

On the other hand, since vτ−t ∈ D(τ−t, θ2,−tω), for the first term on the right-hand
side of (4.4), we have

e−νλt‖vτ−t‖2 ≤ e−νλt‖D(τ − t, θ2,−tω)‖2 → 0, as t→∞.

This shows that there exists T = T (τ, ω,D) > 0 such that e−νλt‖vτ−t‖2 ≤ 1 for all
t ≥ T . Thus, the first term on the right-hand side of (4.4) satisfies

eνλ(τ−s)e−νλt‖vτ−t‖2 ≤ eνλ(τ−s), for all t ≥ T. (4.7)

From (4.4), (4.6) and (4.7), the lemma follows. �

As an immediate consequence of Lemma 4.1, we have the following estimates on
the solutions of problem (3.10)-(3.13).

Lemma 4.2. Suppose (3.19) and (3.22) hold. Then for every τ ∈ R, ω ∈ Ω and
D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exists T = T (τ, ω,D) > 0 such that for
every k ≥ 0 and for all t ≥ T + k, the solution v of problem (3.10)-(3.13) with ω
replaced by θ2,−τω satisfies

‖v(τ − k, τ − t, θ2,−τω, vτ−t)‖2

≤ eνλk +
2
ν
eνλ(k−τ)

∫ τ−k

−∞
eνλrz2(r, θ2,−τω)‖f(·, r)‖2

V ∗dr,

where vτ−t ∈ D(τ − t, θ2,−tω).

Proof. Given τ ∈ R and k ≥ 0, let s = τ − k. Let T = T (τ, ω,D) be the positive
constant claimed in Lemma 4.1. If t ≥ T + k, then we have t ≥ T and s ≥ τ − t.
Thus, the desired result follows from Lemma 4.1. �

Next, we prove the D-pullback asymptotic compactness of the solutions of prob-
lem (3.10)-(3.13). For this purpose, we need the following weak continuity of so-
lutions in initial data, which can be established by the standard methods as in
[18].

Lemma 4.3. Suppose (3.19) holds and f ∈ L2
loc(R, V ∗). Let τ ∈ R, ω ∈ Ω,

vτ , vτ,n ∈ H for all n ∈ N. If vτ,n ⇀ vτ in H, then the solution v of problem
(3.10)-(3.13) has the properties:

v(r, τ, ω, vτ,n) ⇀ v(r, τ, ω, vτ ) in H for all r ≥ τ,
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and

v(·, τ, ω, vτ,n) ⇀ v(·, τ, ω, vτ ) in L2((τ, τ + T ), V ) for every T > 0.

The next lemma is concerned with the pullback asymptotic compactness of prob-
lem (3.10)-(3.13).

Lemma 4.4. Suppose (3.19) and (3.22) hold. Then for every τ ∈ R, ω ∈ Ω,
D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D and tn → ∞, v0,n ∈ D(τ − tn, θ2,−tn

ω),
the sequence v(τ, τ − tn, θ2,−τω, v0,n) of solutions of problem (3.10)-(3.13) has a
convergent subsequence in H.

Proof. It follows from Lemma 4.2 with k = 0 that, there exists T = T (τ, ω,D) > 0
such that for all t ≥ T ,

‖v(τ, τ−t, θ2,−τω, vτ−t)‖2 ≤ 1+
2
ν
e−νλτ

∫ τ

−∞
eνλrz2(r, θ2,−τω)‖f(·, r)‖2

V ∗dr, (4.8)

with vτ−t ∈ D(τ − t, θ2,−tω). Since tn →∞, there exists N0 ∈ N such that tn ≥ T
for all n ≥ N0. Due to v0,n ∈ D(τ − tn, θ2,−tnω), we get from (4.8) that for all
n ≥ N0,

‖v(τ, τ−tn, θ2,−τω, v0,n)‖2 ≤ 1+
2
ν
e−νλτ

∫ τ

−∞
eνλrz2(r, θ2,−τω)‖f(·, r)‖2

V ∗dr. (4.9)

By (4.9) there exists ṽ ∈ H and a subsequence (which is not relabeled) such that

v(τ, τ − tn, θ2,−τω, v0,n) ⇀ ṽ in H. (4.10)

We now prove that the weak convergence of (4.10) is actually a strong convergence,
which will complete the proof. Note that (4.10) implies

lim inf
n→∞

‖v(τ, τ − tn, θ2,−τω, v0,n)‖ ≥ ‖ṽ‖. (4.11)

So we only need to show

lim sup
n→∞

‖v(τ, τ − tn, θ2,−τω, v0,n)‖ ≤ ‖ṽ‖. (4.12)

We will establish (4.12) by the method of energy equations due to Ball [3]. Given
k ∈ N we have

v(τ, τ − tn, θ2,−τω, v0,n) = v(τ, τ − k, θ2,−τω, v(τ − k, τ − tn, θ2,−τω, v0,n)). (4.13)

For each k, let Nk be large enough such that tn ≥ T + k for all n ≥ Nk. Then it
follows from Lemma 4.2 that for n ≥ Nk,

‖v(τ − k, τ − tn, θ2,−τω, v0,n)‖2

≤ eνλk +
2
ν
eνλ(k−τ)

∫ τ−k

−∞
eνλrz2(r, θ2,−τω)‖f(·, r)‖2

V ∗dr,

which shows that, for each fixed k ∈ N, the sequence v(τ − k, τ − tn, θ2,−τω, v0,n)
is bounded in H. By a diagonal process, one can find a subsequence (which we do
not relabel) and a point ṽk ∈ H for each k ∈ N such that

v(τ − k, τ − tn, θ2,−τω, v0,n) ⇀ ṽk in H. (4.14)

By (4.13)-(4.14) and Lemma 4.3 we get that for each k ∈ N,

v(τ, τ − tn, θ2,−τω, v0,n) ⇀ v(τ, τ − k, θ2,−τω, ṽk) in H, (4.15)
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and

v(·, τ − k, θ2,−τω, v(τ − k, τ − tn, θ2,−τω, v0,n)) ⇀ v(·, τ − k, θ2,−τω, ṽk) (4.16)

in L2((τ − k, τ), V ). By (4.10) and (4.15) we have

v(τ, τ − k, θ2,−τω, ṽk) = ṽ. (4.17)

Note that (4.1) implies that
d

dt
‖v‖2 + νλ‖v‖2 + ψ(v) = 2z(t, ω)〈f(·, t), v〉, (4.18)

where ψ is a functional on V given by

ψ(v) = 2ν‖Dv‖2 − νλ‖v‖2, for all v ∈ V.
By (3.19) we see that

ν‖Dv‖2 ≤ ψ(v) ≤ 2ν‖Dv‖2, for all v ∈ V.
This indicates that ψ(·) is an equivalent norm of V . It follows from (4.18) that for
each ω ∈ Ω, s ∈ R and τ ≥ s,

‖v(τ, s, ω, vs)‖2 = eνλ(s−τ)‖vs‖2 −
∫ τ

s

eνλ(r−τ)ψ(v(r, s, ω, vs))dr

+ 2
∫ τ

s

eνλ(r−τ)z(r, ω)〈f(·, r), v(r, s, ω, vs)〉dr.
(4.19)

By (4.17) and (4.19) we find that

‖ṽ‖2 = ‖v(τ, τ − k, θ2,−τω, ṽk)‖2

= e−νλk‖ṽk‖2 −
∫ τ

τ−k

eνλ(r−τ)ψ(v(r, τ − k, θ2,−τω, ṽk))dr

+ 2
∫ τ

τ−k

eνλ(r−τ)z(r, θ2,−τω)〈f(·, r), v(r, τ − k, θ2,−τω, ṽk)〉dr.

(4.20)

Similarly, by (4.13) and (4.19) we obtain that

‖v(τ, τ − tn, θ2,−τω, v0,n)‖2

= ‖v(τ, τ − k, θ2,−τω, v(τ − k, τ − tn, θ2,−τω, v0,n))‖2

= e−νλk‖v(τ − k, τ − tn, θ2,−τω, v0,n)‖2

−
∫ τ

τ−k

eνλ(r−τ)ψ(v(r, τ − k, θ2,−τω, v(τ − k, τ − tn, θ2,−τω, v0,n)))dr

+ 2
∫ τ

τ−k

eνλ(r−τ)z(r, θ2,−τω)

× 〈f(·, r), v(r, τ − k, θ2,−τω, v(τ − k, τ − tn, θ2,−τω, v0,n))〉dr.

(4.21)

We now consider the limit of each term on the right-hand side of (4.21) as n→∞.
For the first term, by (4.4) with s = τ − k and t = tn we get that

e−νλk‖v(τ − k, τ − tn, θ2,−τω, v0,n)‖2

≤ e−νλtn‖v0,n‖2 +
2
ν
e−νλτ

∫ τ−k

−∞
eνλrz2(r, θ2,−τω)‖f(·, r)‖2

V ∗dr.
(4.22)

Since v0,n ∈ D(τ − tn, θ2,−tnω) we have

e−νλtn‖v0,n‖2 ≤ e−νλtn‖D(τ − tn, θ2,−tnω)‖2 → 0 as n→∞,
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which along with (4.22) shows that

lim sup
n→∞

e−νλk‖v(τ − k, τ − tn, θ2,−τω, v0,n)‖2

≤ 2
ν
e−νλτ

∫ τ−k

−∞
eνλrz2(r, θ2,−τω)‖f(·, r)‖2

V ∗dr.
(4.23)

By (4.16) we find that

lim
n→∞

∫ τ

τ−k

eνλ(r−τ)z(r, θ2,−τω)

× 〈f(·, r), v(r, τ − k, θ2,−τω, v(τ − k, τ − tn, θ2,−τω, v0,n))〉dr

=
∫ τ

τ−k

eνλ(r−τ)z(r, θ2,−τω)〈f(·, r), v(r, τ − k, θ2,−τω, ṽk)〉dr,

(4.24)

and

lim inf
n→∞

∫ τ

τ−k

eνλ(r−τ)ψ(v(r, τ − k, θ2,−τω, v(τ − k, τ − tn, θ2,−τω, v0,n)))dr

≥
∫ τ

τ−k

eνλ(r−τ)ψ(v(r, τ − k, θ2,−τω, ṽk))dr.
(4.25)

Note that (4.25) implies that

lim sup
n→∞

−
∫ τ

τ−k

eνλ(r−τ)ψ(v(r, τ − k, θ2,−τω, v(τ − k, τ − tn, θ2,−τω, v0,n)))dr

≤ −
∫ τ

τ−k

eνλ(r−τ)ψ(v(r, τ − k, θ2,−τω, ṽk))dr.

(4.26)

Taking the limit of (4.21) as n→∞, by (4.23), (4.24) and (4.26) we obtain that

lim sup
n→∞

‖v(τ, τ − tn, θ2,−τω, v0,n)‖2

≤ 2
ν
e−νλτ

∫ τ−k

−∞
eνλrz2(r, θ2,−τω)‖f(·, r)‖2

V ∗dr

−
∫ τ

τ−k

eνλ(r−τ)ψ(v(r, τ − k, θ2,−τω, ṽk))dr

+ 2
∫ τ

τ−k

eνλ(r−τ)z(r, θ2,−τω)〈f(·, r), v(r, τ − k, θ2,−τω, ṽk)〉dr.

(4.27)

It follows from (4.20) and (4.27) that

lim sup
n→∞

‖v(τ, τ − tn, θ2,−τω, v0,n)‖2

≤ ‖ṽ‖2 +
2
ν
e−νλτ

∫ τ−k

−∞
eνλrz2(r, θ2,−τω)‖f(·, r)‖2

V ∗dr.
(4.28)

Let k →∞ in (4.28) to yield

lim sup
n→∞

‖v(τ, τ − tn, θ2,−τω, v0,n)‖2 ≤ ‖ṽ‖2. (4.29)

By (4.10)-(4.11) and (4.29) we find that

lim
n→∞

v(τ, τ − tn, θ2,−τω, v0,n) = ṽ in H.
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This completes the proof. �

5. Existence of pullback attractors

In this section, we establish the existence of D-pullback attractors for the Navier-
Stokes equations (3.1)-(3.2). Based on the uniform estimates on the solutions of
problem (3.10)-(3.13), we first show that the cocycle Φ associated with the stochas-
tic system (3.1)-(3.4) has a measurable D-pullback absorbing set in H, and then
prove the D-pullback asymptotic compactness of Φ.

Lemma 5.1. Suppose (3.19) and (3.22) hold. Then for every τ ∈ R, ω ∈ Ω and
D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, there exists T = T (τ, ω,D) > 0 such that for
all t ≥ T , the solution u of problem (3.1)-(3.4) with ω replaced by θ2,−τω satisfies

‖u(τ, τ − t, θ2,−τω, uτ−t)‖2

≤ z−2(τ, θ2,−τω) +
2
ν
z−2(τ, θ2,−τω)

∫ τ

−∞
eνλ(r−τ)z2(r, θ2,−τω)‖f(·, r)‖2

V ∗dr,

where uτ−t ∈ D(τ − t, θ2,−tω).

Proof. Given D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, for each τ ∈ R and ω ∈ Ω, denote
by

D̃(τ, ω) = {v ∈ H : ‖v‖ ≤ |z(τ, θ2,−τω)| ‖D(τ, ω)‖}. (5.1)

Let D̃ be a family corresponding to D which consists of the sets given by (5.1); i.e.,

D̃ = {D̃(τ, ω) : D̃(τ, ω) is defined by (5.1), τ ∈ R, ω ∈ Ω}. (5.2)

We now prove D̃ is tempered in H for D ∈ D. Given c > 0, by (3.7) we find that
for each ω ∈ Ω, there exists R > 0 such that for all r ≥ R,

| − αω(−r)| ≤ 1
2
cr. (5.3)

Since D ∈ D, from (5.3) it follows that

e−cr‖D̃(τ − r, θ2,−rω)‖ = e−cr|z(τ − r, θ2,−τω)| ‖D(τ − r, θ2,−rω)‖

≤ eαω(−τ)e−
1
2 cr‖D(τ − r, θ2,−rω)‖ → 0, as r →∞,

which shows that D̃ ∈ D. Since uτ−t ∈ D(τ − t, θ2,−tω), by (3.9) we know that

‖vτ−t‖ = ‖z(τ − t, θ2,−τω) uτ−t‖ ≤ |z(τ − t, θ2,−τω)| ‖D(τ − t, θ2,−tω)‖,

which along with (5.1) implies that vτ−t ∈ D̃(τ − t, θ2,−tω). Since D̃ is tempered,
it follows from Lemma 4.2 with k = 0 that there exists T = T (τ, ω,D) > 0 such
that for all t ≥ T ,

‖v(τ, τ − t, θ2,−τω, vτ−t)‖2 ≤ 1 +
2
ν

∫ τ

−∞
eνλ(r−τ)z2(r, θ2,−τω)‖f(·, r)‖2

V ∗dr,

which along with (3.9) completes the proof. �

Lemma 5.2. Suppose (3.19) and (3.23) hold. Then the continuous cocycle Φ
associated with problem (3.1)-(3.4) has a closed measurable D-pullback absorbing
set K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D.
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Proof. Given τ ∈ R and ω ∈ Ω, denote by

K(τ, ω) = {u ∈ H : ‖u‖2 ≤M(τ, ω)}, (5.4)

where M(τ, ω) is given by

M(τ, ω) = z−2(τ, θ2,−τω)

+
2
ν
z−2(τ, θ2,−τω)

∫ τ

−∞
eνλ(r−τ)z2(r, θ2,−τω)‖f(·, r)‖2

V ∗dr.
(5.5)

Since for each τ ∈ R, M(τ, ·) : Ω → R is (F1,B(R))-measurable, we know that
K(τ, ·) : Ω → 2H is a measurable set-valued mapping. It follows from Lemma 5.1
that, for each τ ∈ R, ω ∈ Ω and D ∈ D, there exists T = T (τ, ω,D) > 0 such that
for all t ≥ T ,

Φ(t, τ − t, θ2,−tω,D(τ − t, θ2,−tω)) = u(τ, τ − t, θ2,−τω,D(τ − t, θ2,−tω)) ⊆ K(τ, ω).

Therefore, K = {K(τ, ω) : τ ∈ R, ω ∈ Ω} will be a closed measurable D-pullback
absorbing set of Φ in H if one can show that K belongs to D. For each τ ∈ R,
ω ∈ Ω and r > 0, by (5.4) we have

‖K(τ − r, θ2,−rω)‖

≤ 1
z(τ − r, θ2,−τω)

(
1 +

2
ν

∫ τ−r

−∞
eνλ(s−τ+r)z2(s, θ2,−τω)‖f(·, s)‖2

V ∗ds
)1/2

≤ e−αω(−τ)eαω(−r)

×
(
1 +

2
ν

∫ 0

−∞
eνλsz2(s+ τ − r, θ2,−τω)‖f(·, s+ τ − r)‖2

V ∗ds
)1/2

≤ e−αω(−τ)eαω(−r)
(
1

+
(2
ν

∫ 0

−∞
e(νλ−δ)sz2(s+ τ − r, θ2,−τω)eδs‖f(·, s+ τ − r)‖2

V ∗ds
)1/2)

.

(5.6)

Let c be an arbitrary positive number and ε = min{νλ − δ, 1
2c}. By (3.7) we see

that there exists N1 > 0 such that

| − 2α ω(p)| ≤ −εp for all p ≤ −N1. (5.7)

Let s ≤ 0 and r ≥ N1. Then p = s− r ≤ −N1 and hence it follows from (5.7) that

− 2α ω(s− r) ≤ −ε(s− r), for all s ≤ 0 and r ≥ N1. (5.8)

By (5.8) we have, for all s ≤ 0 and r ≥ N1,

e(νλ−δ)sz2(s+ τ − r, θ2,−τω) ≤ e(νλ−δ)se2αω(−τ)e−2αω(s−r) ≤ e2αω(−τ)eεr. (5.9)

From (5.6), (5.7) and (5.9) we have that, for all r ≥ N1,

‖K(τ − r, θ2,−rω)‖

≤ eεr−αω(−τ) +

√
2
ν
e

3
2 εr

( ∫ 0

−∞
eδs‖f(·, s+ τ − r)‖2

V ∗ds
)1/2

≤ e
1
2 cr−αω(−τ) +

√
2
ν
e

3
4 cr

( ∫ 0

−∞
eδs‖f(·, s+ τ − r)‖2

V ∗ds
)1/2

,

(5.10)

where we have used the fact ε ≤ c/2. It follows from (5.10) that, for all r ≥ N1,

e−cr‖K(τ − r, θ2,−rω)‖
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≤ e−
1
2 cr−αω(−τ) +

√
2
ν
e−

1
4 cr

( ∫ 0

−∞
eδs‖f(·, s+ τ − r)‖2

V ∗ds
)1/2

≤ e−
1
2 cr−αω(−τ) +

√
2
ν
e−

1
4 cτ

(
e

1
2 c(τ−r)

∫ 0

−∞
eδs‖f(·, s+ τ − r)‖2

V ∗ds

)1/2

,

which along with (3.23) shows that for every positive constant c,

lim
r→∞

e−cr‖K(τ − r, θ2,−rω)‖ = 0,

and henceK = {K(τ, ω) : τ ∈ R, ω ∈ Ω} is tempered. This completes the proof. �

We now prove the D-pullback asymptotic compactness of solutions of the sto-
chastic equations (3.1)-(3.2).

Lemma 5.3. Suppose (3.19) and (3.23) hold. Then the continuous cocycle Φ
associated with problem (3.1)-(3.4) is D-pullback asymptotically compact in H, that
is, for every τ ∈ R, ω ∈ Ω, D = {D(τ, ω) : τ ∈ R, ω ∈ Ω} ∈ D, and tn → ∞,
u0,n ∈ D(τ − tn, θ2,−tnω), the sequence Φ(tn, τ − tn, θ2,−tnω, u0,n) has a convergent
subsequence in H.

Proof. Since D ∈ D and u0,n ∈ D(τ − tn, θ2,−tn
ω), by the proof of Lemma 5.1

we find that for each n ∈ N, v0,n = z(τ − tn, θ2,−τω)u0,n ∈ D̃(τ − tn, θ2,−tn
ω),

where D̃ ∈ D is the family defined by (5.2). Then it follows from Lemma 4.4 that
the sequence v(τ, τ − tn, θ2,−τω, v0,n) of solutions of problem (3.10)-(3.13) has a
convergent subsequence in H. By (3.9) we have

u(τ, τ − tn, θ2,−τω, u0,n) =
1

z(τ, θ2,−τω)
v(τ, τ − tn, θ2,−τω, v0,n),

and hence the sequence u(τ, τ − tn, θ2,−τω, u0,n) has a convergent subsequence in
H. This implies Φ(tn, τ − tn, θ2,−tnω, u0,n) has a convergent subsequence in H. �

We are now in a position to present the main result of the paper, that is, the ex-
istence of tempered pullback attractors for the stochastic Navier-Stokes equations.

Theorem 5.4. Suppose (3.19) and (3.23) hold. Then the continuous cocycle Φ
associated with problem (3.1)-(3.4) has a unique D-pullback attractor A = {A(τ, ω) :
τ ∈ R, ω ∈ Ω} ∈ D in H. Moreover, for each τ ∈ R and ω ∈ Ω,

A(τ, ω) = Ω(K, τ, ω) = ∪B∈DΩ(B, τ, ω) (5.11)

= {ψ(0, τ, ω) : ψ is any D-complete orbit of Φ}. (5.12)

Proof. By Lemma 5.2 we know that Φ has a closed measurable D-pullback absorb-
ing set in H. On the other hand, by Lemma 5.3 we know that Φ is D-pullback
asymptotically compact. Then it follows from Proposition 2.10 that Φ has a unique
D-pullback attractor A in H and the structure of A is given by (5.11)-(5.12). �

We now discuss the existence of periodic pullback attractors for problem (3.1)-
(3.4). Suppose f : R → V ∗ is a periodic function with period T > 0. If, in addition,
f ∈ L2

loc(R, V ∗), then one can verify that f satisfies (3.23) for any δ > 0. In this
case, for every ũ ∈ H, t ≥ 0, τ ∈ R and ω ∈ Ω, we have that

Φ(t, τ + T, ω, ũ) = u(t+ τ + T, τ + T, θ2,−τ−Tω, ũ)

= u(t+ τ, τ, θ2,−τω, ũ). = Φ(t, τ, ω, ũ).
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By Definition 2.1, we find that Φ is periodic with period T . Let D ∈ D and DT be
the T -translation of D. Then for every c > 0, s ∈ R and ω ∈ Ω,

lim
r→∞

e−cr‖D(s− r, θ2,−rω)‖2 = 0. (5.13)

In particular, for s = τ + T with τ ∈ R, we get from (5.13) that

lim
r→∞

e−cr‖DT (τ − r, θ2,−rω)‖2 = lim
r→∞

e−cr‖D(τ + T − r, θ2,−rω)‖2 = 0. (5.14)

From (5.14) we see that DT ∈ D, and hence D is T -translation closed. Similarly,
one may check that D is also −T -translation closed. Therefore, we find that D
is T -translation invariant. By Proposition 2.11, the periodicity of the D-pullback
attractor of problem (3.1)-(3.4) follows.

Theorem 5.5. Let f : R → V ∗ be a periodic function with period T > 0 and
f ∈ L2((0, T ), V ∗). If (3.19) holds, then the continuous cocycle Φ associated with
problem (3.1)-(3.4) has a unique D-pullback attractor A ∈ D in H, which is periodic
with period T .

In the present article, we have discussed the pullback attractors of the two-
dimensional stochastic Navier-Stokes equations with non-autonomous deterministic
force. It is also interesting to consider the same problem for the three-dimensional
Navier-Stokes equations, where the uniqueness of solutions does not hold anymore.
In this case, the author believes that the idea of multivalued dynamical systems
developed in [10] can be extended to study the pullback attractors of the three-
dimensional equations with non-autonomous deterministic force. The author will
pursue this line of research in the future.

References

[1] L. Arnold, Random Dynamical Systems; Springer-Verlag, 1998.
[2] A. V. Babin, M. I. Vishik; Attractors of Evolution Equations, North-Holland, Amsterdam,

1992.
[3] J. M. Ball; Continuity properties and global attractors of generalized semiflows and the

Navier-Stokes equations, J. Nonl. Sci., 7 (1997), 475-502.
[4] P. W. Bates, H. Lisei, K. Lu; Attractors for stochastic lattice dynamical systems, Stoch. Dyn.,

6 (2006), 1-21.
[5] P. W. Bates, K. Lu, B. Wang; Random attractors for stochastic reaction-diffusion equations

on unbounded domains, J. Differential Equations, 246 (2009), 845-869.
[6] Z. Brzezniak, Y. Li; Asymptotic compactness and absorbing sets for 2D stochastic Navier-

Stokes equations on some unbounded domains, Transactions of American Mathematical So-
ciety, 358 (2006), 5587-5629.

[7] T. Caraballo, J. Real, I. D. Chueshov; Pullback attractors for stochastic heat equations in
materials with memory, Discrete Continuous Dynamical Systems B, 9 (2008), 525-539.

[8] T. Caraballo, G. Lukaszewicz, J. Real; Pullback attractors for asymptotically compact non-
autonomous dynamical systems, Nonlinear Analysis, TMA, 64 (2006), 484-498.

[9] T. Caraballo, G. Lukaszewicz, J. Real; Pullback attractors for non-autonomous 2D-Navier-
Stokes equations in some unbounded domains, C. R. Acad. Sci. Paris I, 342 (2006), 263-268.

[10] T. Caraballo, J. A. Langa, V. S. Melnik, J. Valero; Pullback attractors of non-autonomous
and stochastic multivalued dynamical systems, Set-Valued Analysis, 11 (2003), 153-201.

[11] I. Chueshov, M. Scheutzow; On the structure of attractors and invariant measures for a class
of monotone random systems, Dynamical Systems, 19 (2004), 127-144.

[12] H. Crauel, A. Debussche, F. Flandoli; Random attractors, J. Dyn. Diff. Eqns., 9 (1997),
307-341.

[13] H. Crauel, F. Flandoli; Attractors for random dynamical systems, Probab. Th. Re. Fields,
100 (1994), 365-393.



18 B. WANG EJDE-2012/59

[14] F. Flandoli, B. Schmalfuß; Random attractors for the 3D stochastic Navier-Stokes equation
with multiplicative noise, Stoch. Stoch. Rep., 59 (1996), 21-45.

[15] J. K. Hale; Asymptotic Behavior of Dissipative Systems, American Mathematical Society,
Providence, RI, 1988.

[16] J. Huang, W. Shen; Pullback attractors for nonautonomous and random parabolic equations
on non-smooth domains, Discrete and Continuous Dynamical Systems, 24 (2009), 855-882.

[17] P. E. Kloeden, J. A. Langa; Flattening, squeezing and the existence of random attractors,
Proc. Royal Soc. London Serie A., 463 (2007), 163-181.

[18] R. Rosa; The global attractor for the 2D Navier-Stokes flow on some unbounded domains,
Nonlinear Analysis, TMA, 32 (1998), 71-85.

[19] B. Schmalfuß; Backward cocycles and attractors of stochastic differential equations, Interna-
tional Seminar on Applied Mathematics-Nonlinear Dynamics: Attractor Approximation and
Global Behavior, 1992, 185-192.

[20] R. Sell, Y. You; Dynamics of Evolutionary Equations, Springer-Verlag, New York, 2002.
[21] R. Temam; Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-

Verlag, New York, 1997.
[22] B. Wang; Asymptotic behavior of stochastic wave equations with critical exponents on R3,

Transactions of American Mathematical Society, 363 (2011), 3639-3663.
[23] B. Wang, Random Attractors for the Stochastic Benjamin-Bona-Mahony Equation on Un-

bounded Domains, J. Differential Equations, 246 (2009), 2506-2537.
[24] B. Wang; Sufficient and necessary criteria for existence of pullback attractors for non-compact

random dynamical systems, arXiv:1202.2390v1 [math.AP], 2012.

Bixiang Wang
Department of Mathematics, New Mexico Institute of Mining and Technology, So-
corro, NM 87801, USA

E-mail address: bwang@nmt.edu


	1. Introduction
	2. Theory of pullback attractors
	3. Cocycles for Navier-Stokes equations on unbounded domains
	4. Uniform estimates of solutions
	5. Existence of pullback attractors 
	References

