Johnny Henderson,  Abdelghani Ouahab, Samia Youcefi
Abstract:
 In this article, we present  results on the existence and the topological structure
 of the solution set for initial-value problems for the first-order
 impulsive differential equation
 ![$$\displaylines{
 (\phi(y'))' = f(t,y(t)),  \quad\hbox{a.e. }  t\in [0,b],\cr
 y(t^+_{k})-y(t^-_k)=I_{k}(y(t_{k}^{-})), \quad k=1,\dots,m,\cr
 y'(t^+_{k})-y'(t^-_k)=\bar I_{k}(y'(t_{k}^{-})), \quad k=1,\dots,m,\cr
 y(0)=A,\quad  y'(0)=B,
 }$$](gifs/aa.gif)
 where  
,  
.
 The functions 
 characterize the jump in the
 solutions at impulse points 
, 
.
 For the final result of the paper, the hypotheses are modified so
 that the nonlinearity 
 depends on 
,
 but the impulsive conditions
 and initial conditions remain the same.
 Submitted January 20, 2012. Published April 6, 2012.
Math Subject Classifications: 34A37, 34K45.
Key Words: phi-Laplacian; fixed point theorems; impulsive solution;
           compactness.
Show me the PDF file (263 KB), TEX file, and other files for this article.
![]()  | 
  Johnny Henderson  Department of Mathematics, Baylor University Waco, TX 76798-7328, USA email: Johnny_Henderson@baylor.edu  | 
|---|---|
![]()  |  
 Abdelghani Ouahab  Laboratory of Mathematics, Sidi-Bel-Abbès University PoBox 89, 22000 Sidi-Bel-Abbès, Algeria email: agh_ouahab@yahoo.fr  | 
|  Samia Youcefi  Laboratory of Mathematics, Sidi-Bel-Abbès University PoBox 89, 22000 Sidi-Bel-Abbès, Algeria email: youcefi.samia@yahoo.com  | 
Return to the EJDE web page