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EXISTENCE OF MULTIPLE SOLUTIONS FOR THREE-POINT
BOUNDARY-VALUE PROBLEMS ON INFINITE INTERVALS IN

BANACH SPACES

YULIN ZHAO, HAIBO CHEN, CHENGJIE XU

Abstract. We prove the existence of at least three solutions for a second-
order three-point boundary-value problem on infinite intervals in Banach spaces.
We use the unbounded upper and lower solution method, and the topological
degree theory of strict-set-contractions. To illustrate our results, we present
an example.

1. Introduction

The purpose of this article is to investigate the existence of multiple solutions for
the following nonlinear second-order three-point boundary-value problem (BVP) on
the unbounded domain [0,+∞),

u′′(t) + q(t)f(t, u(t), u′(t)) = θ, t ∈ J0,

u(0)− au′(0)− bu(η) = x0, u′(∞) = y∞
(1.1)

in a Banach space E, where θ is the zero element of E, a ≥ 0, b ≥ 0, η > 0,
x0, y∞ ∈ E, q : J → J0, f : J × E2 → E are continuous, in which J0 = (0,+∞),
J = [0,+∞).

Boundary-value problems on the half-line, arising naturally in the study of ra-
dially symmetric solutions of nonlinear elliptic equations and various physical phe-
nomena [1], have been studied extensively in the literature and there are many
excellent results about the existence of solutions for some boundary value problems
of differential equations on infinite intervals (see, for instance, [2, 3, 5, 9, 10, 11, 12,
13, 14, 15, 16] and references therein).

In scalar space, the existence of solutions as well as the positive ones for second
order boundary value problems on infinite intervals has been studied in a number
of papers, see [2, 3, 5, 9, 12, 13, 14] and references therein. Bosiud [2] applied a
diagonalization procedure to obtained the existence of bounded solutions for the
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following BVP on the half-line

u′′(t) + q(t)f(t, u(t)) = 0, t ∈ (η, +∞),

u(η) = 0, lim
t→+∞

u′(t) = 0.
(1.2)

Chen and Zhang [3] established sufficient and necessary conditions for the existence
of positive solutions for (1.2). Eloe, Kaufmann and Tisdell [5] studied the following
BVP for the ordinary differential equation

u′′(t)− q(t)u(t) + f(t, u(t)) = 0, t ∈ (0,+∞),

u(0) = x0 ≥ 0, x(t) bounded on [0,+∞).

By employing the technique of lower and upper solutions and the theory of fixed
point index, the authors obtained the existence of at least three solutions on se-
quential arguments.

When the nonlinear term f involves u′, Yan, Agarwal and O’Regan [14] estab-
lished a upper and lower solution theory for the boundary value problem

u′′(t) + q(t)f(t, u(t), u′(t)) = 0, t ∈ J0,

au(0)− bu′(0) = x0 ≥ 0, lim
t→+∞

u′(t) = y∞ ≥ 0,
(1.3)

where a > 0, b > 0. By using the upper and lower solutions method, the author pre-
sented sufficient conditions for the existence of at least one unbounded positive so-
lution and at least two positive solutions for (1.3). In [9], with x0, y∞ ∈ (−∞,+∞),
Lian, Wang and Ge established a unbounded upper and lower solution theory for
(1.3). By using the Schäuder fixed point theorem, they obtained sufficient condi-
tions for the existence of solutions and of positive solutions.

For abstract spaces, Liu [10] investigated the existence of solutions of the fol-
lowing second-order two-point boundary-value problems on infinite intervals in a
Banach space E,

u′′(t) + f(t, u(t), u′(t)) = θ, t ∈ J,

u(0) = x0, u′(∞) = y∞.
(1.4)

By employing the Sadovskii fixed point theorem, the author established sufficient
conditions for the existence of at least one solution. Recently, Zhang [15] investi-
gated the positive solutions of (1.4) with boundary conditions

u(0) =
m−2∑
i=1

aiu(ηi), u′(∞) = y∞,

on an infinite interval in Banach spaces, where ai ∈ [0,+∞), ηi ∈ (0,+∞). The
main tool used is Mönch fixed point and monotone iterative technique. Zhao and
Chen [16] studied the multiplicity of positive solutions for a class of nonlinear multi-
point boundary value problem of second-order differentials equations in Banach
spaces.

Inspired by [14, 15, 16], in the present article, we will show the existence of at
least three solutions to (1.1) in a Banach space E. Note that the nonlinear term
f depends on u and its derivative u′. We will use the topological degree theory of
strict-set-contractions and the unbounded upper and lower solution method rather
than the fixed-point theorem of strict-set-contraction used in [7, 10, 11, 16, 17, 18]
to establish multiplicity results for (1.1).
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2. Preliminaries

Basic facts about an ordered Banach space E can be found in [4, 6, 8]. Here, we
just recall a few of them. Let the real Banach space E with norm ‖ · ‖ be partially
ordered by a cone P of E; i.e., u ≤ v if and only if v − u ∈ P . Let E∗ be the
dual space of E, and P ∗ denote the dual cone of P ; i.e., P ∗ = {ϕ|ϕ ∈ E∗, ϕ(u) ≥
0, u ∈ P}. For ϕ ∈ P ∗, let Cϕ = {u ∈ E : ϕ(u) ≥ 0}. If S ⊂ P ∗ satisfying
P = ∩{Cϕ : ϕ ∈ S}, then P may be generated by S. the closure of S in the
weak∗-topology of E∗ is denoted by S̄∗.

Definition 2.1. f(t, u, u′) is quasi-monotone nondecreasing, if u ≤ v and for any
ϕ ∈ S, such that ϕ(u) = ϕ(v), ϕ(u′) = ϕ(v′) imply ϕ(f(t, u, u′)) ≤ ϕ(f(t, v, v′)).

Definition 2.2. A function α(t) ∈ C1[J,E] ∩ C2[J0, E] is called a lower solution
of (1.1) if

α′′(t) + q(t)f(t, α(t), α′(t)) ≥ θ, t ∈ J0,

α(0)− aα′(0)− bα(η) ≤ x0, α′(∞) ≤ y∞.

Similarly, a function β(t) ∈ C1[J,E]∩C2[J0, E] is called an upper solution of (1.1)
if

β′′(t) + h(t)f(t, β(t), β′(t)) ≤ θ, t ∈ J0,

β(0)− aβ′(0)− bβ(η) ≥ x0, β′(∞) ≥ y∞.

Consider the space

X = {u ∈ C1[J,E] : sup
t∈J

‖u(t)‖
1 + t

< +∞ and sup
t∈J

‖u′(t)‖ < +∞}. (2.1)

with the norm ‖u‖X = max{‖u‖1, ‖u′‖∞}, where ‖u‖1 = supt∈J
‖u(t)‖
1+t , ‖u′‖∞ =

supt∈J ‖u′(t)‖. By the standard arguments, it is easy to prove that (X, ‖ · ‖X) is a
Banach space. A function u ∈ X is called a solution of the boundary value problem
(1.1) if it satisfies (1.1).

Definition 2.3 (Kuratovski Noncompactness measure). Let V be a bounded set
in a real Banach space E, and α(V ) = inf{δ > 0 : V = ∪m

i=1Vi, all the diameters
of Vi ≤ δ}. Clearly, 0 ≤ α(V ) < ∞. α(V ) is called the Kuratovski measure of
noncompactness; see [4, 6, 8].

Let T : D → E(D ⊂ E) is a continuous and bounded operator. If there exists a
constant k ≥ 0, such that α(T (D)) ≤ kα(D), then T is called a k-set contraction
operator, when k < 1, T is called a strict-set contraction operator. The Kuratowski
measure of noncompactness of bounded set in E,C[J,E] and X are denoted by
αE(·), αC(·) and αX(·), respectively.

Lemma 2.4 ([4, 6]). Let D ⊂ E be an open, bounded and convex set, T is a
strict-set-contraction from D̄ into E, and T (D̄) ⊂ D. Then deg(T,D,E) = 1.

Lemma 2.5 ([4, 6]). Let S ⊂ {ϕ ∈ E∗ : ‖ϕ‖ ≤ 1}, u ∈ E, and d = inf{ϕ(u) : ϕ ∈
S}. Then there exists ϕ0 ∈ S̄∗ such that ϕ0(u) = d.

Lemma 2.6 ([13]). Let E be a Banach space and H ⊂ C[J,E]. If H is countable
and there exist a ρ ∈ L[J, J0] such that ‖u(t)‖ ≤ ρ(t)a.e.t ∈ J for all u ∈ H. Then
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αE(u(t)) is integrable on J , and

αE({
∫ +∞

0

u(t)dt : u ∈ H}) ≤ 2
∫ +∞

0

αE(H(t))dt,

where H(t) = {u(t) : u ∈ H, t ∈ J}.

3. Main results

To abbreviate our presentation, we define the following assumptions:
(C0) f ∈ C[J ×E ×E,E], and f is quasi-monotone nondecreasing with respect

to P ;
(C1) α, β ∈ X is a pair lower and upper solutions for (1.1) satisfying α(t) ≤ β(t)

on t ∈ J ;
(C2) There exist a continuous function h : J0 → E and A,B ∈ E, for any ϕ ∈ S,

t ∈ J0, α(t) ≤ u ≤ β(t) and v ∈ E, such that

|ϕ(f(t, u, v))| ≤ |ϕ(A)ϕ(v)| · ϕ(h|ϕ(v)|) + |ϕ(B)|; (3.1)

(C3) q ∈ L1(0,+∞) satisfying
∫ +∞
0

q(s)ds < +∞, and there exists k > 1 such
that

M = sup
0≤t<+∞

(1 + t)kq(s) < +∞; (3.2)

(C4) For any ϕ ∈ S, there exists N, ξ ∈ P (ϕ(N) > ϕ(ξ)) and τ > ϕ(y∞), such
that ∫ ϕ(N)

ϕ(ξ)

ds

ϕ(h(s))
> Γ (3.3)

where

ϕ(ξ) = max
{

sup
τ≤t<+∞

|ϕ(β(t))− ϕ(α(0))
t

|, sup
τ≤t<+∞

|ϕ(β(0))− ϕ(α(t))
t

|
}
,

Γ := M |ϕ(A)|
(

sup
t∈J

ϕ(β(t))
(1 + t)k

− inf
t∈J

ϕ(α(t))
(1 + t)k

+
k

k − 1
sup
t∈J

ϕ(β(t))
1 + t

)
+

M |ϕ(B)|
k − 1

sup
s≥ϕ(ξ)

2
h(s)

,

where k is given in (C3).
(C5) There exists l0, l1 ∈ L1[0,+∞) such that

α(f(t, D0, D1)) ≤ l0(t)αE(D0) + l1(t)αE(D2), ∀t ∈ J (3.4)

for all bounded subsets D0, D1 ⊂ E, and

δ sup
s∈J

q(s) ·
∫ +∞

0

[l0(s)(1 + s) + l1(s)]ds <
1
2
,

where δ will be given in (3.6).

Lemma 3.1. If 1− b 6= 0, then for any z ∈ L1[J,E], the problem

u′′(t) + q(t)z(t) = θ, t ∈ J0,

u(0)− au′(0)− bu(η) = x0, u′(∞) = y∞
(3.5)

has a unique solution in X. Moreover this solution can be expressed as

u(t) =
x0 + (a + bη)y∞

1− b
+ ty∞ +

∫ +∞

0

G(t, s)q(s)z(s)ds,
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where

G(t, s) =
1

1− b


a + s, 0 ≤ s ≤ min{η, t},
a + t + b(s− t), t ≤ s ≤ η,

a + s + b(η − s), η ≤ s ≤ t,

a + t + b(η − t), max{η, t} ≤ s < +∞.

The proof of the above lemma is standard; so we omit it.
If 1− b > 0, by directly computation, we have

0 ≤ G(t, s)
1 + t

≤ δ,

where

δ :=
1

1− b
max{1 + a, a + η, 1 + a + bη − b}. (3.6)

Obviously, δ ≥ 1.

Lemma 3.2. Assume that 1 − b > 0, and (C1)–(C4) hold. If u ∈ C2[J,E] is a
solution of (1.1) and α(t) ≤ u(t) ≤ β(t), t ∈ J . Then for any ϕ ∈ S, t ∈ J ,

|ϕ(u′(t))| ≤ ϕ(N), t ∈ J. (3.7)

Proof. Choose N0 ∈ P such that

ϕ(N0) ≥ max{ϕ(N), 2ϕ(ξ), sup
t∈J

|ϕ(α′(t))|, sup
t∈J

|ϕ(β′(t))|} (3.8)

Assume that |ϕ(u′)| > ϕ(N) for some t ∈ J . Without loss of generality, we may
assume that ϕ(u′) > ϕ(N). Then there exists t∗ ∈ (0,+∞) such that for any
t∗ ≥ τ > 0,

ϕ(u′(t∗)) =
ϕ(u(t∗))− ϕ(u(0))

t∗ − 0
≤ ϕ(β(t∗))− ϕ(α(0))

t∗
≤ ϕ(ξ) < ϕ(N0).

Since u ∈ C1[J,E]∩C2[J0, E] and for any ϕ ∈ S, there exists [t1, t2] ⊂ (0,+∞) (or
[t2, t1] ⊂ (0,+∞)) such that

ϕ(u′(t1)) = ϕ(ξ), ϕ(u′(t2)) = ϕ(N0), ϕ(ξ) < ϕ(u′(t)) < ϕ(N0), t ∈ (t1, t2).

It follows from assumption (C1), (C2) that

ϕ(u′′(t)) ≤ q(t)|ϕ(A)||ϕ(u′)| · ϕ(h(|ϕ(u′)|)) + |ϕ(B)|q(t), for t ∈ (t1, t2).

This implies∣∣ ∫ t2

t1

ϕ(u′′(t))dt

ϕ(h(|ϕ(u′))|)
∣∣

≤ |ϕ(A)|
∣∣∣ ∫ t2

t1

q(t)ϕ(u′(t))dt
∣∣∣ + |ϕ(B)|

∣∣∣ ∫ t2

t1

q(t)dt

ϕ(h(|ϕ(u′)|))

∣∣∣
≤ M |ϕ(A)|

∣∣∣ ∫ t2

t1

ϕ(u′(t))dt

(1 + t)k

∣∣∣ + M |ϕ(B)|
∣∣∣ ∫ t2

t1

dt

(1 + t)kϕ(h(|ϕ(u′)|))

∣∣∣
≤ M |ϕ(A)|

∣∣∣ ∫ t2

t1

ϕ((
u(t)

(1 + t)k
)′)dt

∣∣∣ + Mk|ϕ(A)|
∣∣∣ ∫ t2

t1

ϕ(
u(t)

(1 + t)1+k
)dt

∣∣∣
+ M |ϕ(B)| sup

s≥ϕ(ξ)

1
ϕ(h(s))

∣∣∣ ∫ t2

t1

1
(1 + t)k

dt
∣∣∣
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≤ M |ϕ(A)|
(

sup
t∈J

ϕ(β(t))
(1 + t)k

− inf
t∈J

ϕ(α(t))
(1 + t)k

+
k

k − 1
sup
t∈J

ϕ(β(t))
1 + t

)
+

M |ϕ(B)|
k − 1

sup
s≥ϕ(ξ)

2
ϕ(h(s))

.

On the other hand, from (C4), we have∣∣∣ ∫ t2

t1

ϕ(u′′(t))dt

ϕ(h(|ϕ(u′)|))

∣∣∣ =
∣∣∣ ∫ ϕ(N0)

ϕ(ξ)

ds

ϕ(h(s))

∣∣∣
> M |ϕ(A)|

(
sup
t∈J

ϕ(β(t))
(1 + t)k

− inf
t∈J

ϕ(α(t))
(1 + t)k

+
k

k − 1
sup
t∈J

ϕ(β(t))
1 + t

)
+

M |ϕ(B)|
k − 1

sup
s≥ϕ(ξ)

2
ϕ(h(s))

.

which is a contradiction. The proof is complete. �

Theorem 3.3. Suppose that 1− b > 0, and (C0)–(C5) hold. Then then (1.1) has
at least one solution u ∈ C1[J,E] ∩ C2[J0, E] such that

α(t) ≤ u(t) ≤ β(t), t ∈ J. (3.9)

Moreover, there exists a L ∈ P such that for any ϕ ∈ S,

|ϕ(u′(t))| ≤ ϕ(L), t ∈ J. (3.10)

Proof. Take L such that L ≥ N0, where N0 is given by (3.8). By Lemma 3.2, for
any ϕ ∈ S, t ∈ J , (3.10) is true. Define a modified function F ∗ : J × E × E → E
as follows. For any (t, u, u′) ∈ J × E × E, set

F ∗(t, u, u′) = f(t, u, ū′), (3.11)

where ū′ is given by

ϕ(ū′) =


ϕ(L) if ϕ(u′) > ϕ(L),
ϕ(u′), if − ϕ(L) ≤ ϕ(u′) ≤ ϕ(L),
ϕ(−L), if ϕ(u′) < ϕ(−L),

(3.12)

for any ϕ ∈ S. Since P may be generated by S, it is easy to see that an element ū′

of E can be given uniquely by (3.12).
According to F ∗(t, u, ū′), we next define a map F (t, u, u′) as follows: for any

(t, u, u′) ∈ J × E × E and for any ϕ ∈ S, F (t, u(t), u′(t)) satisfying

ϕ(F (t, u, u′)) =


ϕ(F ∗(t, ū, u′)) + λϕ(β(t)−u)

1+(ϕ(u))2 , if ϕ(u) > ϕ(β(t)),

ϕ(F ∗(t, u, u′)), if ϕ(α(t)) ≤ ϕ(u) ≤ ϕ(β(t)),
ϕ(F ∗(t, ū, u′))− λϕ(u−α(t))

1+(ϕ(u))2 , if ϕ(u) < ϕ(α(t)),

where λ > 0 satisfies

δ sup
s∈J

q(s)
{ ∫ +∞

0

[l0(s)(1 + s) + l1(s)]ds + λ
}

<
1
2
. (3.13)

and ū is defined by

ϕ(ū) =


ϕ(β(t)) if ϕ(u) > ϕ(β(t)),
ϕ(u), if ϕ(α(t)) ≤ ϕ(u) ≤ ϕ(β(t)),
ϕ(α(t)), if ϕ(u) < ϕ(α(t)).
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Obviously, for each fixed (t, u, u′) ∈ J × E × E, F (t, u, u′) is unique. It is clear
from the definition that F is continuous and bounded on J ×E ×E. Consider the
modified boundary value problem

u′′(t) + q(t)F (t, u(t), u′(t)) = θ, t ∈ J0,

u(0)− au′(0)− bu(η) = x0, u′(∞) = y∞.
(3.14)

From the definitions of F , it suffices to show that (3.14) has at least one solution u
such that

α(t) ≤ u(t) ≤ β(t), |ϕ(u′(t))| ≤ ϕ(L), t ∈ J. (3.15)

Since F = f in the region, we divide the proof into two steps.
Step 1. (3.14) has at least one solution u. For u ∈ X(X be defined in (2.1)),

we define an operator T : X → X by

(Tu)(t) :=
x0 + (a + bη)y∞

1− b
+ ty∞ +

∫ +∞

0

G(t, s)q(s)F (s, u(s), u′(s))ds. (3.16)

From Lemma 3.1 and the definitions of F , it is easy to see that the fixed point of
T coincide with the solutions of (3.14). So it is suffices to show that T has at least
one fixed point. We claim that T : X → X is a strict-set-constraction operator.

First, we will show that T : X → X is well defined. For any u ∈ X, ϕ ∈ S, we
have∫ +∞

0

q(s)|ϕ(F (s, u(s), u′(s)))|ds ≤
∫ +∞

0

q(s)[|ϕ(A)||ϕ(v)|ϕ(h|ϕ(v)|) + |ϕ(B)|]ds

≤ A∗
∫ +∞

0

q(s)ds < +∞,

(3.17)
where

A∗ := |ϕ(A)| sup
0≤s<∞

{sϕ(h(s))}+ 1 + |ϕ(B)|. (3.18)

For any t ∈ J0, u ∈ X, by Lebesgue dominated convergent theorem and Hahn-
Banach theorem, there exists φ ∈ S with ‖φ‖ = 1, such that

‖ (Tu)(t)
1 + t

‖

= ‖φ(
(Tu)(t)
1 + t

)‖ ≤ ‖φ(x0 + (a + bη)y∞)‖
(1− b)(1 + t)

+
‖φ(ty∞)‖

1 + t

+
∫ +∞

0

G(t, s)
1 + t

q(s)|φ(F (s, u(s), u′(s)))|ds

≤ ‖x0 + (a + bη)y∞
1− b

‖+ ‖y∞‖+ δ

∫ +∞

0

q(s)|φ(F (s, u(s), u′(s)))|ds < +∞.

Similarly, we have

‖(Tu)′(t)‖ = ‖φ((Tu)′(t))‖ = ‖φ(y∞ −
∫ +∞

t

q(s)F (s, u(s), u′(s))ds)‖

≤ ‖y∞‖+
∫ +∞

0

q(s)|φ(F (s, u(s), u′(s)))|ds < +∞.
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Hence, T : X → X is well defined. Moreover, Tu ∈ X. Let

R = ‖x0 + (a + bη)y∞
1− b

‖+ ‖y∞‖+ δA∗
∫ +∞

0

q(s)ds,

Ω = {u ∈ X : ‖u‖X ≤ R},

where A∗ be given in (3.18).
It is easy to see that Ω is a bounded closed convex set in space X. Obviously, Ω

is not empty since (1 + t)y∞ ∈ Ω, and Ω ⊂ X. It follows from (3.16) and Lemma
3.1 that u ∈ Ω implies Tu ∈ Ω; i.e., T (Ω) ⊂ Ω.

Next we show that T is continuous. Let um, ū ∈ Ω, ‖um − ū‖X → 0(m → ∞).
Then {um} is a bounded subset of Ω, thus there exists r > 0 such that ‖um‖X < r
for m ≥ 1. Taking limit, we have ‖ū‖X ≤ r. Similarly, It follows from (3.16) that

‖Tum − T ū‖X = max{‖Tum − T ū‖1, ‖Tum − T ū‖∞}

≤
∫ +∞

0

δq(s)|ϕ(F (s, um(s), u′m(s))− F (s, ū(s), ū′(s)))|ds

→ 0, as m → +∞.

Hence, the continuity of T is proved. By (3.16),(3.17) and the definite of the set Ω,
similar to the proofs of [10, Lemma 2.4], we have

αX(TΩ) = max
{

sup
t∈J

αE

( (TΩ)(t)
1 + t

)
, sup

t∈J
αE((TΩ)′(t))

}
. (3.19)

Let V = {um : m = 1, 2, . . . } ⊂ Ω. Then ‖um‖X ≤ R. It follows from (3.16) that

(Tum)(t) =
x0 + (a + bη)y∞

1− b
+ty∞+

∫ +∞

0

G(t, s)q(s)F (s, um(s), u′m(s))ds, (3.20)

and

(Tum)′(t) = y∞ −
∫ +∞

t

q(s)F (s, um(s), u′m(s))ds. (3.21)

By (3.19), we obtain

αX(TV ) = max
{

sup
t∈J

αE

( (TV )(t)
1 + t

)
, sup

t∈J
αE((TV )′(t))

}
, (3.22)

where TV = {Tum : m = 1, 2, . . . } and (TV )′(t) = {(Tum)′ : m = 1, 2, . . . }. From
(3.17), we can see that the infinite integral

∫ +∞
0

h(s)|ϕ(F (s, um(s), u′m(s)))|ds is
convergent uniformly for m = 1, 2, . . . . Hence, for all ε > 0 and u ∈ V , there exists
a sufficiently large T0 > 0 such that∫ +∞

T0

q(s)|ϕ(F (s, um(s), u′m(s)))|ds < ε. (3.23)

On the other hand, It is easy to prove that (TV )(t)/(1 + t) and (TV )′(t) are
equicontinuous on any finite subinterval of J .

By Lemma 2.6, (3.20), (3.21), (3.22) and (C5), for any t ∈ J and u ∈ V , we
obtain

αE

( (TV )(t)
1 + t

)
≤ α

({ ∫ +∞

0

G(t, s)
1 + t

q(s)F (s, um(s), u′m(s))ds : um ∈ V
})

≤ 2δ sup
s∈J

q(s)
∫ +∞

0

α(F (s, V (s), V ′(s)))ds
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≤ 2δ sup
s∈J

q(s)
{∫ +∞

0

[l0(s)α(V ) + l1(s)α(V ′)]ds + λα(V )
}

≤ 2δ sup
s∈J

q(s) · αX(V ) ·
{∫ +∞

0

[l0(s)(1 + s) + l1(s)]ds + λ
}

,

and

αE(TV )′(t) ≤ 2 sup
s∈J

q(s) ·
∫ +∞

0

α(F (s, V (s), V ′(s)))ds

≤ 2 sup
s∈J

q(s) · αX(V ) ·
{∫ +∞

0

[l0(s)(1 + s) + l1(s)]ds + λ
}

.

It follows from(3.14),(3.21) and (C3) that

αX(TV ) ≤ 2δ sup
s∈J

q(s) · αX(V ) ·
{ ∫ +∞

0

[l0(s)(1 + s) + l1(s)]ds + λ
}

< αX(V ),

which implies T is a strict-set-contraction operator. Hence, Lemma 2.4 implies that
T has a fixed point u ∈ V ⊂ Ω.

Step 2. Suppose that (3.14) has a solution u, then u satisfies (3.15). Moreover,
u is a solution of (1.1). For this we need to prove that α(t) ≤ u(t) ≤ β(t), t ∈ J .
Obviously, we only show that α(t) ≤ u(t), t ∈ J . A similar argument may be used
to prove u(t) ≤ β(t), t ∈ J .

If α(t) ≤ u(t), t ∈ J does not hold, by Lemma 2.5, there exists φ ∈ S̄∗ and t0 ∈ J
such that

p(t0) = inf
t∈J

{p(t) = φ(u(t)− α(t))} < 0. (3.24)

Then, there are three cases.
Case 1. If t0 ∈ (0,+∞), then we have p′(t0) = 0, p′′(t0) ≥ 0. Hence,

φ(u(t0)− α(t0)) < 0, φ(u′(t0)− α′(t0)) = 0, φ(u′′(t0)− α′′(t0)) ≥ 0,

and consequently,

φ(u′′(t0)− α′′(t0))

≤ q(t)φ(f(t0, α(t0), α′(t0))− F (t0, u(t0), u′(t0)))

= q(t)φ
(
f(t0, α(t0), α′(t0))− f(t0, ū(t0), ū′(t0)) +

λ(u(t0)− α(t0))
1 + (φ(u(t0)))2

)
.

Note that

ū(t0) ≥ α(t0)), φ(ū(t0)) = φ(α(t0)), and φ(ū′(t0)) = φ(α′(t0)).

By (C0) and Definition 2.1, φ(f(t0, α(t0), α′(t0)) ≤ φ(f(t0, ū(t0), ū′(t0))), which
implies

p′′(t0) = φ(u′′(t0)− α′′(t0)) ≤ q(t) · φ
(λ(u(t0)− α(t0))

1 + (φ(u(t0)))2
)

< 0,

which is a contradiction.
Case 2. If t0 = 0. Obviously, it holds p′(0+) ≥ 0, while by the boundary

conditions, we have

p(0) = φ(u(0)− α(0)) ≥ φ(u′(0)− α′(0)) + bφ(u(η)− α(η)) ≥ bp(η). (3.25)
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If b = 0, then we obtain p(0) ≥ 0, which is a contradiction with p(0) < 0. If
0 < b < 1, since p(0) < 0, p′(0+) ≥ 0 holds, then by (3.25), we have

p(η) < 0,

together with (3.25), we obtain

p(η) ≤ 1
b
p(0)− a

b
p′(0) ≤ 1

b
p(0) < p(0). (3.26)

Let
t∗ = sup{t : t > 0, φ(u(s)− α(s)) < 0, for s ∈ [0, t]}.

Then p(s) < 0 for all t ∈ [0, t∗). If t∗ < +∞, then p(t∗) = 0. By the definition of
lower solution and the proof of Case 1, we have

p′′(t) = φ(u′′(t)− α′′(t)) < 0, for t ∈ (0,+∞),

which implies that p(t) is a concave function. Since p(0) < 0 and p(t∗) = 0 for
t∗ < +∞, according to the concavity of p(t) for t∗ < +∞, we obtain

p(η)− p(0)
η

≥ p(t∗)− p(0)
t∗

=
−p(0)

t∗
> 0.

That is,
p(η) > p(0),

which is a contradiction with (3.26).
Case 3. If t0 = +∞. Obviously, from the boundary conditions, we obtain

p′(+∞) = φ(u′(+∞) − α′(+∞)) ≥ 0. By (3.24), we have that p(+∞) < 0, so
p′(+∞) = 0, p′′(+∞) ≥ 0. Similar to the proof of Case1, we have

p′′(+∞) = φ(u′′(+∞)− α′′(+∞)) < 0,

which is a contradiction. Thus, we establish α(t) ≤ u(t) ≤ β(t) on J . Therefore it
follows that

u′′(t) + q(t)F (t, u(t), u′(t)) = u′′(t) + q(t)f(t, u(t), ū′(t)) = θ.

By (C1), for any ϕ ∈ S, we obtain that

|ϕ(f(t, u, ū′))| ≤ |ϕ(A)||ϕ(ū′)| · ϕ(h|ϕ(ū′)|) + |ϕ(B)|,

whenever α(t) ≤ u(t) ≤ β(t) on J . From Lemma 3.2, we have |ϕ(u′(t))| ≤ ϕ(L),
which implies F (t, u, u′) = f(t, u, u′). So, u is also a solution of (1.1). �

Theorem 3.4. Assume that 1− b > 0, and (C0)–(C5) hold. Suppose further that
(H1) α1 ∈ C1[J,E]∩C2[J0, E] is a lower solution and β1 ∈ C1[J,E]∩C2[J0, E]

is an upper solution of (1.1) satisfying

α ≤ α1 ≤ β, α ≤ β1 ≤ β, α1 6≤ β1 on J.

(H2) α1 and β1 are not solutions of (1.1).
Then (1.1) has at least three solutions ui ∈ C1[J,E] ∩ C2[J0, E](i = 1, 2, 3) such
that

α(t) ≤ u1(t) ≤ β1(t), α1(t) ≤ u2(t) ≤ β(t), α1(t) 6≤ u3(t) 6≤ β1(t), t ∈ J.

Moreover, there exists a L ∈ P and for any ϕ ∈ S such that

|ϕ(u′i(t))| ≤ ϕ(L), (i = 1, 2, 3), t ∈ J.
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Proof. According to the definition of lower and upper solutions, we can obtain that
α1, β1 ∈ X. Let

Ωα1 = {u ∈ Ω : ‖u‖X > ‖α1‖X}, Ωβ1 = {u ∈ Ω : ‖u‖X < ‖β1‖X}.
By (H1), α1 6≤ β1 on J , therefore, Ω̄α1 ∩ Ω̄β1 = ∅ and the set Ω\{Ω̄α1 ∪ Ω̄β1} 6= ∅.
From (H2), it can be seen that T has no solution on ∂Ωα1 ∩ ∂Ωβ1 . The additivity
of degree implies that

deg(I − T,Ω, θ) = deg(I − T,Ωα1 , θ) + deg(I − T,Ωβ1 , θ)

+ deg(I − T,Ω\{Ω̄α1 ∪ Ω̄β1}, θ).
(3.27)

First, we show that deg(I − T,Ωα1 , θ) = 1. Define the function F ∗∗(t, u, u′) as
follows. Let

f∗1 (t, u, u′) = f(t, u, ū′), for (t, u, u′) ∈ J × E × E,

where ū′ is given by

ϕ(ū′) = max{ϕ(−L),min{ϕ(u′), ϕ(L)}},
and

ϕ(F ∗∗(t, u, u′)) =


ϕ(f∗1 (t, ū, u′)) + λϕ(β(t)−u)

1+(ϕ(u))2 , if ϕ(u) > ϕ(β(t)),

ϕ(f∗1 (t, u, u′)), if ϕ(α1(t)) ≤ ϕ(u) ≤ ϕ(β(t)),
ϕ(f∗1 (t, ū, u′))− λϕ(u−α1(t))

1+(ϕ(u))2 , if ϕ(u) < ϕ(α1(t)),

where λ satisfies (3.13) and ū is given by

ϕ(ū) = max{ϕ(α1(t)),min{ϕ(u), ϕ(β(t))}}.
Consider the auxiliary problem

u′′(t) + q(t)F ∗∗(t, u(t), u′(t)) = θ, t ∈ J0,

u(0)− au′(0)− bu(η) = x0, u′(∞) = y∞,
(3.28)

and an operator T ∗ : X → X defined by

(Tu)(t) :=
x0 + (a + bη)y∞

1− b
+ ty∞ +

∫ +∞

0

G(t, s)q(s)F ∗∗(s, u(s), u′(s))ds. (3.29)

As for proof of T , the operator T ∗ is also well defined and maps X into X and is
a strict-set-contract operator.

In a way similar to that for the proof of Theorem 3.3, it is easy to show that any
solution u of (3.28) satisfies u ≥ α1 on J . It follows from the condition (H2) that
u 6= α1 on J . Hence, u ∈ Ωα1 . Moreover, we can prove T ∗(Ω̄) ⊂ Ω. Then we have

deg(I − T ∗,Ω, θ) = 1. (3.30)

Since F ∗∗ = f in the region Ωα1 , thus

deg(I − T,Ω, θ) = deg(I − T ∗,Ωα1 , θ)

= deg(I − T ∗,Ω\Ω̄α1 , θ) + deg(I − T ∗,Ωα1 , θ) = 1.
(3.31)

Similar to the proof of (3.31), we have

deg(I − T,Ωβ1 , θ) = 1. (3.32)

By (3.27), (3.31) and (3.32), we obtain

deg(I − T,Ω\{Ω̄α1 ∪ Ω̄β1}, θ) = −1.
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So (1.1) has at least three solutions u1 ∈ Ωα1 , u2 ∈ Ωβ1 and u3 ∈ Ω\{Ω̄α1 ∪ Ω̄β1}.
Then the proof is complete. �

4. An example

To illustrate our main results, consider the following boundary-value problem,
in [0,+∞),

u′′n(t)−
2(1 + u′n(t))(u′n(t)− 1

2n )
36(1 + t)4

(arctanun(t)
1 + t3

+ 3

√
u′2n(t)

)
−

π(u′n(t)− 1
2n )

144(1 + t)4(1 + t2)
= 0, ht ∈ J,

un(0)− 3u′n(0)− 2
3
un(1) = 0, u′n(∞) =

1
2n

, (n = 1, 2, 3, . . . ).

(4.1)

We claim tat the above equation has at least three solutions.

Proof. Let
E = l∞ = {u = (u1, . . . , un, . . . ) : sup

n
|un| < +∞}

with norm ‖u‖ = supn |un|. Then (4.1) can be regarded as a BVP of form (1.1) in E.
In this situation, u = (u1, . . . , un, . . . ), x0 = (0, . . . , 0, . . . ), y∞ = (1

2 , 1
4 , . . . , 1

2n , . . . ),
f = (f1, . . . , fn, . . . ), q = (q1, . . . , qn, . . . ), in which qn(t) = 1

36(1+t)4 , and

fn(t, u, v) = 2(1 + vn)(vn −
1
2n

)
(arctanun

1 + t3
+ 3
√

v2n

)
+

π(vn − 1
2n )

4(1 + t2)
. (4.2)

Choose k = 3, τ = 3
4 , and S ⊂ {ϕ ∈ E∗ : ‖ϕ‖ = 1}. Obviously, we have that

f ∈ C[J × E × E,E], and fn(t, u, v) is quasi-monotone nondecreasing in u and v.
q ∈ C([0,+∞), (0,+∞)), and∫ +∞

0

qn(s)ds =
∫ +∞

0

1
36(1 + s)4

ds =
1

144
< +∞,

Mn = sup
0≤t<+∞

(1 + t)3qn(t) = sup
0≤t<+∞

1
36(1 + t)

=
1
36

< +∞.

Let α(t) = (α0
1(t), α

0
2(t), . . . , α

0
n(t), . . . ), α1(t) = (α1

1(t), α
1
2(t), . . . , α

1
n(t), . . . ),

β1(t) = (β1
1(t), β1

2(t), . . . , β1
n(t), . . . ), β(t) = (β0

1(t), β0
2(t), . . . , β0

n(t), . . . ), where

α0
n(t) = −11− t, α1

n(t) =
t

2n
, ∀t ∈ J, (n = 1, 2, 3, . . . ).

and

β1
n(t) =

{
− t

2n − 1, 0 ≤ t ≤ 1,
t

2n −
1
n − 1, t ≥ 1,

β0
n(t) = t + 60, t ≥ 0, (n = 1, 2, 3, . . . ).

It is easy to prove that α(t), α1(t) and β1(t), β(t) are two pairs of lower and upper
solutions of (4.1). Moreover, α, α1, β1, β ∈ X,

α < α1 < β, α < β1 < β, α1 6≤ β1 onJ,

and α1 and β1 are not solutions of (4.1).
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Meanwhile, when 0 ≤ t < +∞, α ≤ u ≤ β, −1 ≤ v ≤ 1, it follows from
n
√

y < 1 + y
n that

|fn(t, u, v))| = |2(1 + vn)(vn −
1
2n

)
(arctanun

1 + t3
+ 3
√

v2n

)
+

π(vn − 1
2n )

4(1 + t2)
|

≤ 3 +
13π

8
+ 3|vn|(1 +

3π

4
+ 3

√
|vn|), (n = 1, 2, 3, . . . ).

If we choose A = (A1, . . . , An, . . . ), B = (B1, . . . , Bn, . . . ) and h = (h1, . . . , hn, . . . ),
in which An = 3, Bn = 3 + 13π

8 , hn(s) = 1 + 3π
4 + 3

√
s. Then |fn(t, u, v)| ≤

An|vn|hn(|vn|) + Bn, (n = 1, 2, 3, . . . ), for all u ∈ [α, β], which implies for any
ϕ ∈ S with ‖ϕ‖ = 1 that

|ϕ(f(t, u, v))| = ‖f(t, u, v)‖ = sup
n
|fn(t, u, v)|

≤ |ϕ(A)ϕ(v)| · ϕ(h|ϕ(v)|) + |ϕ(B)|.
Noting that

ϕ(ξ) = max
{

sup
τ≤t<+∞

|ϕ(β0
n(t))− ϕ(α0

n(0))
t

|, sup
τ≤t<+∞

|ϕ(β0
n(0))− ϕ(α0

n(t))
t

|
}

= 1 +
71
τ

=
287
3

,

we have ∫ +∞

ξ

ds

hn(s)
= +∞, sup

s≥ξ

1
hn(s)

≤ 1, (n = 1, 2, 3, . . . ).

Since

sup
t∈J

ϕ(β0
n(t))

(1 + t)3
= sup

t∈J

ϕ(β0
n(t))

1 + t
= 60, inf

t∈J

ϕ(α0
n(t))

(1 + t)3
= −11,

it follows that

Γ = MnAn

(
sup
t∈J

ϕ(β0
n(t))

(1 + t)3
− inf

t∈J

ϕ(α0
n(t))

(1 + t)3
+

3
2

sup
t∈J

ϕ(β0
n(t))

1 + t

)
+

Mn ·Bn

2
sup
s≥ξ∗

2
ϕ(hn(s))

≤ 167
12

+
1
36

(3 +
13π

8
) < +∞;

that is, there exist N > ξ, such that the condition (C4) holds with respect to α(t)
and β(t).

Finally, we check condition (C5). Let f = f (1) + f (2), where

f (1) = (f (1)
1 , . . . , f (1)

n , . . . ), f (2) = (f (2)
1 , . . . , f (2)

n , . . . ),

in which

f (1)
n (t, u, v) = 2(1 + vn)(vn −

1
2n

)
(arctanun

1 + t3
+ 3
√

v2n

)
, (n = 1, 2, 3, . . . ), (4.3)

and

f (2)
n (t, u, v) =

π(vn − 1
2n )

4(1 + t2)
, (n = 1, 2, 3, . . . ). (4.4)

For any t ∈ J and bounded subsets D0, D1 ⊂ E, by (4.3),(4.4), we know

α(f (2)(J,D0, D1)) ≤
π

4(1 + t2)
α(D1), ∀t ∈ J,D0, D1 ⊂ E, (4.5)
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and

0 ≤ ‖f (1)(t, u, v)‖ = sup
n
|f (1)(t, un, vn)|

≤ 2(1 + ‖v‖)(‖v‖+
1
2n

)(
π

2(1 + t2)
+ ‖v‖ 1

3 ), ∀t ∈ J, u, v ∈ E.

Similar to the proof of [6, Example 2.12], we have

α(f (1)(t, D0, D1)) = 0, ∀t ∈ J, bounded sets D0, D1 ⊂ E. (4.6)

It follows from (4.5) and (4.6) that

α(f(J,D0, D1)) ≤
π

4(1 + t2)
α(D1), ∀t ∈ J,D0, D1 ⊂ E,

δ sup
s∈J

q(s) ·
∫ +∞

0

[l0(s)(1 + s) + l1(s)] =
π2

24
<

1
2
;

i.e., condition (C5) holds for l0(t) = 0, l1(t) = π
4(1+t2) . So by Theorem 3.4, (4.1)

has at least three solutions. �
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