Electron. J. Diff. Equ., Vol. 2012 (2012), No. 35, pp. 1-18.

Existence of solutions for the p-Laplacian involving a Radon measure

Nedra Belhaj Rhouma, Wahid Sayeb

Abstract:
In this article we study the existence of solutions to eigenvalue problem
$$\displaylines{
 -\hbox{div} (|\nabla u|^{p-2}\nabla u)-\lambda |u|^{p-2}u\mu=f \quad
 \hbox{in }\Omega,\cr
 u=0\quad\hbox{on }\partial\Omega
 }$$
where $\Omega$ is a bounded domain in $\mathbb{R}^{N}$ and $\mu$ is a nonnegative Radon measure.

Submitted June 11, 2011. Published February 29, 2012.
Math Subject Classifications: 34B15, 34B18, 35A01, 35A02.
Key Words: Dirichlet problem; p-Laplacian; genus function; eigenfunction; nonlinear eigenvalue problem; Palais-Smale condition; mountain-pass theorem; critical point.

Show me the PDF file (302 KB), TEX file, and other files for this article.

Nedra Belhaj Rhouma
Departement de Mathématiques, Facultédes sciences de Tunis
Université Tunis El Manar
Campus Universitaire 2092, Tunis, Tunisia
email: nedra.belhajrhouma@fst.rnu.tn
Wahid Sayeb
Departement de Mathématiques, Facultédes sciences de Tunis
Université Tunis El Manar
Campus Universitaire 2092, Tunis, Tunisia
email: wahid.sayeb@yahoo.fr

Return to the EJDE web page