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LIMIT CYCLES FOR FOURTH-ORDER AUTONOMOUS
DIFFERENTIAL EQUATIONS

JAUME LLIBRE, AMAR MAKHLOUF

Abstract. We provide sufficient conditions for the existence of periodic so-
lutions of the fourth-order differential equation

....
x − (λ + µ)

...
x + (1 + λµ)ẍ− (λ + µ)ẋ + λµx = εF (x, ẋ, ẍ,

...
x ),

where λ, µ and ε are real parameters, ε is small and F is a nonlinear function.

1. Introduction and statement of the main results

The objective of this paper is to study the periodic solutions of the fourth-order
differential equation

....
x − (λ + µ)

...
x + (1 + λµ)ẍ− (λ + µ)ẋ + λµx = εF (x, ẋ, ẍ,

...
x ), (1.1)

where λ, µ and ε are real parameters, ε is small and F is a nonlinear function. The
dot denotes derivative with respect to an independent variable t.

There are many papers studying the periodic orbits of fourth–order differential
equations, see for instance in [3, 4, 5, 6, 7, 11, 12, 13, 14, 15]. But our main tool
for studying the periodic orbits of equation (1.1) is completely different to the tools
of the mentioned papers, and consequently the results obtained are distinct and
new. We shall use the averaging theory, more precisely Theorem 2.1. Many of the
quoted papers dealing with the periodic orbits of four-order differential equations
use Schauder’s or Leray-Schauder’s fixed point theorem, or the nonlocal reduction
method, or variational methods.

In general to obtain analytically periodic solutions of a differential system is a
very difficult task, usually impossible. Here with the averaging theory this difficult
problem for the differential equations (1.1) is reduced to find the zeros of a nonlinear
function. We must say that the averaging theory for finding periodic solutions
in general does not provide all the periodic solutions of the system. For more
information about the averaging theory see section 2 and the references quoted
there.

Llibre, Makhlouf and Sellami [8] studied equation (1.1) with the nonlinear func-
tion F (x, ẋ, ẍ,

...
x , t) which depends explicitly on the independent variable t. Here

we study the autonomous case using a different approach.
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We recall that a simple zero r∗0 of a real function F(r0) is defined by F(r∗0) = 0
and (dF/dr0)(r∗0) 6= 0.

Our main results on the periodic solutions of this fourth-order differential equa-
tion (1.1) are the following.

Theorem 1.1. Assume that λ 6= µ and λµ 6= 0. For every positive simple zero r∗0
of the function

F(r0) =
1
2π

∫ 2π

0

cos θF (A,B, C,D) dθ,

where

A =
((λ + µ) cos θ + (λµ− 1) sin θ)r0

(1 + λ2)(1 + µ2)
,

B =
((λµ− 1) cos θ − (λ + µ) sin θ)r0

(1 + λ2)(1 + µ2)
,

C = − ((λ + µ) cos θ + (λµ− 1) sin θ)r0

(1 + λ2)(1 + µ2)
,

D =
((1− λµ) cos θ + (λ + µ) sin θ)r0

(1 + λ2)(1 + µ2)
,

the differential equation (1.1) has a periodic solution x(t, ε) tending to the periodic
solution

x(t, ε) → r∗0((λ + µ) cos t + (−1 + λµ) sin t)
(1 + λ2)(1 + µ2)

(1.2)

of
....
x − (λ + µ)

...
x + (1 + λµ)ẍ− (λ + µ)ẋ + λµx = 0 when ε → 0.

Theorem 1.1 is proved in section 3. Its proof is based on the averaging theory
for computing periodic orbits, see section 2. Two easy applications of Theorem 1.1
are given in the following two corollaries. They are proved in section 4.

Corollary 1.2. Assume λ 6= µ, λµ 6= 0 and λµ 6= 1. If F (x, ẋ, ẍ,
...
x ) = ẋ− ẋ3, then

the differential equation (1.1) has a periodic solution x(t, ε) tending to the periodic
solution

x(t, ε) → r∗0((λ + µ) cos t + (λµ− 1) sin t)
(1 + λ2)(1 + µ2)

(1.3)

of
....
x − (λ + µ)

...
x + (1 + λµ)ẍ− (λ + µ)ẋ + λµx = 0 when ε → 0, where

r∗0 =
2
√

1 + λ2 + µ2 + λ2µ2

√
3

.

Corollary 1.3. Assume µ = −λ 6= 0.If F (x, ẋ, ẍ,
...
x ) = sin ẋ, then for every positive

integer m there exists an ε0 > 0 such that for all ε ∈ (0, ε0) the differential equation
(1.1) has at least m periodic solutions.

Theorem 1.4. Assume that λ = µ 6= 0. For every positive simple zero r∗0 of the
function

F(r0) =
1
2π

∫ 2π

0

cos θ F (A,B, C,D) dθ,

where

A =
(2µ cos θ + (µ2 − 1) sin θ)r0

(1 + µ2)2
,
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B =
((µ2 − 1) cos θ − 2µ sin θ)r0

(1 + µ2)2
,

C =
(−2µ cos θ + (1− µ2) sin θ)r0

(1 + µ2)2
,

D =
((1− µ2) cos θ + 2µ sin θ)r0

(1 + µ2)2
,

the differential equation (1.1) has a periodic solution x(t, ε) tending to the periodic
solution

x(t, ε) → r∗0(2µ cos t + (µ2 − 1) sin t)
(1 + µ2)2

(1.4)

of
....
x − 2µ

...
x + (1 + µ2)ẍ− 2µẋ + µ2x = 0 when ε → 0.

Theorem 1.4 is proved in section 5. Two easy applications of Theorem 1.4 are
given in the following two corollaries. They are proved in section 6.

Corollary 1.5. Assume λ = µ /∈ {−1, 0, 1}. If F (x, ẋ, ẍ,
...
x ) = ẋ − ẋ3, then the

differential equation (1.1) has a periodic solution tending to the periodic solution

x(t, ε) → r∗0(2µ cos t + (µ2 − 1) sin t)
(1 + µ2)2

(1.5)

of
....
x − 2µ

...
x + (1 + µ2)ẍ− 2µẋ + µ2x = 0 when ε → 0, where

r∗0 =
2
√

1 + 2µ2 + µ4

√
3

.

Corollary 1.6. Assume λ = µ = 1.If F (x, ẋ, ẍ,
...
x ) = sinx, then for every positive

integer m there exists an ε0 > 0 such that for all ε ∈ (0, ε0) the differential equation
(1.1) has at least m periodic solutions.

Theorem 1.7. Assume λ 6= µ = 0. For every (r∗0 , V ∗
0 ) solution of the system

.F1(r0, V0) = 0, F2(r0, V0) = 0, (1.6)

satisfying

det
(∂(F1,F2)

∂(r0, V0)

∣∣∣
(r0,V0)=(r∗0 ,V ∗

0 )

)
6= 0, (1.7)

with

F1(r0, V0) =
1
2π

∫ 2π

0

cos θ F (A,B, C,D) dθ,

F2(r0, V0) =
1
2π

∫ 2π

0

F (A,B, C,D) dθ,

when

A = − (1 + λ2)V0 + (λ sin θ − λ2 cos θ)r0

λ + λ3
,

B = − (cos θ + λ sin θ)r0

1 + λ2
,

C =
(−λ cos θ + sin θ)r0

1 + λ2
,

D =
(cos θ + λ sin θ)r0

1 + λ2
,
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the differential equation (1.1) has a periodic solution x(t, ε) tending to the periodic
solution

x(t, ε) → − (1 + λ2)V ∗
0 + (λ sin t− λ2 cos t)r∗0

λ + λ3
(1.8)

of
....
x − λ

...
x + ẍ− λẋ = 0 when ε → 0.

Theorem 1.7 is proved in section 7. We remark that the case µ 6= 0 and λ = 0
can be studied as the case λ 6= 0 and µ = 0. One application of Theorem 1.7 is
given in the following corollary. It is proved in section 8.

Corollary 1.8. Assume λ 6= µ = 0. If F (x, ẋ, ẍ,
...
x ) = x− x3, then the differential

equation (1.1) has three periodic solutions x(t, ε) tending to the periodic solution

x(t, ε) → −V ∗
0 + V ∗

0 λ2 − λ2 cos t r∗0 + λ sin t r∗0
λ + λ3

(1.9)

of
....
x − λ

...
x + ẍ− λẋ = 0 when ε → 0, where (r∗0 , V ∗

0 ) =
(
2
√

2/15
√

1 + λ2,− λ√
5

)
,(

2
√

2/15
√

1 + λ2, λ√
5

)
and

(
2
√

1+λ2
√

3
, 0
)
.

Theorem 1.9. Assume that λ = µ = 0. Then the averaging theorem used in this
paper cannot be applied to the differential equation

....
x + ẍ = εF (x, ẋ, ẍ,

...
x ).

2. Basic results on averaging theory

In this section we present the basic result from the averaging theory that we
shall need for proving the main results of this paper.

We consider the problem of the bifurcation of T -periodic solutions from differ-
ential systems of the form

ẋ = F0(t,x) + εF1(t,x) + ε2F2(t,x, ε), (2.1)

with ε = 0 to ε 6= 0 sufficiently small. Here the functions F0, F1 : R×Ω → Rn and
F2 : R× Ω× (−ε0, ε0) → Rn are C2 functions, T -periodic in the first variable, and
Ω is an open subset of Rn. The main assumption is that the unperturbed system

ẋ = F0(t,x), (2.2)

has a submanifold of periodic solutions. A solution of this problem is given using
the averaging theory.

Let x(t, z, ε) be the solution of the system (2.2) such that x(0, z, ε) = z. We write
the linearization of the unperturbed system along a periodic solution x(t, z, 0) as

ẏ = DxF0(t,x(t, z, 0))y. (2.3)

In what follows we denote by Mz(t) some fundamental matrix of the linear differ-
ential system (2.3), and by ξ : Rk × Rn−k → Rk the projection of Rn onto its first
k coordinates; i.e. ξ(x1, . . . , xn) = (x1, . . . , xk).

We assume that there exists a k–dimensional submanifold Z of Ω filled with
T -periodic solutions of (2.2). Then an answer to the problem of bifurcation of
T -periodic solutions from the periodic solutions contained in Z for system (2.1) is
given in the following result.

Theorem 2.1. Let W be an open and bounded subset of Rk, and let β : Cl(W ) →
Rn−k be a C2 function. We assume that

(i) Z = {zα = (α, β(α)) , α ∈ Cl(W )} ⊂ Ω and that for each zα ∈ Z the
solution x(t, zα) of (2.2) is T -periodic;
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(ii) for each zα ∈ Z there is a fundamental matrix Mzα(t) of (2.3) such that
the matrix M−1

zα
(0)−M−1

zα
(T ) has in the upper right corner the k× (n− k)

zero matrix, and in the lower right corner a (n − k) × (n − k) matrix ∆α

with det(∆α) 6= 0.
We consider the function F : Cl(W ) → Rk

F(α) = ξ
( 1

T

∫ T

0

M−1
zα

(t)F1(t,x(t, zα))dt
)
. (2.4)

If there exists a ∈ W with F(a) = 0 and det
(
(dF/dα)(a)

)
6= 0, then there is a

T -periodic solution ϕ(t, ε) of system (2.1) such that ϕ(0, ε) → za as ε → 0.

Theorem 2.1 goes back to Malkin [9] and Roseau [10], for a shorter proof see [2].
Theorem 2.1 will be used for proving our theorems.

3. Proof of Theorem 1.1

Introducing the variables (x, y, z, v) = (x, ẋ, ẍ,
...
x ) we write the fourth–order

differential equation (1.1) as a first–order differential system defined in an open
subset Ω of R4. Thus we have the differential system

ẋ = y,

ẏ = z,

ż = v,

v̇ = −λµx + (λ + µ)y − (1 + λµ)z + (λ + µ)v + εF (x, y, z, v).

(3.1)

Of course as before the dot denotes derivative with respect to the independent
variable t. System (3.1) with ε = 0 will be called the unperturbed system, otherwise
we have the perturbed system. The unperturbed system has a unique singular point
at the origin with eigenvalues ±i, λ andµ. We shall write system (3.1) in such a
way that the linear part at the origin will be in its real Jordan normal form. Then,
doing the change of variables (x, y, z, v) → (X, Y, Z, V ) given by

X
Y
Z
V

 =


0 λµ −λ− µ 1

λµ −λ− µ 1 0
1 − 1

µ 1 − 1
µ

−λ 1 −λ 1




x
y
z
v

 ,

the differential system (3.1) becomes

Ẋ = −Y + εG(X, Y, Z, V ),

Ẏ = X,

.Ż = λZ − ε

µ
G(X, Y, Z, V ),

V̇ = µV + εG(X, Y, Z, V ),

(3.2)

where G(X, Y, Z, V ) = F (A,B, C, D) with

A =
−V (1 + λ2) + Y (λ− µ)(λµ− 1) + X(λ2 − µ2)− Zµ(1 + µ2)

(1 + λ2)(λ− µ)(1 + µ2)
,

B =
X(λ− µ)(λµ− 1) + Y (−λ2 + µ2)− µ(V (1 + λ2) + Zλ(1 + µ2))

(1 + λ2)(λ− µ)(1 + µ2)
,
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C =
−Y (λ− µ)(λµ− 1) + X(−λ2 + µ2)− µ(V µ + λ2(Z + V µ + Zµ2))

(1 + λ2)(λ− µ)(1 + µ2)
,

D =
−X(λ− µ)(λµ− 1) + Y (λ2 − µ2)− µ(V (1 + λ2)µ2 + Zλ3(1 + µ2))

(1 + λ2)(λ− µ)(1 + µ2)
.

Note that the linear part of the differential system (3.2) at the origin is in its real
normal form of Jordan, and that A, B, C and D are well defined because λ 6= µ.

Now we pass from the cartesian variables (X, Y, Z, V ) to the cylindrical variables
(r, θ, Z, V ) of R4, where X = r cos θ and Y = r sin θ. In these new variables the
differential system (3.2) can be written as

ṙ = ε cos θ H(r, θ, Z, V ),

θ̇ = 1− ε
sin θ

r
H(r, θ, Z, V ),

Ż = λZ − ε
1
µ

H(r, θ, Z, V ),

V̇ = V µ + εH(r, θ, Z, V ),

(3.3)

where H(r, θ, Z, V ) = F (a, b, c, d) with

a = −V + V λ2 + Zµ + Zµ3 − r(λ− µ)((λ + µ) cos θ + (λµ− 1) sin θ)
(1 + λ2)(λ− µ)(1 + µ2)

,

b =
−µ(V (1 + λ2) + Zλ(1 + µ2)) + r(λ− µ)((λµ− 1) cos θ − (λ + µ) sin θ)

(1 + λ2)(λ− µ)(1 + µ2)
,

c = −µ(µV + λ2(Z + µV + µ2Z) + r(λ− µ)((λ + µ) cos θ + (λµ− 1) sin θ)
(1 + λ2)(λ− µ)(1 + µ2)

,

d = −V (1 + λ2)µ3 + Zλ3µ(1 + µ2) + r(λ− µ)((λµ− 1) cos θ − (λ + µ) sin θ)
(1 + λ2)(λ− µ)(1 + µ2)

.

Now we change the independent variable from t to θ, and denoting the derivative
with respect to θ by a prime the differential system (3.3) becomes

r′ = ε cos θ H + O(ε2),

Z ′ = λZ + ε
λµZ sin θ − r

µr
H + O(ε2),

V ′ = µV + ε
µV sin θ + r

r
H + O(ε2),

(3.4)

where H = H(r, θ, Z, V ).
We shall apply Theorem 2.1 to the differential system (3.4). We note that system

(3.4) can be written as system (2.1) taking

x =

 r
Z
V

 , t = θ, F0(θ,x) =

 0
λ Z
µV

 ,

F1(θ,x) =

 cos θ H
λµ sin θ Z−r

µr H
µ sin θ V +r

r H

 .
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We shall study the periodic solutions of system (2.2) in our case, i.e. the periodic
solutions of system (3.4) with ε = 0. Clearly these periodic solutions are

(r(θ), Z(θ), V (θ)) = (r0, 0, 0),

for any r0 > 0; i.e. are all the circles of the plane Z = V = 0 of system (3.3). Of
course all these periodic solutions in the coordinates (r, Z, V ) have period 2π in the
variable θ.

We shall describe the different elements which appear in the statement of The-
orem 2.1 in the particular case of the differential system (3.4). Thus we have that
k = 1 and n = 3. Let r1 > 0 be arbitrarily small and let r2 > 0 be arbitrarily
large. Then we take the open bounded subset W of R as W = (r1, r2), α = r0 and
β : [r1, r2] → R2 defined as β(r0) = (0, 0). The set Z is

Z = {zα = (r0, 0, 0), r0 ∈ [r1, r2]} .

Clearly for each zα ∈ Z we can consider that the solution x(θ) = zα = (r0, 0, 0) is
2π-periodic.

Computing the fundamental matrix Mzα
(θ) of the linear differential system (3.4)

with ε = 0 associated to the 2π-periodic solution zα = (r0, 0, 0) such that Mzα(0)
be the identity of R3, we obtain

M(θ) = Mzα(θ) =

1 0 0
0 eλ θ 0
0 0 eµ θ

 .

Note that the matrix Mzα(θ) does not depend of the particular periodic orbit zα.
Since the matrix

M−1(0)−M−1(2π) =

0 0 0
0 1− e−2πλ 0
0 0 1− e−2πµ

 ,

satisfies the assumptions of statement (ii) of Theorem 2.1 because λ and µ are not
zero, we can apply it to system (3.4).

Now ξ : R3 → R is ξ(r, Z, V ) = r. We calculate the function

F(r0) = F(α) = ξ
( 1

T

∫ T

0

M−1
zα

(t)F1(t,x(t, zα))dt
)
,

=
1
2π

∫ 2π

0

cos θ F (A,B, C,D) dθ,

where the expressions of A, B, C and D are the ones given in the statement of
Theorem 1.1. Then by Theorem 2.1 we have that for every simple zero r∗0 ∈ [r1, r2]
of the function F(r0) we have a periodic solution (r, Z, V )(θ, ε) of system (3.4) such
that

(r, Z, V )(0, ε) → (r∗0 , 0, 0) as ε → 0.

Going back through the change of coordinates we obtain a periodic solution
(r, θ, Z, V )(t, ε) of system (3.3) such that

(r, θ, Z, V )(0, ε) → (r∗0 , 0, 0, 0) as ε → 0.

Consequently we obtain a periodic solution (X, Y, Z, V )(t, ε) of system (3.2) such
that

(X, Y, Z, V )(0, ε) → (r∗0 , 0, 0, 0) as ε → 0.



8 J. LLIBRE, A. MAKHLOUF EJDE-2012/22

We have a periodic solution (x, y, z, v)(t, ε) of system (3.1) such that

x(t, ε) → r∗0((λ + µ) cos t + (−1 + λµ) sin t)
(1 + λ2)(1 + µ2)

as ε → 0.

Of course, it is easy to check that the previous expression provides a periodic
solution of the linear differential equation

....
x −(λ+µ)

...
x+(1+λµ)ẍ−(λ+µ)ẋ+λµx =

0. Hence Theorem 1.1 is proved.

4. Proof of corollaries 1.2 and 1.3

Proof of Corollary 1.2. If F (x, ẋ, ẍ,
...
x ) = ẋ − ẋ3, then the function F(r0) of the

statement of Theorem 1.1 is

F(r0) =
r0(−1 + λµ)(−3r2

0 + 4(1 + λ2)(1 + µ2))
8(1 + λ2)2(1 + µ2)2

.

The function F(r0), has the positive zero

r∗0 =
2
√

1 + λ2 + µ2 + λ2µ2

√
3

.

The derivative

F ′(r∗0) =
1− λµ

(1 + λ2)(1 + µ2)
6= 0.

The corollary follows from Theorem 1.1. �

Proof of Corollary 1.3. If F (x, ẋ, ẍ,
...
x ) = sin ẋ, since µ = −λ it is not difficult to

show that
F(r0) = J1

( r0

1 + λ2

)
,

where J1(z) is the Bessel function of first kind. This function has infinitely many
simple zeros when r0 → ∞, see for more details [1]. In this case the differential
system has as many periodic orbits as we want taking ε sufficiently small. Hence
the corollary is proved. �

5. Proof of Theorem 1.4

We have the differential system

ẋ = y,

ẏ = z,

ż = v,

v̇ = −µ2x + 2µy − (1 + µ2)z + 2µv + εF (x, y, z, v).

(5.1)

The unperturbed system has a unique singular point at the origin with eigenvalues
±i, µ, µ. We shall write system (5.1) in such a way that the linear part at the
origin will be in its real Jordan normal form. Then doing the change of variables
(x, y, z, v) → (X, Y, Z, V ) given by

X
Y
Z
V

 =


0 µ2 −2µ 1
µ2 −2µ 1 0
1 0 1 0
−µ 1 −µ 1




x
y
z
v

 ,
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the differential system (5.1), becomes

Ẋ = −Y + εG(X, Y, Z, V ),

Ẏ = X,

Ż = µZ + V,

V̇ = µV + εG(X, Y, Z, V ),

(5.2)

where G(X, Y, Z, V ) = F (A,B, C, D) with

A =
−Y + Z + 2(−V + X)µ + (Y + Z)µ2

(1 + µ2)2
,

B =
V − µ2V + (−1 + µ2)X + µ(−2Y + Z + µ2Z)

(1 + µ2)2
,

C =
Y − µ2Y + µ(−2X + 2V + µZ(1 + µ2))

(1 + µ2)2
,

D =
X − µ2X + µ(2Y + µ(µZ(1 + µ2) + (3 + µ2)V ))

(1 + µ2)2
.

Now we pass from the cartesian variables (X, Y, Z, V ) to the cylindrical coordinates
(r, θ, Z, V ) of R4 where X = r cos θ and Y = r sin θ. In these new variables the
differential system (5.2) can be written as

ṙ = ε cos θ H(r, θ, Z, V ),

θ̇ = 1− ε
sin θ

r
H(r, θ, Z, V ),

Ż = µZ + V,

V̇ = µV + εH(r, θ, Z, V ),

(5.3)

where H(r, θ, Z, V ) = F (a, b, c, d) and

a =
Z + µ2Z − 2µV + 2µr cos θ + r(µ2 − 1) sin θ

(1 + µ2)2
,

b =
V − µ2V + µZ(1 + µ2) + (µ2 − 1)r cos θ − 2µr sin θ

(1 + µ2)2
,

c =
µ[µ(1 + µ2)Z + 2V − 2r cos θ] + (1− µ2)r sin θ

(1 + µ2)2
,

d =
(1− µ2)r cos θ + µ[µ(µ(1 + µ2)Z + (3 + µ2)V ) + 2r sin θ]

(1 + µ2)2
.

Now we change the independent variable from t to θ, and denoting the derivative
with respect to θ by a prime the differential system (5.3) becomes

r′ = ε cos θ H + O(ε2),

Z ′ = µ Z + V + ε
(µZ + V ) sin θ

r
H + O(ε2),

V ′ = µV + ε
r + µV sin θ

r
H + O(ε2),

(5.4)

where H = H(r, θ, Z, V ).
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We shall apply Theorem 2.1 to the differential system (5.4). We note that system
(5.4) can be written as system (2.1) taking

x =

 r
Z
V

 , t = θ, F0(θ,x) =

 0
µZ + V

µV

 ,

F1(θ,x) =

 cos θ H
(µZ+V ) sin θ

r H
r+µV sin θ

r H

 .

We shall study the periodic solutions of system (2.2) in our case; i.e., the periodic
solutions of system (5.4) with ε = 0. Clearly these periodic solutions are

(r(θ), Z(θ), V (θ)) = (r0, 0, 0),

for any r0 > 0; i.e. are all the circles of the plane Z = V = 0 of system (5.3). Of
course all these periodic solutions in the coordinates (r, Z, V ) have period 2π in the
variable θ.

We shall describe the different elements which appear in the statement of The-
orem 2.1 in the particular case of the differential system (5.4). Thus we have that
k = 1 and n = 3. Let r1 > 0 be arbitrarily small and let r2 > 0 be arbitrarily
large. Then we take the open bounded subset W of R as W = (r1, r2), α = r0 and
β : [r1, r2] → R2 defined as β(r0) = (0, 0). The set Z is

Z = {zα = (r0, 0, 0), r0 ∈ [r1, r2]} .

Clearly for each zα ∈ Z we can consider that the solution x(θ) = zα = (r0, 0, 0) is
2π-periodic.

Computing the fundamental matrix Mzα
(θ) of the linear differential system (5.4)

with ε = 0 associated to the 2π-periodic solution zα = (r0, 0, 0) such that Mzα(0)
be the identity of R3, we obtain

M(θ) = Mzα
(θ) =

1 0 0
0 eµ θ θeµ θ

0 0 eµ θ

 .

Note that the matrix Mzα(θ) does not depend of the particular periodic orbit zα.
Since the matrix

M−1(0)−M−1(2π) =

0 0 0
0 1− e−2πµ 2πe−2πµ

0 0 1− e−2πµ

 ,

satisfies the assumptions of statement (ii) of Theorem 2.1 we can apply it to system
(5.4).

Now ξ : R3 → R is ξ(r, Z, V ) = r. We calculate the function

F(r0) = F(α) = ξ
( 1

T

∫ T

0

M−1
zα

(t)F1(t,x(t, zα))dt
)

=
1
2π

∫ 2π

0

cos θ F (A,B, C,D) dθ,

where the expressions of A, B, C and D are the ones given in the statement of
Theorem 1.4. Then by Theorem 2.1 we have that for every simple zero r∗0 ∈ [r1, r2]
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of the function F(r0) we have a periodic solution (r, Z, V )(θ, ε) of system (5.4) such
that

(r, Z, V )(0, ε) → (r∗0 , 0, 0) as ε → 0.

Going back through the changes of coordinates we obtain a periodic solution
(r, θ, Z, V )(t, ε) of system (5.3) such that

(r, θ, Z, V )(0, ε) → (r∗0 , 0, 0, 0) as ε → 0.

Consequently we obtain a periodic solution (X, Y, Z, V )(t, ε) of system (5.2) such
that

(X, Y, Z, V )(0, ε) → (r∗0 , 0, 0, 0) as ε → 0.

We have a periodic solution (x, y, z, v)(t, ε) of system (5.1) such that

x(t, ε) → r∗0(2µ cos t + (µ2 − 1) sin t)
(1 + µ2)2

as ε → 0.

Of course, it is easy to check that the previous expression provides a periodic
solution of the linear differential equation

....
x − 2µ

...
x + (1 + µ2)ẍ− 2µẋ + µ2x = 0.

Hence Theorem 1.4 is proved.

6. Proof of corollaries 1.5 and 1.6

Proof of Corollary 1.5. If F (x, ẋ, ẍ,
...
x ) = ẋ − ẋ3, then the function F(r0) of the

statement of Theorem 1.4 is

F(r0) =
r0(µ2 − 1)(4(1 + µ2)2 − 3r2

0)
8(1 + µ2)4

.

The function F(r0) has the positive zero

r∗0 =
2
√

1 + 2µ2 + µ4

√
3

.

The derivative

F ′(r∗0) =
1− µ2

(1 + µ2)2
6= 0.

The corollary follows from Theorem 1.4. �

Proof of Corollary 1.6. If F (x, ẋ, ẍ,
...
x ) = sin x, it is not difficult to show that

F(r0) = J1

(r0

2
)
,

where J1(z) is the Bessel function of first kind,when µ = 1. This function has
infinitely many simple zeros when r0 → ∞, see for more details [1]. In this case
the differential system has as many periodic orbits as we want taking ε sufficiently
small. Hence the corollary is proved. �
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7. Proof of Theorem 1.7

We have the differential system
ẋ = y,

ẏ = z,

ż = v,

v̇ = λy + λv − z + εF (x, y, z, v).

(7.1)

The unperturbed system has a unique singular point at the origin with eigenvalues
±i, 0, λ. We shall write system (7.1) in such a way that the linear part at the
origin will be in its real Jordan normal form. Then doing the change of variables
(x, y, z, v) → (X, Y, Z, V ) given by

X
Y
Z
V

 =


0 0 −λ 1
0 −λ 1 0
0 1 0 1
−λ 1 −λ 1




x
y
z
v

 ,

the differential system (7.1), becomes

Ẋ = −Y + εG(X, Y, Z, V ),

Ẏ = X,

Ż = λZ + εG(X, Y, Z, V ),

V̇ = εG(X, Y, Z, V ),

(7.2)

where G(X, Y, Z, V ) = F (A,B, C, D) with

A =
Z + λ(−Y + λX)− (1 + λ2)V

λ + λ3
,

B = −X − Z + λY

1 + λ2
,

C =
Y − λX + λZ

1 + λ2
,

D =
X + λ(Y + λZ)

1 + λ2
.

Note that λ cannot be zero. Now we pass from the cartesian variables (X, Y, Z, V )
to the cylindrical ones (r, θ, Z, V ) of R4, where X = r cos θ and Y = r sin θ. In
these new variables the differential system (7.2) can be written as

ṙ = ε cos θ H(r, θ, Z, V ),

θ̇ = 1− ε
sin θ

r
H(r, θ, Z, V ),

Ż = λZ + εH(r, θ, Z, V ),

V̇ = εH(r, θ, Z, V ),

(7.3)

where H(r, θ, Z, V ) = F (a, b, c, d) with

a =
Z − (1 + λ2)V + λ(λ cos θ − sin θ)r

λ + λ3
,

b =
−(cos θ + λ sin θ)r + Z

1 + λ2
,



EJDE-2012/22 LIMIT CYCLES 13

c =
(−λ cos θ + sin θ)r + λZ

1 + λ2
,

d =
(cos θ + λ sin θ)r + λ2Z

1 + λ2
.

Now we change the independent variable from t to θ, and denoting the derivative
with respect to θ by a prime the differential system (7.3) becomes

r′ = ε cos θ H + O(ε2),

Z ′ = λZ + ε
r + λZ sin θ

r
H + O(ε2),

V ′ = εH + O(ε2),

(7.4)

where H = H(r, θ, Z, V ).
We shall apply Theorem 2.1 to the differential system (7.4). We note that system

(7.4) can be written as system (2.1) taking

x =

 r
Z
V

 , t = θ, F0(θ,x) =

 0
λ Z
0

 ,

F1(θ,x) =

 cos θ H
r+λ sin θ Z

r H
H

 .

We shall study the periodic solutions of system (2.2) in our case; i.e., the periodic
solutions of system (7.4) with ε = 0. Clearly these periodic solutions are

(r(θ), Z(θ), V (θ)) = (r0, 0, V0),

for any r0 > 0. These are all the circles in the plane Z = 0, V = V0 of system (7.3).
Of course all these periodic solutions in the coordinates (r, Z, V ) have period 2π in
the variable θ.

We shall describe the different elements which appear in the statement of The-
orem 2.1 in the particular case of the differential system (7.4). Thus we have that
k = 2 and n = 3. We take the open bounded subset W of R2 as

W = {(r0, V0) : 0 < r2
0 + V 2

0 < R2},

with R > 0 arbitrarily large. Here α = (r0, V0) and β : W → R, β(r0, V0) = 0. The
set Z is

Z = {zα = (r0, V0, 0), (r0, V0) ∈ W} .

Clearly for each zα ∈ Z we can consider that the solution x(θ) = zα = (r0, V0, 0)
is 2π-periodic.

Computing the fundamental matrix Mzα(θ) of the linear differential system (7.4)
with ε = 0 associated to the 2π-periodic solution zα = (r0, V0, 0) such that Mzα

(0)
be the identity of R3, we obtain

M(θ) = Mzα(θ) =

1 0 0
0 1 0
0 0 eλθ

 .
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Note that the matrix Mzα(θ) does not depend of the particular periodic orbit zα.
Since the matrix

M−1(0)−M−1(2π) =

0 0 0
0 0 0
0 0 1− e−2πλ

 ,

satisfies the assumptions of statement (ii) of Theorem 2.1, for λ 6= 0 , we can apply
it to system (7.4).

Now ξ : R3 → R2 is ξ(r, Z, V ) = (r, V ). We calculate the function

F(r0, V0) = F(α) = ξ
( 1

T

∫ T

0

M−1
zα

(t)F1(t,x(t, zα))dt
)

=

(
1
2π

∫ 2π

0
cos θ F (A,B, C,D) dθ

1
2π

∫ 2π

0
F (A,B, C,D) dθ

)
=
(
F1(r0, V0)
F2(r0, V0)

)
,

where the expression of A, B, C and D are the ones given in the statement of
Theorem 1.7. Then, by Theorem 2.1 we have that for every simple zero (r∗0 , V ∗

0 ) ∈
W of the function F(r0, V0) we have a periodic solution (r, Z, V )(θ, ε) of system
(7.4) such that

(r, Z, V )(0, ε) → (r∗0 , 0, V ∗
0 ) as ε → 0.

Going back through the changes of coordinates we obtain a periodic solution
(r, θ, Z, V )(t, ε) of system (7.3) such that

(r, θ, Z, V )(0, ε) → (r∗0 , 0, 0, V ∗
0 ) as ε → 0.

Consequently we obtain a periodic solution (X, Y, Z, V )(t, ε) of system (7.2) such
that

(X, Y, Z, V )(0, ε) → (r∗0 , 0, 0, V ∗
0 ) as ε → 0.

We have a periodic solution (x, y, z, v)(t, ε) of system (7.1) such that

x(t, ε) → − (1 + λ2)V ∗
0 + (λ sin t− λ2 cos t)r∗0

λ + λ3
as ε → 0.

Of course, it is easy to check that the previous expression provides a periodic
solution of the linear differential equation

....
x − λ

...
x + ẍ − λẋ = 0 Hence Theorem

1.7 is proved.

8. Proof of corollary 1.8

If F (x, ẋ, ẍ,
...
x ) = x−x3, then the function F(r0, V0) of the statement of Theorem

1.7 provides the system

F1(r0, V0) = −r0(12V 2
0 (1 + λ2) + λ2(3r2

0 − 4(1 + λ2)))
8λ(1 + λ2)2

= 0,

F2(r0, V0) =
V0(2V 2

0 (1 + λ2) + λ2(3r2
0 − 2(1 + λ2)))

2λ3(1 + λ2)
= 0.

This system has the three solutions (r0, V0) with r0 > 0:
(
2
√

2(1+λ2)
15 ,− λ√

5

)
,(

2
√

2(1+λ2)
15 , λ√

5

)
and

(
2
√

1+λ2
√

3
, 0
)
. The corresponding determinants of the Ja-

cobian matrix are 4
5+5λ2 , 4

5+5λ2 , − 1
1+λ2 , respectively. The corollary follows from

Theorem 1.7.



EJDE-2012/22 LIMIT CYCLES 15

9. Proof of Theorem 1.9.

We have the differential system

ẋ = y,

ẏ = z,

ż = v,

v̇ = −z + εF (x, y, z, v).

(9.1)

The unperturbed system has a unique singular point at the origin with eigenvalues
±i, 0, 0. We shall write system (9.1) in such a way that the linear part at the
origin will be in its real Jordan normal form. Then doing the change of variables
(x, y, z, v) → (X, Y, Z, V ) given by

X
Y
Z
V

 =


0 0 0 1
0 0 1 0
0 1 0 1
1 0 1 0




x
y
z
v

 ,

the differential system (9.1), becomes

Ẋ = −Y + εG(X, Y, Z, V ),

Ẏ = X,

Ż = εG(X, Y, Z, V ),

V̇ = Z,

(9.2)

where G(X, Y, Z, V ) = F (A,B, C, D) with

A = V − Y,

B = −X + Z,

C = Y,

D = X.

Now we pass from the cartesian variables (X, Y, Z, V ) to the cylindrical variables
(r, θ, Z, V ) of R4, where X = r cos θ and Y = r sin θ. In these new variables the
differential system (9.2) can be written as

ṙ = ε cos θ H(r, θ, Z, V ),

θ̇ = 1− ε
sin θ

r
H(r, θ, Z, V ),

Ż = εH(r, θ, Z, V ),

V̇ = Z,

(9.3)

where H(r, θ, Z, V ) = F (a, b, c, d) with

a = V − r sin θ,

b = Z − r cos θ,

c = r sin θ,

d = r cos θ.
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Now we change the independent variable from t to θ, and denoting the derivative
with respect to θ by a prime the differential system (9.3) becomes

r′ = ε cos θ H + O(ε2),

Z ′ = εH + O(ε2),

V ′ = Z + ε
Z sin θ

r
H + O(ε2),

(9.4)

where H = H(r, θ, Z, V ).
We shall apply Theorem 2.1 to the differential system (9.4). We note that system

(9.4) can be written as system (2.1) taking

x =

 r
Z
V

 , t = θ, F0(θ,x) =

 0
0
Z

 ,

F1(θ,x) =

 cos θ H
H

Z sin θ
r H.

 .

We shall study the periodic solutions of system (2.2) in our case, i.e. the periodic
solutions of the system (9.4) with ε = 0. Clearly these periodic solutions are

(r(θ), Z(θ), V (θ)) = (r0, 0, V0),

for any r0 > 0 . There are all the circles in the plane Z = 0, V = V0 of system
(9.3). Of course all these periodic solutions in the coordinates (r, Z, V ) have period
2π in the variable θ.

We shall describe the different elements which appear in the statement of The-
orem 2.1 in the particular case of the differential system (9.4). Thus we have that
k = 2 and n = 3. We take the open bounded subset W of R2 as

W = {(r0, V0) : 0 < r2
0 + V 2

0 < R2},

where R > 0 is arbitrarily large. Here α = (r0, V0) and β : W → R with β(r0, V0) =
0. The set Z is

Z = {zα = (r0, V0, 0), (r0, V0) ∈ W} .

Clearly for each zα ∈ Z we can consider that the solution x(θ) = zα = (r0, V0, 0)
is 2π-periodic.

Computing the fundamental matrix Mzα
(θ) of the linear differential system (9.4)

with ε = 0 associated to the 2π-periodic solution zα = (r0, V0, 0) such that Mzα(0)
be the identity of R3, we obtain

M(θ) = Mzα(θ) =

1 0 0
0 1 θ
0 0 1

 .

Note that the matrix Mzα(θ) does not depend of the particular periodic orbit zα.
Since the matrix

M−1(0)−M−1(2π) =

0 0 0
0 0 2π
0 0 0

 ,

This matrix does not verify the assumption of statement (ii) of Theorem 2.1. There-
fore we cannot apply it to system (9.4).
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[2] A. Buică, J. P. Françoise, J. Llibre; Periodic solutions of nonlinear periodic differential
systems with a small parameter, Communication on Pure and Applied Analysis 6 (2007),
103–111.

[3] A. R. Champneys; Homoclinic orbits in reversible systems and their applications in mechan-
ics, fluids and optics, Physica D 112 (1998), 158–186.

[4] J. Chaparova; Existence and numerical approximations of periodic solutions of semilinear
fourth-order differential equations, J. Math. Anal. Appl. 273 (2002), 121–136.

[5] M. Conti, S. Terracini, G. Verzini; Infinitely many solutions to fourth order superlinear
periodic problems, Trans. Amer. Math. Soc. 356 (2003), 3283–3300.

[6] J. O. C. Ezeilo, H. O. Tejumola; Periodic solutions of a certain fourth order differential
equation, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 66 (1979), 344–350.

[7] C. H. Feng; On the existence of periodic solutions to certain fourth differential equation,
Ann. Differential Equations 11 (1995), 46–50.

[8] J. Llibre, N. Sellami, A. Makhlouf; Limit cycles for a class of fourth-order differential equa-
tions, Applicable Analysis 88 (2009), 1617-1630.

[9] I.G. Malkin; Some problems of the theory of nonlinear oscillations, (Russian) Gosudarstv.
Izdat. Tehn.-Teor. Lit., Moscow, 1956.

[10] M. Roseau; Vibrations non linéaires et théorie de la stabilité, (French) Springer Tracts in
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