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SIMULTANEOUS AND NON-SIMULTANEOUS BLOW-UP AND
UNIFORM BLOW-UP PROFILES FOR REACTION-DIFFUSION

SYSTEM

ZHENGQIU LING, ZEJIA WANG

Abstract. This article concerns the blow-up solutions of a reaction-diffusion
system with nonlocal sources, subject to the homogeneous Dirichlet boundary
conditions. The criteria used to identify simultaneous and non-simultaneous
blow-up of solutions by using the parameters p and q in the model are proposed.
Also, the uniform blow-up profiles in the interior domain are established.

1. Introduction and description of results

In this article, we investigate the following reaction-diffusion system with nonlo-
cal sources

ut = ∆u + ‖uv‖p
α, (x, t) ∈ Ω× (0, T ), (1.1)

vt = ∆v + ‖uv‖q
β , (x, t) ∈ Ω× (0, T ) (1.2)

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (1.3)

u(x, t) = 0, v(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ), (1.4)

where Ω = BR = {|x| < R} ⊂ RN (N ≥ 1), α, β ≥ 1, p, q > 0, and the continuous
functions u0(x), v0(x) are nonnegative, nontrivial, radially symmetric, decreasing
with |x|, and vanish on ∂BR, where ‖ · ‖α

α =
∫
Ω
| · |α dx.

Nonlinear parabolic systems (1.1)-(1.4) can be used to describe some reaction
diffusion phenomena, Such as heat propagations in a two-component combustible
mixture [3], chemical reactions [6], interaction of two biological groups without
self-limiting [10], etc., where u and v represent the temperatures of two different
materials during a propagation, the thicknesses of two kinds of chemical reactants,
the densities of two biological groups during a migration, etc. Using the methods
of [7, 12, 4] we know that (1.1)-(1.4) has a local nonnegative classical solution.
Moreover, if p, q ≥ 1, then the uniqueness holds.

In recent years, many results on blow-up solutions have been obtained for the
nonlinear parabolic system. We will recall several results in the following. As for the
other related works on the global existence and blow-up of solutions of the nonlinear
parabolic system, they can be found in [15, 1, 5, 14] and references therein.
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Li, Huang and Xie in [8] and Deng, Li and Xie in [2] considered the following
two systems, respectively,

ut = ∆u +
∫

Ω

um(x, t)vn(x, t) dx, vt = ∆v +
∫

Ω

up(x, t)vq(x, t) dx,

with x ∈ Ω, t > 0; and

ut = ∆um + a‖v‖p
α, vt = ∆vn + b‖u‖q

β , (x, t) ∈ Ω× (0, T ).

The authors showed some results on the global solutions, the blow-up solutions and
the blow-up profiles. In 2002, Zheng, Zhao and Chen in [18] studied the problem

ut = ∆u + f1(u, v), vt = ∆v + f2(u, v), (x, t) ∈ Ω× (0, T ) (1.5)

with homogeneous Dirichlet boundary conditions, where

f1(u, v) = emu(x,t)+pv(x,t), f2(u, v) = equ(x,t)+v(x,t).

The simultaneous blow-up rates are obtained for radially symmetric blow-up solu-
tions in the exponent region {0 ≤ m < q, 0 ≤ n < p}.

Later, Zhao and Zheng in [17], Li and Wang in [9] studied the localized problem
(1.5) with the more general Ω ⊂ RN and

f1(u, v) = emu(x0,t)+pv(x0,t), f2(u, v) = equ(x0,t)+nv(x0,t), x0 ∈ Ω.

The critical blow-up exponents were discussed. Uniform blow-up profiles for simul-
taneous blow-up solutions were proved in the exponent region {0 ≤ m ≤ q, 0 ≤ n ≤
p}.

Our present work is motivated by the above mentioned papers, the main purpose
of this paper is to identify the simultaneous and non-simultaneous blow-up of the
solutions and establish the uniform blow-up profiles for the system (1.1)–(1.4).

For convenience, we introduce a pair of parameters σ and θ, the solution of(
p− 1 p

q q − 1

) (
σ
θ

)
=

(
1
1

)
, (1.6)

namely,

σ =
p− (q − 1)
p + q − 1

, θ =
q − (p− 1)
p + q − 1

. (1.7)

This paper is organized as follows. In the next Section, we investigate the simul-
taneous and non-simultaneous blow-up of the solutions for the system (1.1)–(1.4),
and give the blow-up criteria. In Section 3, we deal with the blow-up rates of the
solutions.

2. Simultaneous and non-simultaneous blow-up

In this section, we discuss the simultaneous and non-simultaneous blow-up phe-
nomena for the system (1.1)–(1.4), and propose a complete and optimal classifica-
tion to identify the simultaneous and non-simultaneous blow-up solutions.

For problem (1.1)-(1.4), because of the nonlinear sources, there exist solution
(u, v) that blow up in finite time, T , if and only if the exponents p, q verify any of
conditions, p > 1, q > 1 or pq > (q−1)(p−1). In particular, the component u(or v)
can blow up for the large initial data if p > q − 1(or q > p − 1), see [9, 12]. So
there may be non-simultaneous blow-up, that is to say that one component blows
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up while the other remains bounded. On the other hand, the simultaneous blow-up
means that

lim sup
t→T

‖u(·, t)‖∞ = lim sup
t→T

‖v(·, t)‖∞ = +∞.

Assume the initial data u0(x), v0(x) satisfy

∆u0(x) + ‖u0v0‖p
α − εϕ(x)up

0(0)vp
0(0) ≥ 0, x ∈ BR, (2.1)

∆v0(x) + ‖u0v0‖q
β − εϕ(x)uq

0(0)vq
0(0) ≥ 0, x ∈ BR (2.2)

for some a constant ε ∈ (0, 1), where ϕ(x) is the first eigenfunction of

−∆ϕ = λϕ, x ∈ BR; ϕ = 0, x ∈ ∂BR,

normalized by ‖ϕ‖∞ = 1, ϕ > 0 in BR. In addition, by using the methods in
[16], it is easy to check that ut, vt ≥ 0 for (x, t) ∈ BR × (0, T ) by the comparison
principle.

Our results about the simultaneous and non-simultaneous blow-up criteria are
as follows.

Theorem 2.1. If p + q > 1, then there exists initial data such that the non-
simultaneous blow-up occurs in (1.1)–(1.4) if and only if σ < 0 (or θ < 0) ( for
v(or u) blowing up alone, respectively).

Theorem 2.2. If p + q > 1, then any blow-up in (1.1)–(1.4) is non-simultaneous
if and only if σ ≥ 0 with θ < 0 ( for u blowing up alone ), or θ ≥ 0 with σ < 0 (
for v blowing up alone).

Corollary 2.3. If p + q > 1, then any blow-up in (1.1)–(1.4) is simultaneous if
and only if σ ≥ 0 and θ ≥ 0.

Similar to the study in[8], it is seen that

Corollary 2.4. All solutions are global in (1.1)–(1.4) if and only if σ < 0 and
θ < 0(i.e., p + q < 1).

In summary, the complete and optimal classification for simultaneous and non-
simultaneous blow-up solutions of the problem (1.1)-(1.4) can be described by Fig-
ure 1
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Figure 1. Regions of simultaneous and non-simultaneous blow-up

The key clues for the classification of simultaneous and non-simultaneous blow-
up solutions are the signs of p− (q − 1), q − (p− 1) and p + q − 1. The conditions
p > q − 1 and p + q > 1 imply that u may blow up by itself but cannot provide
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sufficient help to the blow-up of v (with small v0), while q < p − 1 ensures that v
can provide effective help to the blow-up of u, but v remains bounded.

Before we give the proof of Theorem 2.1, we first introduce the following lemma.
Let φ(x, t) satisfy

φt = ∆φ, (x, t) ∈ BR × (0, T ); φ = 0, (x, t) ∈ ∂BR × (0, T )

with
φ(x, 0) = ϕ(x), x ∈ BR.

Lemma 2.5. Under conditions (2.1) and (2.2), the solution (u, v) of (1.1)–(1.4)
satisfies

ut(x, t) ≥ εφ(x, t)up(0, t)vp(0, t), (x, t) ∈ BR × [0, T ), (2.3)

vt(x, t) ≥ εφ(x, t)uq(0, t)vq(0, t), (x, t) ∈ BR × [0, T ). (2.4)

Proof. Since that the proofs of the inequalities (2.3) and (2.4) are similar, we prove
only (2.3). Let

J(x, t) = ut(x, t)− εφ(x, t)up(0, t)vp(0, t).
It is easy to check that for ε small enough since ut, vt ≥ 0, we obtain

Jt −∆J =
(
‖uv‖p

α

)
t
− εφ

(
up(0, t)vp(0, t)

)
t
≥ 0, (x, t) ∈ BR × (0, T ),

J(x, t) = 0, (x, t) ∈ ∂BR × (0, T ),

J(x, 0) = ∆u0(x) + ‖u0v0‖p
α − εϕ(x)up

0(0)vp
0(0) ≥ 0, x ∈ BR.

Consequently, (2.3) is true by the comparison principle. �

Proof of Theorem 2.1. Without loss of generality, we only prove that there exist
suitable initial data such that u blows up while v remains bounded if and only if
θ < 0.

Assume θ < 0, namely, p − 1 > q and p > 1 by Figure 1 and (1.7). From (2.3),
we obtain that

ut(0, t) ≥ εφ(0, T )up(0, t)vp
0(0), t ∈ [0, T ). (2.5)

Integrating the above inequality (2.5) from t to T , we have the estimate for u as
follows

u(0, t) ≤
(
ε(p− 1)φ(0, T )vp

0(0)
)−1/(p−1)

(T − t)−1/(p−1), t ∈ [0, T ). (2.6)

At the same time, since the initial data (u0, v0) is radially symmetric and non-
increasing, therefore the (u, v) is also radial symmetrical and non-increasing; i.e.,
ur(r, t), vr(r, t) ≤ 0 for r ∈ [0, R). Thus, u(x, t) and v(x, t) always reach their
maxima at x = 0, which means that

∆u(0, t) ≤ 0, ∆v(0, t) ≤ 0.

Hence, from (1.1) and (1.2), we know that there exist constants C1, C2 > 0 such
that

ut(0, t) ≤ ‖uv‖p
α ≤ C1u

p(0, t)vp(0, t), t ∈ [0, T )

vt(0, t) ≤ ‖uv‖q
β ≤ C2u

q(0, t)vq(0, t), t ∈ [0, T ).
(2.7)

Let

Γ(x, y, t, s) =
1

[4π(t− s)]N/2
exp

{
− |x− y|2

4(t− s)
}

be the fundamental solution of the heat equation. Suppose that (ũ0, ṽ0) is a pair of
initial data such that the solution of (1.1)–(1.4) blows up. Fix radially symmetrical
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v0(≥ ṽ0) in BR and take constant M1 > v0(x). By the proof of [11, Theorem 1.1],
we know that if u0 is large with v0 fixed then T becomes small. Therefore, let
u0(≥ ũ0) be large such that T becomes small and satisfies

M1 ≥ v0(0) +
p− 1

p− 1− q

(
ε(p− 1)φ(0, T )vp

0(0)
)− q

p−1 T
p−1−q

p−1 ‖M1‖q
β ,

where ‖M1‖q
β = (

∫
Ω

Mβ
1 dx)q/β . Consider the following auxiliary problem

v̄t = ∆v̄ +
(
ε(p− 1)φ(0, T )vp

0(0)
)− q

p−1 (T − t)−
q

p−1 ‖M1‖q
β , (x, t) ∈ BR × (0, T ),

v̄(x, t) = 0, (x, t) ∈ ∂BR × (0, T ),

v̄(x, 0) = v0(x), x ∈ BR.

Since p− 1 > q, we obtain by Green’s identity that

v̄ ≤ v0(0) +
p− 1

p− 1− q

(
ε(p− 1)φ(0, T )vp

0(0)
)− q

p−1
T

p−1−q
p−1 ‖M1‖q

β ≤ M1,

and hence v̄ satisfies

v̄t ≥ ∆v̄ +
(
ε(p− 1)φ(0, T )vp

0(0)
)− q

p−1 (T − t)−
q

p−1 ‖v̄(x, t)‖q
β .

On the other hand, v satisfies

vt ≤ ∆v +
(
ε(p− 1)φ(0, T )vp

0(0)
)− q

p−1 (T − t)−
q

p−1 ‖v(x, t)‖q
β .

Therefore, by the comparison principle, we conclude v ≤ v̄ ≤ M1.
Now assume that u blows up while v remains bounded. By (2.7) we have

ut(0, t) ≤ Cup(0, t), for t ∈ [0, T ).

This implies p > 1 and the estimate for u that

u(0, t) ≥
(
C(p− 1)

)−1/(p−1)(T − t)−1/(p−1).

Therefore, by using (2.4), we have

vt(0, t) ≥ εφ(0, T )
(
C(p− 1)

)− q
p−1 vq

0(0)(T − t)−
q

p−1 .

By integrating, we obtain that

v(0, t) ≥ v0(0) + εφ(0, T )
(
C(p− 1)

)− q
p−1 vq

0(0)
∫ t

0

(T − s)−
q

p−1 ds. (2.8)

The boundedness of v requires p− 1 > q from (2.8), that is θ < 0. Thus, the proof
is complete. �

Proof of Theorem 2.2. We only treat the case of u blowing up and v remains
bounded.

Assume σ ≥ 0 with θ < 0; that is p ≥ q− 1, q < p− 1 and p > 1 by Figure 1 and
(1.7). From (2.3) and (2.7), we have

vp−q(0, t)vt(0, t) ≤ C2

εφ(0, T )
uq−p(0, t)ut(0, t), t ∈ [0, T ). (2.9)

By Theorem 2.1, it is impossible for v blowing up alone under σ ≥ 0 with θ < 0.
Then we show that v is bounded. In fact, by integrating the inequality (2.9) from
0 to t, we have

vp−q+1(0, t) ≤ C − Cu−(p−q−1)(0, t)
for some a C > 0. Therefore, we can get the boundedness of v(0, t).
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Now, assume that any blow-up must be the case for u blowing up alone. This
requires θ < 0 by Theorem 2.1. Again by Theorem 2.1, if in addition σ < 0, there
exists the initial data such that v blows up alone. Therefore, it has to be satisfied
that σ ≥ 0. Then, the proof is complete. �

3. Uniform Blow-up Profiles

In this section, we study the uniform blow-up profiles for system (1.1)–(1.4). At
first, the following result of Souplet for a single diffusion equation with nonlocal
nonlinear sources [13, Theorem 4.1] will play a basic role in our discussion.

Lemma 3.1. Let u ∈ C2,1(Ω̄× (0, T ∗)) be a solution of the problem

ut = ∆u + g(t), (x, t) ∈ Ω× (0, T ∗),

u(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ∗),

u(x, 0) = u0(x), x ∈ Ω,

where g(t) is nonnegative and may depend on the solution u. Then

lim
t→T∗

‖u(·, t)‖∞ = +∞ (3.1)

if and only if
∫ t

0
g(s) ds = +∞. Furthermore, if (3.1) is fulfilled, then

lim
t→T∗

u(x, t)
G(t)

= lim
t→T∗

‖u(·, t)‖∞
G(t)

= 1

uniformly on compact subsets of Ω, where G(t) =
∫ t

0
g(s) ds.

For convenience, we denote

f(t) = ‖uv‖p
α, g(t) = ‖uv‖q

β , F (t) =
∫ t

0

f(s) ds, G(t) =
∫ t

0

g(s) ds.

According to the Lemma 3.1, we have the following result.

Lemma 3.2. Assume u, v ∈ C2,1(Ω̄× [0, T )) are the solutions of (1.1)–(1.4). If u
and v blow up simultaneously in the finite time T ∗, then we have

lim
t→T∗

u(x, t)
F (t)

= 1, lim
t→T∗

v(x, t)
G(t)

= 1

uniformly on compact subsets of Ω, and

lim
t→T∗

F (t) = lim
t→T∗

G(t) = ∞.

We remark that if we assume that only u (or v) blows up in finite time T ∗, then
the above conclusions about u ( or v) and F (or G) are also valid.

Throughout this section the notation f(t) ∼ g(t) is used to describe such func-
tions f(t) and g(t) satisfying f(t)/g(t) → 1 as t → T ∗. When u and v blow up
simultaneously, we have the following results about the uniform blow-up profiles
for u and v.

Theorem 3.3. Let (u, v) be a solution of (1.1)–(1.4) with simultaneous blow-up
time T ∗. Then the following limits hold uniformly on any compact subset of Ω:

(1) If σ > 0 and θ > 0, then

lim
t→T∗

u(x, t)(T ∗ − t)σ =
( |Ω|p/α

σ
(|Ω|

q
β−

p
α

σ

θ
)p/(p+1−q)

)−σ

, (3.2)
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lim
t→T∗

v(x, t)(T ∗ − t)θ =
( |Ω|q/β

θ
(|Ω|

p
α−

q
β

θ

σ
)q/(q+1−p)

)−θ

. (3.3)

(2) If σ = 0, then

lim
t→T∗

u2(x, t)| ln(T ∗ − t)|−1 =
2
p
|Ω|

p
α−

q
β , (3.4)

lim
t→T∗

vp(x, t)
(
ln v(x, t)

) q
2 (T ∗ − t) =

1
p
|Ω|−q/β

(
2|Ω|

p
α−

q
β
)−q/2

. (3.5)

(3) If θ = 0, then we have

lim
t→T∗

uq(x, t)
(
lnu(x, t)

) p
2 (T ∗ − t) =

1
q
|Ω|−p/α

(
2|Ω|

q
β−

p
α
)−p/2

, (3.6)

lim
t→T∗

v2(x, t)| ln(T ∗ − t)|−1 =
2
q
|Ω|

q
β−

p
α . (3.7)

Proof. From Lemma 3.2, we know that u(x, t) ∼ F (t) and v(x, t) ∼ G(t), then

lim
t→T∗

uα(x, t)
Fα(t)

= lim
t→T∗

vα(x, t)
Gα(t)

= 1,

lim
t→T∗

uβ(x, t)
F β(t)

= lim
t→T∗

vβ(x, t)
Gβ(t)

= 1.

By the Lebesgue dominated convergence theorem, we find that

F ′(t) = f(t) = ‖uv‖p
α ∼ |Ω|p/αF p(t)Gp(t), (3.8)

G′(t) = g(t) = ‖uv‖q
β ∼ |Ω|q/βF q(t)Gq(t). (3.9)

Hence,
F q−p dF ∼ |Ω|

p
α−

q
β Gp−q dG. (3.10)

(1) Note that the conditions σ > 0 and θ > 0 imply that p + 1 > q, q + 1 > p
since p + q > 1. Integrating (3.10) from 0 to t, we obtain

F q+1−p(t) ∼ |Ω|
p
α−

q
β

q + 1− p

p + 1− q
Gp+1−q(t) = |Ω|

p
α−

q
β

θ

σ
Gp+1−q(t). (3.11)

Combining (3.9) and (3.11), we can obtain

G′(t) ∼ |Ω|q/β
(
|Ω|

p
α−

q
β

θ

σ

) q
q+1−p G

2q
q+1−p (t). (3.12)

Since

1− 2q

q + 1− p
= −p + q − 1

q + 1− p
= −1

θ
< 0

and limt→T∗ G(t) = ∞, by integrating (3.12), we obtain

G(t) ∼
( |Ω|q/β

θ

(
|Ω|

p
α−

q
β

θ

σ

) q
q+1−p

)−θ

(T ∗ − t)−θ. (3.13)

From (3.13) and Lemma 3.2, we have

lim
t→t∗

v(x, t)(T ∗ − t)θ =
( |Ω|q/β

θ

(
|Ω|

p
α−

q
β

θ

σ

) q
q+1−p

)−θ

,

which holds uniformly on the compact subsets of Ω.
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Combining (3.8) and (3.11), and applying the similar proofs of F and u, we
obtain that

lim
t→T∗

u(x, t)(T ∗ − t)σ =
( |Ω|p/α

σ

(
|Ω|

q
β−

p
α

σ

θ

) p
p+1−q

)−σ

holds uniformly on the compact subsets of Ω.
(2) When σ = 0, or p + 1 = q, noticing (3.9) and (3.10), we see that

G′(t) ∼ |Ω|q/β
(
2|Ω|

p
α−

q
β
)q/2

Gq(t)
(
lnG(t)

)q/2
. (3.14)

Note that limt→T∗ G(t) = ∞, integrating (3.14) from t(> 0) to T ∗ asserts∫ ∞

G(t)

1
sq(ln s)q/2

ds ∼ |Ω|q/β
(
2|Ω|

p
α−

q
β
)q/2(T ∗ − t). (3.15)

Furthermore,

lim
t→T∗

∫∞
G(t)

s−q(ln s)−q/2 ds

G1−q(t)
(
lnG(t)

)−q/2
= lim

G→∞

∫∞
G

s−q(ln s)−q/2 ds

G1−q
(
lnG

)−q/2
=

1
q − 1

=
1
p
.

That is to say that

p

∫ ∞

G(t)

s−q(ln s)−q/2 ds ∼ G1−q(t)(lnG(t))−q/2 = G−p(t)(lnG(t))−q/2. (3.16)

By (3.15) and (3.16), it indicates

G−p(t)(lnG(t))−q/2 ∼ p|Ω|q/β
(
2|Ω|

p
α−

q
β
)q/2(T ∗ − t). (3.17)

Since limt→T∗ v(x, t) = ∞ uniformly on the compact subset of Ω and limt→T∗ G(t) =
∞, we may claim that the following equivalent is valid uniformly on the compact
subset of Ω,

v(x, t) ∼ G(t) ⇒ ln v(x, t) ∼ lnG(t).

And thus by (3.17), we reach the conclusion

v−p(x, t)(ln v(x, t))−q/2 ∼ p|Ω|q/β
(
2|Ω|

p
α−

q
β
)q/2(T ∗ − t).

Then uniformly on the compact subsets of Ω, it yields

lim
t→T∗

vp(x, t)(ln v(x, t))q/2(T ∗ − t) =
1
p
|Ω|−q/β

(
2|Ω|

p
α−

q
β
)−q/2

.

Since

lnG(t) ∼ 1
2
|Ω|

q
β−

p
α F 2(t),

it follows from (3.8) and (3.17) that

F ′(t)F−p(t) ∼ |Ω|p/αGp(t) ∼ F−q(t)
p(T ∗ − t)

|Ω|
p
α−

q
β . (3.18)

In view of (3.18), we have

1
2
F 2(t) ∼ 1

p
|Ω|

p
α−

q
β | ln(T ∗ − t)|.

Therefore, by Lemma 3.2, we obtain

u2(x, t) ∼ 2
p
|Ω|

p
α−

q
β | ln(T ∗ − t)|;
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that is to say

lim
t→T∗

u2(x, t)| ln(T ∗ − t)|−1 =
2
p
|Ω|

p
α−

q
β

holds uniformly on the compact subsets of Ω.
(3) When θ = 0, the proof is similar to that of the case (2). Then, the proof is

completed. �
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