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BASIC RESULTS ON NONLINEAR EIGENVALUE PROBLEMS
OF FRACTIONAL ORDER

MOHAMMED AL-REFAI

Abstract. In this article, we discuss the basic theory of boundary-value prob-
lems of fractional order 1 < δ < 2 involving the Caputo derivative. By apply-
ing the maximum principle, we obtain necessary conditions for the existence
of eigenfunctions, and show analytical lower and upper bounds estimates of
the eigenvalues. Also we obtain a sufficient condition for the non existence
of ordered solutions, by transforming the problem into equivalent integro-
differential equation. By the method of lower and upper solution, we obtain a
general existence and uniqueness result: We generate two well defined mono-
tone sequences of lower and upper solutions which converge uniformly to the
actual solution of the problem. While some fundamental results are obtained,
we leave others as open problems stated in a conjecture.

1. Introduction

In this article, we study the eigenvalue problem of fractional order

Dδu(t) + g(t)u′ + h(t)u = −λk(t, u), t ∈ (0, 1), 1 < δ < 2, (1.1)

u(0)− αu′(0) = 0, u(1) + βu′(1) = 0, α, β ≥ 0, (1.2)

where k ∈ C1([0, 1]× R), g and h ∈ C[0, 1], and Dδ is the Caputo fractional deriv-
ative of order δ.

In recent years a great interest was devoted to the study of boundary-value
problems of fractional order. There are several definitions of fractional derivative.
However, the most popular ones are the Riemann-Liouville and Caputo fractional
derivatives. The two definitions differ only in the order of evaluation. In the Caputo
definition, we first compute an ordinary derivative then a fractional integral, while
in the Riemann-Liouville definition the operators are reversed. In this article, we use
the Caputo’s fractional derivative since mathematical modeling of many physical
problems requires initial and boundary conditions. These demands are satisfied
using the Caputo fractional derivative. For more details we refer the reader to
[12, 18] and references therein.

The importance of fractional boundary-value problems stems from the fact that
they model various applications in fluid mechanics, visco-elasticity, physics, biology
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and economics which can not be modeled by differential equations with integer
derivatives [6, 9, 18].

The existence and uniqueness results of fractional boundary-value problems have
been investigated by many authors using different techniques [2, 3, 4, 7, 8, 10, 11, 15,
21, 22]. The basic theory of fractional differential equations involving the Riemann-
Liouville derivative of order 0 < δ < 1, has been investigated in [13, 14] by the
classical approach of differential equations. Also, the ideas of comparison principle
and the method of lower and upper solutions are applied to prove a general result
of existence and uniqueness of solutions in [15]. By means of Schauder Fixed Point
Theorem, Zhang [21] proved the existence of solutions for the following boundary-
value problem of fractional order, involving Caputo’s derivative

Dδ
t u(t) = g(t, u), 0 < t < 1, 1 < δ < 2,

u(0) = a 6= 0, u(1) = b 6= 0.

Also, Al-Refai and Hajji [4] established existence and uniqueness results by gen-
erating monotone iterative sequences of lower and upper solutions that converge
uniformly to the actual solution of the above problem. In a recent work Qi and
Chen [20] studied analytically an eigenvalue problem of order 0 < δ < 1, with left
and right fractional derivatives, which models a bar of finite length with long range
interactions. Using the spectral theory of self-adjoint compact operators in Hilbert
spaces, they proved that the problem has a countable simple real eigenvalues and
the corresponding eigenfunctions form a complete orthogonal system in the Hilbert
space L2.

The Sturm-liouville eigenvalue problem has played an important role in mod-
eling many physical problems. The theory of the problem is well developed and
many results have been obtained concerning the eigenvalues and corresponding
eigenfunctions. However, up to our knowledge, there are no analytical studies
for the eigenvalues and eigenfunctions of the fractional Sturm-Liouville eigenvalue
problems of order 1 < δ < 2. Following the classical approach of the theory of
differential equations of integer order and by means of the maximum principle and
the method of lower and upper solutions [17, 19], this paper presents new results
about the eigenvalues and eigenfunctions of the eigenvalue problem (1.1)-(1.2).

This article is organized as follows. In the next section, we present basic defini-
tions and results of fractional derivative. In Section 3, we present a new positivity
lemma, a uniqueness result and bounds for the eigenvalues of the problem. In Sec-
tion 4, we present a sufficient condition for the non existence of ordered solutions.
In Section 5, we obtain an existence and uniqueness result using the method of lower
and upper solutions. We then discuss the linear eigenvalue problem and highlight
future research directions in Section 6. We close up with some concluding remarks
in Section 7.

2. Preliminaries

In this section, we present the definitions and some preliminary results of the
Riemmann-Liouville fractional integral and the Caputo fractional derivative. We
then give the definition of lower and upper solutions of the problem (1.1)-(1.2).

Definition 2.1. A real function f(t), t > 0, is said to be in the space Cµ, µ ∈ R if
there exists a real number p > µ, such that f(t) = tpf1(t), where f1(t) ∈ C[0,∞),
and it is said to be in the space Cm

µ if f (m) ∈ Cµ, m ∈ N.
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Definition 2.2. The left Riemann-Liouville fractional integral of order δ > 0, of a
function f ∈ Cµ, µ ≥ −1, is defined by

Iδf(t) =
1

Γ(δ)

∫ t

0

(t− s)δ−1f(s)ds, t > 0. (2.1)

The following result will be used throughout the text.

Lemma 2.3. If f(t) ∈ C[0, 1], then Iδf(t) exists and limt→0 Iδf(t) = 0.

Proof. We have r(s) = (t− s)δ−1 ≥ 0 is integrable on [0, t], since δ > 0. Applying
the mean value theorem for integrals we have∫ t

0

(t− s)δ−1f(s)ds = f(ξ)
∫ t

0

(t− s)δ−1ds = f(ξ)
tδ

δ
, for some 0 < ξ < t.

Thus,

lim
t→0

Iδf(t) = lim
t→0

f(ξ)
tδ

Γ(δ + 1)
= 0.

�

Definition 2.4. For δ > 0, m − 1 < δ < m, m ∈ N, t > 0, and f ∈ Cm
−1, the left

Caputo fractional derivative is defined by

Dδf(t) =
1

Γ(m− δ)

∫ t

0

(t− s)m−1−δf (m)(s)ds, (2.2)

where Γ is the well-known Gamma function.

The Caputo derivative defined in (2.2) is related to the Riemann-Liouville frac-
tional integral, Iδ, of order δ ∈ R+, by

Dδf(t) = Im−δf (m)(t).

It is known (see [12]) that

Iδ(Dδf(t)) = f(t)−
m−1∑
k=0

cktk, (2.3)

DδIδf(t) = f(t), (2.4)

where in (2.3), ck = f(k)(0+)
k! , 0 ≤ k ≤ m− 1.

Definition 2.5 ([4]). A function v(t) ∈ C2[0, 1] is called a lower solution of the
problem (1.1)-(1.2) if it satisfies

P (v) = Dδv(t) + g(t)v′ + h(t)v + λk(t, v) ≥ 0, t ∈ (0, 1), 1 < δ < 2, (2.5)

and
v(0)− αv′(0) ≤ 0, v(1) + βv′(1) ≤ 0. (2.6)

Analogously, a function w(t) ∈ C2[0, 1] is called an upper solution if it satisfies
(2.5)-(2.6) with reversed inequalities.

If v(t) ≤ w(t), for all t ∈ [0, 1], we say that v and w are ordered lower and upper
solutions.
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3. General results and estimates of the eigenvalues

In this section we present a positivity lemma which will be used throughout the
text. We then prove general results concerning the lower and upper solutions of
the eigenvalue problem (1.1)-(1.2). At the end, we present necessary conditions for
the existence of eigenfunctions and give analytical estimates on the bounds of the
eigenvalues. We have the following results, see [5].

Theorem 3.1. Assume f ∈ C2[0, 1] attains its minimum at t0 ∈ (0, 1), then

(Dδf)(t0) ≥
1

Γ(2− δ)

[
(δ − 1)t−δ

0 (f(0)− f(t0))− t1−δ
0 f ′(0)

]
, for all 1 < δ < 2.

Corollary 3.2. Assume f ∈ C2[0, 1] attains its minimum at t0 ∈ (0, 1), and
f ′(0) ≤ 0. Then (Dδf)(t0) ≥ 0, for all 1 < δ < 2.

In the following we state and prove a positivity result which will be used through-
out the text.

Lemma 3.3 (Positivity Result). Let z(t) ∈ C2[0, 1], µ(t, z) ∈ C
(
[0, 1] × R) and

µ(t, z) < 0,∀ t ∈ (0, 1). If z(t) satisfies the inequalities

Dδz(t) + a(t)z′(t) + µ(t, z)z ≤ 0, t ∈ (0, 1), (3.1)

z(0)− αz′(0) ≥ 0, and z(1) + βz′(1) ≥ 0, (3.2)

where a(t) ∈ C[0, 1] and α, β ≥ 0, then z(t) ≥ 0, for all t ∈ [0, 1] provided α ≥ 1
δ−1 .

Proof. Assume that the conclusion is false, then z(t) has absolute minimum at some
t0 with z(t0) < 0. Let t0 ∈ (0, 1), then z′(t0) = 0. In the following we prove that
(Dδz)(t0) ≥ 0. By Corollary 3.2 the result is true if z′(0) ≤ 0. If z′(0) > 0, by
Theorem 3.1 there holds

Γ(2− δ)(Dδz)(t0) ≥ (δ − 1)t−δ
0 (z(0)− z(t0))− t1−δ

0 z′(0)

= t−δ
0

(
(δ − 1)(z(0)− z(t0))− t0z

′(0)
)
.

Since α(δ − 1) ≥ 1 and from the boundary condition z(0) ≥ αz′(0), we have

(δ − 1)(z(0)− z(t0)) ≥ (δ − 1)(αz′(0)− z(t0)) ≥ z′(0)− (δ − 1)z(t0).

Thus,

(δ−1)(z(0)−z(t0))−t0z
′(0) ≥ z′(0)−(δ−1)z(t0)−t0z

′(0) = z′(0)(1−t0)−(δ−1)z(t0).

Since z′(0) > 0, 0 < t0 < 1 and z(t0) < 0, we have (Dδz)(t0) ≥ 0. The above results
together with µ(t0, z(t0)) < 0, imply

(Dδz)(t0) + a(t0)z′(t0) + µ(t0, z(t0))z(t0) = (Dδz)(t0) + µ(t0, z(t0))z(t0) > 0,

which contradicts (3.1). If t0 = 0, by simple maximum principle, z′(0+) ≥ 0.
Applying the boundary condition z(0) − αz′(0) ≥ 0, we have z(0) ≥ 0 and a
contradiction is reached. Similarly, if t0 = 1, then simple maximum principle
implies z′(1−) ≤ 0. The boundary condition z(1) + βz′(1−) ≥ 0 yields z(1) ≥ 0
and a contradiction is reached. �

Theorem 3.4. Consider problem (1.1)–(1.2). If h(t) + λ∂k(t,u)
∂u < 0, for all u ∈

C2[0, 1] and t ∈ (0, 1), then for α ≥ 1
δ−1 we have

(1) Any lower and upper solutions are ordered.
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(2) The problem (1.1)-(1.2) possesses at most one solution.

Proof. (1) Let v and w respectively, be any lower and upper solutions of the prob-
lem. We have

Dδv(t) + g(t)v′(t) + h(t)v + λk(t, v) ≥ 0, t ∈ (0, 1),

v(0)− αv′(0) ≤ 0, v(1) + βv′(1) ≤ 0,
(3.3)

and
Dδw(t) + g(t)w′(t) + h(t)w + λk(t, w) ≤ 0, t ∈ (0, 1),

w(0)− αw′(0) ≥ 0, w(1) + βw′(1) ≥ 0.
(3.4)

Subtracting (3.3) from (3.4) and applying the mean value theorem, we have

Dδ(w − v) + g(t)(w′ − v′) + h(t)(w − v) + λ(k(t, w)− k(t, v)) ≤ 0,

Dδ(w − v) + g(t)(w′ − v′) +
(
h(t) + λ

∂k

∂u
(ξ)

)
(w − v) ≤ 0,

where ξ = γw + (1− γ)v, 0 ≤ γ ≤ 1. Let z = w − v, then z satisfies

Dδz + g(t)z′ +
(
h(t) + λ

∂k

∂u
(ξ)

)
z ≤ 0,

with z(0) − αz′(0) ≥ 0 and z(1) + βz′(1) ≥ 0. Since h(t) + λ ∂k
∂u (ξ) < 0, by the

positivity result, Lemma 3.3, z ≥ 0, and thus w ≥ v.
(2) Let u1 and u2 be two solutions of (1.1)-(1.2). We have

Dδu1 + g(t)u′1 + h(t)u1 + λk(t, u1) = 0, (3.5)

Dδu2 + g(t)u′2 + h(t)u2 + λk(t, u2) = 0, (3.6)

with u1(0)−αu′1(0) = u2(0)−αu′2(0) = 0, and u1(1)+βu′1(1) = u2(1)+βu′2(1) = 0.
By subtracting (3.6) from (3.5), applying the mean value theorem, and substituting
z = u1 − u2, we have

Dδz + g(t)z′ +
(
h(t) + λ

∂k

∂u
(ξ)

)
z = 0, (3.7)

for some ξ between u1 and u2, with

z(0)− αz′(0) = 0 and z(1) + βz′(1) = 0. (3.8)

Since h(t)+λ ∂k
∂u (ξ) < 0, by the positivity result, Lemma 3.3, we have z ≥ 0. On the

other hand (3.7)-(3.8) are also satisfied by −z and by Lemma 3.3, we have −z ≥ 0.
Thus, z = 0. This proves that u1 = u2 and problem (1.1)-(1.2) has at most one
solution. �

The following corollary gives analytical lower and upper bounds estimates of the
eigenvalues.

Corollary 3.5. Consider the eigenvalue problem (1.1)-(1.2), with k(t, 0) = 0 and
α ≥ 1

δ−1 . We have the following necessary conditions for the existence of an eigen-
function.

(1) If there exists a negative constant ξ such that ∂k
∂u ≤ ξ < 0, then λ ≤

sup{−h/ ∂k
∂u}.

(2) If there exists a positive constant µ such that ∂k
∂u ≥ µ > 0, then λ ≥

inf{−h/ ∂k
∂u}.
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Proof. (1) If λ > sup{−h/ ∂k
∂u}, then λ > −h/ ∂k

∂u for all t ∈ [0, 1]. Since ∂k
∂u < 0, we

have h(t) + λ ∂k
∂u < 0. Thus the eigenvalue problem possesses at most one solution.

Since k(t, 0) = 0, it can be easily seen that u = 0 is a solution. Thus the eigenvalue
problem has only the trivial solution and hence no eigenfunction.

(2) If λ < inf{−h/ ∂k
∂u}, then λ < −h/ ∂k

∂u for all t ∈ [0, 1]. Since ∂k
∂u > 0, we have

h(t) + λ ∂k
∂u < 0. Thus the eigenvalue problem possesses only the trivial solution

and hence no eigenfunction. �

4. Existence of ordered solutions

In this section, we present a sufficient condition for the non existence of ordered
solutions of the eigenvalue problem (1.1)-(1.2). This new result will be needed to
prove a uniqueness result in the next section.

Definition 4.1. Let u1 6= u2 be two solutions of (1.1)-(1.2). We say that u1 and
u2 are ordered solutions, if either u1 ≤ u2 or u2 ≤ u1 for all t ∈ [0, 1].

Lemma 4.2. Consider problem (1.1)-(1.2) with g, h ∈ C[0, 1] and k ∈ C1([0, 1] ×
R). A function u(t) ∈ C2[0, 1] is a solution of the problem if and only if it is a
solution of the integro-differential equation

u(t) =
α + t

Γ(δ)(α + β + 1)

( ∫ 1

0

(1− s)δ−1H(s, u)ds

+ β(δ − 1)
∫ 1

0

(1− s)δ−2H(s, u)ds
)
− 1

Γ(δ)

∫ t

0

(t− s)δ−1H(s, u)ds,

(4.1)

where H(s, u) = g(s)u′(s) + h(s)u(s) + λk(s, u).

Proof. Let u(t) be a solution of (1.1). Applying the operator Iδ to both sides of
(1.1) and using (2.3), we obtain

u(t) = c0 + c1t− IδH(t, u(t)) = c0 + c1t−
1

Γ(δ)

∫ t

0

(t− s)δ−1H(s, u)ds

= c0 + c1t−
1

Γ(δ)

∫ t

0

(t− s)δ−1(g(s)u′(s) + h(s)u(s) + λk(s, u))ds.

(4.2)

Thus, u(0) = c0 and u(1) = c0 + c1 − 1
Γ(δ)

∫ 1

0
(1 − s)δ−1H(s, u)ds. Differentiating

(4.2) yields

u′(t) = c1 −D1IδH(t, u) = c1 −D1I1Iδ−1H(t, u)

= c1 − Iδ−1H(t, u) = c1 −
1

Γ(δ − 1)

∫ t

0

(t− s)δ−2H(s, u)ds.
(4.3)

Since δ − 1 > 0 and H(s, u) ∈ C[0, 1] by Lemma 2.3, we have u′(0) = c1, and

u′(1) = c1 −
1

Γ(δ − 1)

∫ 1

0

(1− s)δ−2H(s, u)ds.

Applying the boundary conditions (1.2) and using the fact that Γ(δ) = (δ−1)Γ(δ−
1), we find that c0 − αc1 = 0, and

c0 + c1 −
1

Γ(δ)

∫ 1

0

(1− s)δ−1H(s, u)ds + β
(
c1 −

δ − 1
Γ(δ)

∫ 1

0

(1− s)δ−2H(s, u)ds
)

= 0.

(4.4)
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Substituting c0 = αc1 in (4.4) yields

c1 =
1

Γ(δ)(α + β + 1)

( ∫ 1

0

(1− s)δ−1H(s, u)ds + β(δ − 1)
∫ 1

0

(1− s)δ−2H(s, u)ds
)
.

(4.5)
Substitution of c0 and c1 back into (4.2) gives

u(t) =
α + t

Γ(δ)(α + β + 1)

( ∫ 1

0

(1− s)δ−1H(s, u)ds

+ β(δ − 1)
∫ 1

0

(1− s)δ−2H(s, u)ds
)
− 1

Γ(δ)

∫ t

0

(t− s)δ−1H(s, u)ds.

Conversely, Let u(t) be a solution of (4.1). Substituting

ν =
1

(α + β + 1)

( ∫ 1

0

(1− s)δ−1H(s, u)ds + β(δ − 1)
∫ 1

0

(1− s)δ−2H(s, u)ds
)

yields

u(t) =
1

Γ(δ)

(
ν(α + t)−

∫ t

0

(t− s)δ−1H(s, u)ds
)
. (4.6)

Applying the differential operator D1, we have

u′(t) =
1

Γ(δ)
ν −DIδH(t, u) =

1
Γ(δ)

ν − Iδ−1H(t, u)

=
1

Γ(δ)

(
ν − (δ − 1)

∫ t

0

(t− s)δ−2H(s, u)ds
)
.

(4.7)

Thus u(0) = αν
Γ(δ) and by Lemma 2.3, u′(0) = ν

Γ(δ) and hence; u(0) − αu′(0) = 0.
Also,

u(1) + βu′(1) =
1

Γ(δ)

(
ν(α + 1)−

∫ 1

0

(1− s)δ−1H(s, u)ds

+ βν − β(δ − 1)
∫ 1

0

(1− s)δ−2H(s, u)ds
)

=
1

Γ(δ)

(
ν(α + β + 1)− [

∫ 1

0

(1− s)δ−1H(s, u)ds

+ β(δ − 1)
∫ 1

0

(1− s)δ−2H(s, u)ds]
)

=
1

Γ(δ)

(
ν(α + β + 1)− ν(α + β + 1

)
= 0.

Next, since Dδ[ν(α + t)] = 0, 1 < δ < 2, application of Dδ to both sides of (4.6),
gives

Dδu = − 1
Γ(δ)

Dδ
[ ∫ t

0

(t− s)δ−1H(s, u(s))ds
]

= −DδIδH(t, u) = −H(t, u).

Thus, u satisfies (1.1) and the proof is complete. �

We have the following important result.
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Theorem 4.3. Consider problem (1.1)-(1.2) with g, h ∈ C[0, 1], k ∈ C1([0, 1] ×
R), u ∈ C2[0, 1], and g(t) ≥ 0, t ∈ [0, 1]. If h(t) + λ ∂k

∂u ≥ η > 0, for some positive
constant η, then there exists α0 > 0 such that the problem has no ordered solutions
for α ≥ α0.

Proof. Let u1 ≤ u2 be two solutions of (1.1)-(1.2). We have

u1(t) = c0 + c1t− IδH(t, u1(t)) = c0 + c1t−
1

Γ(δ)

∫ t

0

(t− s)δ−1H(s, u1)ds,

u2(t) = d0 + d1t− IδH(t, u2(t)) = d0 + d1t−
1

Γ(δ)

∫ t

0

(t− s)δ−1H(s, u2)ds,

where c1 = u′1(0), d1 = u′2(0), and H(s, u(s)) = g(s)u′(s) + h(s)u(s) + λk(s, u(s)).
Let z(t) = u2(t)− u1(t) ≥ 0 ∈ [0, 1]. We have

z(t) = d0 − c0 + (d1 − c1)t− Iδ
(
H(t, u2(t))−H(t, u1(t))

)
z(0) = αz′(0) and z(1) = −βz′(1).

(4.8)

Thus,

z′(t) = d1 − c1 −D1Iδ
(
H(t, u2)−H(t, u1)

)
= u′2(0)− u′1(0)−DI1

[
Iδ−1

(
H(t, u2)−H(t, u1)

)]
= z′(0)− 1

Γ(δ − 1)

∫ t

0

(t− s)δ−2
(
H(s, u2)−H(s, u1)

)
ds.

(4.9)

Substituting z′ = u′2 − u′1 in (4.9) and applying the mean value theorem yields

z′(t) = z′(0)− 1
Γ(δ − 1)

∫ t

0

(t− s)δ−2
(
g(s)(u′2 − u′1)

+ h(s)(u2 − u1) + λ[k(s, u2)− k(s, u1)]
)
ds

= z′(0)− 1
Γ(δ − 1)

∫ t

0

(t− s)δ−2
(
g(s)z′(s) + [h(s) + λ

∂k

∂u
(ξ)]z(s)

)
ds,

(4.10)

for some ξ between u1 and u2. Assume by contradiction z 6= 0, then z(t) has
a positive maximum in [0, 1]. Let t0 ∈ [0, 1] be the first point at which z has a
positive maximum. If t0 = 0, by simple maximum principle, z′(0+) ≤ 0. Applying
the boundary condition in (4.8) we have z(0) ≤ 0, and a contradiction is reached.
Similarly, if t0 = 1, then z′(1−) ≥ 0. Applying the boundary condition in (4.8)
yields z(1) ≤ 0 and a contradiction is reached. Thus t0 ∈ (0, 1). We have z(t0) > 0,
z′(t0) = 0 and since z′(0) ≥ 0, z′(t) ≥ 0, for all t ∈ [0, t0]. We consider two cases
for z(0): case 1; z(0) = 0 and case 2; z(0) = ζ > 0. If z(0) = 0, by the boundary
condition (4.8), z′(0) = 0. Substituting the above results in (4.10) together with
g(s) ≥ 0, s ∈ [0, t0] and h(s) + λ ∂k

∂u (ξ) ≥ η > 0 yields z′(t0) < 0, which contradicts
z′(t0) = 0. Now, let z(0) = ζ > 0. We have

κ =
1

Γ(δ − 1)

∫ t0

0

(t0 − s)δ−2
(
g(s)z′(s) + [h(s) + λ

∂k

∂u
(ξ)]z(s)

)
ds

>
ηζ

Γ(δ − 1)

∫ t0

0

(t0 − s)δ−2ds =
ηζ

Γ(δ − 1)
tδ−1
0

δ − 1
=

ηζ

Γ(δ)
tδ−1
0 .

(4.11)
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Substituting (4.11) in (4.10), for α > α0 = Γ(δ)
η t1−δ

0 , we have

z′(t0) <
ζ

α
− ηζ

Γ(δ)
tδ−1
0 < 0, (4.12)

and a contradiction is reached. Thus z = 0 and the proof is complete. �

5. Existence and uniqueness result

In this section we apply the method of lower and upper solutions to establish
an existence and uniqueness result of the eigenvalue problem (1.1)-(1.2). Given
ordered lower and upper solutions, v(0)(t) and w(0)(t) respectively, define the set

[v(0), w(0)] = {f ∈ C2[0, 1] : v(0) ≤ f ≤ w(0)},

and let Q1(f) = f(0)− αf ′(0), Q2(f) = f(1) + βf ′(1).

Theorem 5.1. Consider the boundary-value problem (1.1)-(1.2) with α ≥ 1
δ−1 .

Let v(0) and w(0) be an initial ordered lower and upper solutions of (1.1)-(1.2) and
assume that there exists a positive constant c such that

− c < h(t) + λ
∂k

∂u
for all u ∈ [v(0), w(0)] and t ∈ [0, 1]. (5.1)

Let t ∈ (0, 1), let v(j), w(j), j ≥ 1, be, respectively, the solutions of

−Dδv(j) − g(t)Dv(j) + c v(j) = (h(t) + c)v(j−1) + λk(t, v(j−1)), (5.2)

Q1(v(j)) = Q2(v(j)) = 0, (5.3)

and

−Dδw(j) − g(t)Dw(j) + c w(j) = (h(t) + c)w(j−1) + λk(t, w(j−1)), (5.4)

Q1(w(j)) = Q2(w(j)) = 0. (5.5)

Then we have
(1) The sequence v(j), j ≥ 1, is an increasing sequence of lower solutions of

(1.1)-(1.2).
(2) The sequence w(j), j ≥ 1, is a decreasing sequence of upper solutions of

(1.1)-(1.2).
(3) v(j) ≤ w(j), for all j ≥ 1.
(4) The sequences {v(j)} and {w(j)}, j ≥ 0, converge uniformly to v∗ and w∗,

respectively, with v∗ ≤ w∗.

The proof is a simple generalization to the one obtained in [4]. We shall skip it
as not to impede the presentation of the main results and make the presentation
easier to follow.

Theorem 5.2. Consider problem (1.1)-(1.2) with k(t, 0) 6= 0. Let v(j) and w(j), j ≥
0, be as defined in Theorem 5.1. Then problem (1.1)-(1.2) has a unique nontrivial
solution u ∈ [v(0), w(0)] provided one of the following conditions holds

(H1) h(t) + λ ∂k
∂u < 0, for all u ∈ [v(0), w(0)], t ∈ (0, 1) and α ≥ 1

δ−1 .
(H2) h(t) + λ ∂k

∂u ≥ η > 0, for all u ∈ [v(0), w(0)] and t ∈ (0, 1), g(t) ≥ 0 and
α ≥ α0 is sufficiently large.
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Proof. First we prove that v∗ and w∗ are solutions to (1.1)-(1.2). Since {v(j)}
converges uniformly and applying the result in [4], we have

− lim
j→∞

Dδv(j) = −Dδ lim
j→∞

v(j) = −Dδv∗.

Also, the uniform convergence of the sequence {v(j)} together with the continuity
of k(t, u) yields

lim
j→∞

k(t, v(j)) = k(t, v∗).

Applying the above results in (5.2), we have

lim
j→∞

(
−Dδv(j) − g(t)Dv(j) + c v(j)

)
= lim

k→∞

(
(h(t) + c)v(j−1) + λk(t, v(j−1))

)
,

−Dδv∗ − g(t)Dv∗ + c v∗ = (h(t) + c)v∗ + λk(t, v∗).

Thus,
Dδv∗ + g(t)Dv∗ + h(t)v∗ = −λk(t, v∗)

which together with Q1(v∗) = Q2(v∗) = 0 proves that v∗ is a solution to (1.1)-(1.2).
Similar arguments can be applied to show that w∗ is a solution to (1.1)-(1.2). If
(H1) holds, by Theorem 3.4, the solution is unique and hence v∗ = w∗ = u is the
unique solution of (1.1)-(1.2) in [v(0), w(0)]. If (H2) holds then by Theorem 4.3 there
is no ordered solutions. Since v∗ and w∗ are solutions of the problem with v∗ ≤ w∗

then v∗ = w∗ = u. Lastly, the condition k(t, 0) 6= 0 guarantees that u 6= 0. �

Remark 5.3. The condition (H1) in Theorem 5.2 guarantees the uniqueness of
solutions for the eigenvalue problem (1.1)-(1.2) with integer order δ = 2, (see [17,
p. 104]), while the condition (H2) is new.

6. The linear eigenvalue problem

As a special case of problem (1.1)-(1.2), we consider the linear eigenvalue problem

Dδu(t) + g(t)u′ + h(t)u = −λr(t)u, t ∈ (0, 1), 1 < δ < 2, (6.1)

u(0)− αu′(0) = 0, u(1) + βu′(1) = 0, (6.2)

where k(t, u) = r(t)u. Here we discuss two cases of r(t). First r(t) > 0 and there
exists a positive constant µ such that r(t) ≥ µ > 0, and second r(t) < 0 and there
exists a negative constant ξ such that r(t) ≤ ξ < 0. Since k(t, 0) = 0 by Corollary
3.5 we have for α ≥ 1/(δ − 1),

λ ≥ inf
t∈[0,1]

(
− h(t)

r(t)

)
, if r(t) > 0,

λ ≤ sup
t∈[0,1]

(
− h(t)

r(t)

)
, if r(t) < 0.

(6.3)

Thus for h(t) = 0, we have λ ≥ 0, if r(t) > 0 and λ ≤ 0, if r(t) < 0. These results
are well-known for the eigenvalue problem (6.1)-(6.2) with integer order δ = 2, see
[19]. And here we proved that they are valid for any 1 < δ < 2. As a simple
illustration consider the eigenvalue problem

Dδu(t) + g(t)u′ − u = −λetu, t ∈ (0, 1), 1 < δ < 2, (6.4)
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with boundary conditions (6.2). For α ≥ 1
δ−1 the eigenvalues of the problem satisfy

λ ≥ inf
t∈[0,1]

(
− −1

et

)
= inf

t∈[0,1]

(
e−t

)
= e−1.

We now consider another special case of the linear eigenvalue problem (6.1)-(6.2)
where g(t) = 0, r(t) > 0 and h(t) < 0. We have

Dδu + h(t)u = −λr(t)u, t ∈ (0, 1), 1 < δ < 2. (6.5)

For α ≥ 1/(δ − 1) the eigenvalues of the problem satisfy

λ ≥ inf
t∈[0,1]

(
− h(t)

r(t)

)
> 0.

From the above discussion and numerical results in [1, 16, 20] we believe that
the eigenvalues and eigenfunctions of the eigenvalue problem (6.5)-(6.2) satisfy the
following claim:

Conjecture 6.1. (1) The first eigenfunction φ1 has one sign on [0, 1]. That
is, either φ1 ≥ 0 or φ1 ≤ 0 on [0, 1].

(2) The first eigenvalue λ1 increases with δ.

We leave these open problems for future work and hopefully they will open new
areas of research for interested researchers. It is well-known that the first eigen-
function of the Sturm-Liouville eigenvalue problem is important and has various
applications. We expect the first eigenfunction of the problem (6.5)-(6.2) will play
the same role. Also, if (2) is true, then we can use the eigenvalues of the Sturm-
Liouville problem as upper bounds for the ones of fractional order.

7. Concluding Remarks

We have studied analytically a class of eigenvalue problems of fractional order
1 < δ < 2. We have obtained a new positivity result and used it to derive a sufficient
condition (H1):h(t) + λ ∂k

∂u < 0, which guarantees the uniqueness of solutions and
ordering of any lower and upper solutions for any α ≥ 1

δ−1 . For the case where
the nonlinear term k(t, u) in the problem satisfies k(t, 0) = 0, analytical upper and
lower bounds estimates of the eigenvalues are obtained. These bounds have closed
forms and can be easily computed. A sufficient condition (H2) for the non existence
of ordered solution is obtained by transforming the problem into equivalent integro-
differential equation. The method of lower and upper solutions is used to obtain
two well-defined sequences of lower and upper solutions which converge uniformly
to a solution of the problem. Under the condition (H1) or (H2) we proved that these
lower and upper solutions converge to the same limit, which is the unique solution
of the problem. We illustrated these result by considering some linear eigenvalue
problems. We believe that these analytical results are useful in the applications
and numerical treatments and leads to better understanding of the problem. While
some results have been established, many open problems are still not verified and
we leave them for future work.

Acknowledgements. The Author would like to thank the anonymous reviewers
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