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SING-CHANGING SOLUTIONS FOR NONLINEAR PROBLEMS
WITH STRONG RESONANCE

AIXIA QIAN

Abstract. Using critical point theory and index theory, we prove the exis-
tence and multiplicity of sign-changing solutions for some elliptic problems
with strong resonance at infinity, under weaker conditions than in the refer-
ences.

1. Introduction

In this article, we consider the equation

−∆u = f(u),

u ∈ H1
0 (Ω).

(1.1)

where Ω is a bounded domain in Rn with smooth boundary ∂Ω. We assume that
f is asymptotically linear; i.e., lim|u|→∞

f(u)
u exists. By setting

α := lim
|u|→∞

f(u)
u

(1.2)

we can write f(u) = αu− g(u), where

g(u)
u

→ 0 as |u| → ∞.

We Denote by λ1 < λ2 < · · · < λj < . . . the distinct eigenvalues sequence of −∆
with the Dirichlet boundary conditions. We say that problem (1.1) is resonant at
infinity if α in (1.2) is an eigenvalue λk. The situation when

lim
|u|→∞

g(u) = 0 and lim
|u|→∞

∫ u

0

g(t)dt = β ∈ R

is what we call strong resonance.
Now we present some results of this paper. We write (1.1) in the form

−∆u− λku + g(u) = 0,

u ∈ H1
0 (Ω).

(1.3)

We assume that g is a smooth function satisfying the following conditions.
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(G1) g(t)t → 0 as |t| → ∞;
(G2) the real function G(t) =

∫ t

0
g(s)ds is well defined and G(t) → 0 as t → +∞.

(G3) G(t) ≥ 0 for all t ∈ R.

Theorem 1.1. If (G1)–(G3) hold, then (1.1) has at least one solution.

Since 0 is a particular point, we cannot ensure those solutions are nontrivial
without additional conditions.

Theorem 1.2. Let g(0) = 0, and suppose that (G1)–(G3) hold, and

g′(0) = sup{g′(t) : t ∈ R}, (1.4)

then (1.3) has at least one sign-changing solution.

Theorem 1.3. Assume (G1)–(G3) hold and g is odd and G(0) ≥ 0. Moreover
suppose that there exists an eigenvalue λh < λk such that

g′(0) + λh − λk > 0.

Then (1.3) possess at least m = dim(Mh ⊕ · · · ⊕ Mk) − 1 distinct pairs of sign-
changing solutions (Mj denotes the eigenspace corresponding to λj).

Remark 1.4. The references show only the existence of solutions to (1.3), while
we obtain its sign-changing solutions under weaker conditions.

The resonance problem has been widely studied by many authors using various
methods; see [1, 2, 4, 5, 8, 10] and the references therein. We will use critical point
theory and pseudo-index theory to obtain sign-changing solutions for the strong
resonant problem (1.3). We also allow the case in which resonance also occurs at
zero.

In section 2, we give some preliminaries, which are fundamental in our paper. In
section 3, we give some abstract critical point theorems, which are used to prove
above theorems in this paper. In section 3, by using the above theorems, we prove
the existence and multiplicity of sign-changing solutions.

2. Preliminaries

We denote by X a real Banach space. BR denotes the closed ball in X centered
at the origin and with radius R > 0. J is a continuously Frèchet differentiable map
from X to R; i.e., J ∈ C1(X, R).

In the literature, deformation theorems have been proved under the assumption
that J ∈ C1(X, R) satisfies the well known Palais-Smale condition. In problems
which do not have resonance at infinity, the (PS) condition is easy to verify. On
the other hand, a weaker condition than the (PS) condition is needed to study
problems with strong resonance at infinity.

Definition 2.1. We say that J ∈ C1(X, R) satisfies the condition (C) in ]c1, c2[
(−∞ ≤ c1 < c2 ≤ +∞) if any sequence {uk} ⊂ J−1(]c1, c2[), such that {J(uk)} is
bounded and J ′(uk) → 0, we have either

(i) {uk} is bounded and possesses a convergent subsequence, or
(ii) for all c ∈]c1, c2[, there exists σ,R, α > 0 such that [c − σ, c + σ] ⊂]c1, c2[

and for all u ∈ J−1([c− σ, c + σ]), ‖u‖ ≥ R : ‖J ′(u)‖‖u‖ ≥ α.
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In [1, 3, 4], deformation theorems are obtained under the condition (C). For
c ∈ R, denote

Ac = {u ∈ X : J(u) ≤ c}, Kc = {u ∈ X : J ′(u) = 0, J(u) = c}.

Proposition 2.2. Let X be a real Banach space, and let J ∈ C1(X, R) satisfy
the condition (C) in ]c1, c2[. If c ∈]c1, c2[ and N is any neighborhood of Kc, there
exists a bounded homeomorphism η of X onto X and constants ε̄ > ε > 0, such
that [c− ε̄, c + ε̄] ⊂]c1, c2[ satisfying the following properties:

(i) η(Ac+ε\N) ⊂ Ac−ε.
(ii) η(Ac+ε) ⊂ Ac−ε, if Kc = ∅.
(iii) η(x) = x, if x 6∈ J−1([c− ε̄, c + ε̄]).

Moreover, if G is a compact group of (linear) unitary transformation on a real
Hilbert space H, then

(vi) η can be chosen to be G-equivariant, if the functional J is G-invariant.
Particularly, η is odd if the functional J is even.

3. Abstract critical point theorems

In this article, we shall obtain solutions to (1.3) by using the linking type theo-
rem. Its different definitions can be seen in [9, 11] and references therein.

Definition 3.1. Let H be a real Hilbert space and A a closed set in H. Let B be
an Hilbert manifold with boundary ∂B, we say A and ∂B link if

(i) A ∩ ∂B = ∅;
(ii) If φ is a continuous map of H into itself such that φ(u) = u for all u ∈ ∂B,

then φ(B) ∩A 6= ∅.
Typical examples can be found in [1, 6, 7, 11].

Example 3.2. Let H1,H2 be two closed subspaces of H such that

H = H1 ⊕H2, dim H2 < ∞.

Then if A = H1, B = BR ∩H2, then A and ∂B link.

Example 3.3. Let H1,H2 be two closed subspaces of H such that H = H1 ⊕H2,
dim H2 < ∞, and consider e ∈ H1, ‖e‖ = 1, 0 < ρ < R1, R2, set

A = H1 ∩ Sρ, B = {u = v + te : v ∈ H2 ∩BR2 , 0 ≤ t ≤ R1}.
Then A and ∂B link.

Let X ⊂ H be a Banach space densely embedded in H. Assume that H has
a closed convex cone PH and that P := PH ∩ X has interior points in X. Let
J ∈ C1(H, R). In [6], they construct the pseudo-gradient flow σ for J , and have
the following definition.

Definition 3.4. Let W ⊂ X be an invariant set under σ. W is said to be an
admissible invariant set for J if

(a) W is the closure of an open set in X;
(b) if un = σ(tn, v) → u in H as tn → ∞ for some v 6∈ W and u ∈ K, then

un → u in X;
(c) If un ∈ K ∩W is such that un → u in H, then un → u in X; (d) For any

u ∈ ∂W\K, we have σ(t, u) ∈ W̊ for t > 0.
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Now let S = X\W , W = P ∪ (−P ). As the similar proof to that in [6], the W
is an admissible invariant set for J in the following section 4. We define

φ∗ = {Γ(t, x) : [0, 1]×X → X continuous in the X-topology and Γ(t, W ) ⊂ W}.
In [11], a new linking theorem is given under the condition (PS). Since the

deformation is still hold under the condition (C), the following theorem holds.

Theorem 3.5. Suppose that W is an admissible invariant set of J and that J is
in C1(H, R) such that

(1) J satisfies condition (C) in ]0,+∞[;
(2) There exist a closed subset A ⊂ H and a Hilbert manifold B ⊂ H with

boundary ∂B satisfying
(a) there exist two constants β > α ≥ 0 such that

J(u) ≤ α, ∀u ∈ ∂B; J(u) ≥ β, ∀u ∈ A;

i.e., a0 := sup∂B J ≤ b0 := infA J .
(b) A and ∂B link;
(c) supu∈B J(u) < +∞.

Then a critical value of J is given by

a∗ = inf
Γ∈φ∗

sup
Γ([0,1],A)∩S

J(u).

Furthermore, assuming that 0 6∈ Ka∗ , we have Ka∗∩S 6= ∅ if a∗ > b0, and Ka∗∩A 6=
∅ if a∗ = b0.

In this article, we shall consider the symmetry given by a Z2 action, more pre-
cisely even functionals.

Theorem 3.6. Suppose J ∈ C1(H, R) and the positive cone P is an admissible
invariant for J , Kc ∩ ∂P = ∅ for c > 0, such that

(1) J satisfies condition (C) in ]0,+∞[, and J(0) ≥ 0;
(2) There exist two closed subspace H+,H− of H, with codim H+ < +∞ and

two constants c∞ > c0 > J(0) satisfying

J(u) ≥ c0,∀u ∈ Sρ ∩H+; J(u) < c∞,∀u ∈ H−.

(3) J is even.
Then if dim H− > 1+codim H+, J possesses at least m := dim H−−codim H+−1
(m := dim H−−1 resp.) distinct pairs of critical points in X\P ∪(−P ) with critical
values belong to [c0, c∞].

The above theorem locates the critical points more precisely than [1, 6, Theorem
3.3] and the references therein.

We shall use pseudo-index theory to prove Theorem 3.6. First, we need the
notation of genus and its properties, see [6, 7]. Let

ΣX = {A ⊂ X : A is closed in X, A = −A}.
We denote by iX(A) the genus of A in X.

Proposition 3.7. Assume that A,B ∈ ΣX , h ∈ C(X, X) is an odd homeomor-
phism, then

(i) iX(A) = 0 if and only if A = ∅;
(ii) A ⊂ B ⇒ iX(A) ≤ iX(B) (monotonicity);
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(iii) iX(A ∪B) ≤ iX(A) + iX(B) (subadditivity);
(iv) iX(A) ≤ iX(h(A)) (supervariancy);
(v) if A is a compact set, then iX(A) < +∞ and there exists δ > 0 such that

iX(Nδ(A)) = iX(A), where Nδ(A) denotes the closed δ-neighborhood of A
(continuity);

(vi) if iX(A) > k, V is a k-dimensional subspace of X, then A ∩ V ⊥ 6= ∅;
(vii) if W is a finite dimensional subspace of X, then iX(h(Sρ) ∩W ) = dim W .
(viii) Let V,W be two closed subspace of X with codim V < +∞,dim W < +∞.

Then if h is bounded odd homeomorphism on X, we have

iX(W ∩ h(Sρ ∩ V )) ≥ dim W − codim V.

The above proposition is still true when we replace ΣX by ΣH with obvious
modifications.

Proposition 3.8 ([6]). If A ∈ ΣX with 2 ≤ iX(A) < ∞, then A ∩ S 6= ∅.

Proposition 3.9. Let A ∈ ΣH , then A ∩X ∈ ΣX and iH(A) ≥ iX(A ∩X).

Definition 3.10 ([1, 6]). Let I = (Σ,H, i) be an index theory on H related to a
group G, and B ∈ Σ. We call a pseudo-index theory (related to B and I) a triplet

I∗ = (B,H∗, i∗)

where H∗ ⊂ H is a group of homeomorphism on H, and i∗ : Σ → N ∪ {+∞} is the
map defined by

i∗(A) = min
h∈H∗

i(h(A) ∩B).

Proof of Theorem 3.6. Consider the genus I = (Σ,H, i) and the pseudo-index the-
ory relate to I and B = Sρ ∩H+, I∗ = (Sρ ∩H+,H∗, i∗), where

H∗ = {h is an odd bounded homeomorphism on H and

h(u) = u if u 6∈ J−1(]0,+∞[)}.

Obviously conditions [1, (a1), (a2) of theorem 2.9] are satisfied with a = 0, b =
+∞ and b = Sρ ∩H+. Now we prove that condition (a3) is satisfied with Ā = H−.
It is obvious that Ā ⊂ J−1(]−∞, c∞]), and by property (iv) of genus, we have

i∗(Ā) = i∗(H−) = min
h∈H∗

i(h(H−) ∩ Sρ ∩H+)

= min
h∈H∗

i(H− ∩ h−1(Sρ ∩H+)).

Now by (viii) of Proposition 3.7, we have

i(H− ∩ h−1(Sρ ∩H+)) ≥ dim H− − codim H+.

Therefore, we have
i∗(Ā) ≥ dim H− − codim H+.

Then by [6, Theorem 2.9] and Proposition 3.8 above, the numbers

ck = inf
A∈Σk

sup
u∈A∩S

J(u), k = 2, . . . ,dim H− − codim H+.

are critical values of J and

J(0) < c0 ≤ ck ≤ c∞, k = 2, . . . ,dim H− − codim H+. (3.1)
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If for every k, ck 6= ck+1, we obtain the conclusion of Theorem 3.6. Assume now
c = ck = · · · = ck+r with r ≥ 1 and k + r ≤ dim H− − codim H+. Then as in the
proof to [6, Theorem 2.9], we have

i(Kc ∩ S) ≥ r + 1 ≥ 2 (3.2)

Now from proposition 3.8 and (3.1), we deduce that

0 6∈ Kc ∩ S. (3.3)

Since a finite set (not containing 0) has genus 1, we deduce from (3.2) and (3.3)
that Kc above contains infinitely many sign-changing critical points. Therefore, J
has at least m := dim H− − codim H+ − 1 distinct pairs of sign-changing critical
points in X\P ∪ (−P ) with critical values belong to [c0, c∞].

If codim H+ = 0, we consider cj for j ≥ 2. As above arguments J(0) < c0 ≤
c2 ≤ c3 ≤ · · · ≤ cdim H− ≤ c∞ and if c := cj = · · · = cj+l for 2 ≤ j ≤ j+l ≤ dim H−

with l ≥ 1, then i(Kc ∩ S) ≥ l + 1 ≥ 2. Therefore, J has at least dim H− − 1 pairs
of sign-changing critical points with values belong to [c0, c∞]. �

We remark that Theorem 3.5 above can also be proved by the pseudo-index
theory as Theorem 3.6.

4. Proof of Theorems 1.1–1.3

We shall apply the abstract results of section 3 to problem (1.3). Let H :=
H1

0 (Ω), X := C1
0 (Ω). Clearly the solutions of (1.3) are the critical points of the

functional

J(u) =
1
2
(‖u‖2 − λk|u|2) +

∫
Ω

G(u)dx, (4.1)

where | · | denotes the norm in L2(Ω), then J ∈ C1(H, R). We denote by Mj the
eigenspace corresponding to the eigenvalue λj . If m ≥ 0 is an integer number, set

H−(m) = ⊕j≤mMj ,

and H+(m) the closure in H1
0 (Ω) of the linear space spanned by {Mj}j≥m. Clearly

H+(m) ∩H−(m) = Mm.

Proposition 4.1. If (G1), (G2) hold, then the functional J defined by (4.1) satisfies
the condition (C) in ]0,+∞[.

Proof of Theorem 1.1. If G(0) = 0, then by (G3), G takes its minimum at 0, so
g(0) = 0 and 0 is a solution of (1.3). We assume that G(0) > 0. Similar proof to
that in [1], there exist R, γ > 0 such that

J(u) ≥ γ, u ∈ H+(k + 1);

J(u) ≤ γ

2
, u ∈ H−(k) ∩ SR.

Let ∂B = H−(k) ∩ SR, A = H+(k + 1), then by Example 3.2 we have that ∂B
and A link, and J is bounded on B = H−(k) ∩ BR. Moreover by Proposition 4.1,
J satisfies condition (C) in ]0,+∞[. So the conclusion of Theorem 1.1 follows by
Theorem 3.5. �

Note that if J(0) = 0, then the solutions obtained in Theorem 1.1 are sign-
changing solutions.
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Proof of Theorem 1.2. Since g(0) = 0, u(x) = 0 is a solution of (1.3). In this case,
we are interested in finding the existence of sign-changing solutions to (1.3). The
case g(t) = 0 for all t ∈ R is trivial. We assume that g(t) 6= 0 for some t. Then it
is easy to see that (G2), (G3) and (1.4) imply g′(0) > 0. Similar proof to that in
[1, Theorem 5.1], each of the following holds:

λ1 − λk + g′(0) > 0, (4.2)

λk 6= λ1 and there exists λh ∈ σ(−∆) with λ2 ≤ λh ≤ λk such that

λh − λk + g′(0) > 0,
1
2
(λh−1 − λk)t2 + G(t) ≤ G(0) ∀t ∈ R. (4.3)

Under (4.1), there exist three positive constants ρ < R, γ such that

J(u) ≥ J(0) + γ, u ∈ Sρ;J(e) ≤ J(0) +
γ

2
, e ∈ M1 ∩ Sρ.

Since J(0) = G(0) · |Ω| ≥ 0 (|Ω| is the Lebesgue measure of Ω), we have

0 < J(0) +
γ

2
< J(0) + γ.

Fix e ∈ M1 ∩ Sρ, set
A = Sρ, B = {te : t ∈ [0, R]}.

Then by Example 3.2, A and ∂B link and J is bounded on B. Moreover by
Proposition 4.1, J satisfies condition (C) in ]0,+∞[. Then by Theorem 3.5, J
possesses a critical point u0 such that J(u0) ≥ J(0) + γ. So u0 is a sign-changing
solution to (1.3).

Under (4.3) similar arguments to that above, we get

J(u) ≥ J(0) + γ, u ∈ H+(h) ∩ Sρ; J(u) ≤ J(0) +
γ

2
, u ∈ ∂B(h, R).

where B(h, R) = {u + te : u ∈ H−(h− 1) ∩BR, e ∈ Mh ∩ S1, 0 ≤ t ≤ R}. Set

A = H+(h) ∩ Sρ, B = B(h, R).

Then by Example 3.3, A and ∂B link and J is bounded on B. Moreover by
Proposition 4.1, J satisfies condition (C). Using Theorem 3.5, we can conclude that
J possesses a sign-changing critical point u0 with J(u0) ≥ J(0) + γ. �

Remark 4.2. If g′(0) = 0; i.e., resonance at 0 is allowed, then by using an argument
similar to that in the proof of Theorem 1.2, problem (1.3) still has at least a sign-
changing solution under these conditions: Let g(0) = 0. Assume that (G1), (G2)
hold and

G(t) > 0, ∀t 6= 0, G(0) = 0.

Moreover suppose that either of the following holds

λk = λ1;

λk 6= λ1 and
1
2
(λk−1 − λk)t2 + G(t) ≤ 0 for all t ∈ R.

Proof of Theorem 1.3. By [1, Proposition 3.1 and Lemma 5.3], the assumptions of
Theorem 3.6 are satisfied with

H+ = H+(h), H− = H−(k).

Thus there exist at least dim H−− codim H+− 1 = dim{Mh⊕ . . .Mk}− 1 distinct
pairs of sign-changing solutions of (1.3). �
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Remark 4.3. We also allow resonance at zero in problem (1.3). By using [1,
Theorem 3.2 and Lemma 5.4], we have: Assume that g is odd and (G1) (G2) are
satisfied. Suppose moreover G(t) > 0 for all t 6= 0 and G(0) = 0. Then (1.3)
possesses at least dim Mk−1 distinct pairs of sign-changing solutions. (Mk denotes
the eigenspace corresponding to λk with k ≥ 2)
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