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UNIQUENESS AND ASYMPTOTIC BEHAVIOR OF BOUNDARY
BLOW-UP SOLUTIONS TO SEMILINEAR ELLIPTIC PROBLEMS

WITH NON-STANDARD GROWTH

SHUIBO HUANG, WAN-TONG LI, QIAOYU TIAN

Abstract. In this article, we analyze uniqueness and asymptotic behavior of
boundary blow-up non-negative solutions to the semilinear elliptic equation

∆u = b(x)f(u), x ∈ Ω,

u(x) =∞, x ∈ ∂Ω,

where Ω ⊂ RN is a bounded smooth domain, b(x) is a non-negative function on
Ω and f is non-negative on [0,∞) satisfying some structural conditions. The
main novelty of this paper is that uniqueness is established only by imposing a
control on their growth on the weights b(x) near ∂Ω and the nonlinear term f
at infinite, rather than requiring them to have a precise asymptotic behavior.
Our proof is based on the method of sub and super-solutions and the Safonov
iteration technique.

1. Introduction and statement of main results

This article is concerned with uniqueness and asymptotic behavior of boundary
blow-up solutions to the semilinear elliptic equation

∆u = b(x)f(u), u ≥ 0, x ∈ Ω,

u(x) = ∞, x ∈ ∂Ω,
(1.1)

where Ω ⊂ RN (N ≥ 3) is a bounded smooth domain. The boundary condition
is to be understood as limδ(x)→0 u(x) = ∞ for δ(x) = dist(x, ∂Ω). By a solution
to (1.1) we mean a function u ∈ C1

loc(Ω), which satisfies ∆u = b(x)f(u) in the
weak sense and limδ(x)→0 u(x) = ∞, such solutions are often referred to as large
solutions, boundary blow-up solutions or explosive solutions.

We now explain our assumptions on the weight function b(x). Let K[C`,C`] denote
the set of all positive, non-decreasing functions k ∈ L1(0, ϑ)∩C1(0, ϑ) which satisfy

lim
t→0+

K(t)
k(t)

= 0, lim inf
t→0+

d

dt

(K(t)
k(t)

)
= C`, lim sup

t→0+

d

dt

(K(t)
k(t)

)
= C`,
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where K(t) =
∫ t

0
k(s)ds. When C` = C` = `, denote K` = K[C`,C`], for further

details on K`, we refer to [38, 43, 12, 5, 26].
The basic structural assumptions of weight function b(x) are the following:
(B1) b ∈ Cα(Ω) with α ∈ (0, 1), is non-negative on Ω.
(B2) There exist k ∈ K[C`,C`] with 0 ≤ C` ≤ C` ≤ 1 and positive constants

0 < Ck ≤ Ck such that

lim inf
δ(x)→0

b(x)
k2(δ)

= Ck, lim sup
δ(x)→0

b(x)
k2(δ)

= Ck. (1.2)

We assume the nonlinear term f satisfies:
(F1) f(t) ≥ 0, f(t) > 0 for large t > 0, f(0) = 0, f(t) is locally Lipschitz

continuous on [0,∞) and differentiable for large t.
(F2)

∫∞
t

ds
f(s) <∞ for large t > 0.

(F3) There exist positive constants Λ1,Λ2 with max{1,Λ1} ≤ Λ2 ≤ Λ1 + 1 such
that

lim inf
t→∞

f ′(t)
∫ ∞

t

ds

f(s)
= Λ1, lim sup

t→∞
f ′(t)

∫ ∞

t

ds

f(s)
= Λ2. (1.3)

Note that when Λ1 = Λ2 ≥ 1, by (1.3), we have

lim
t→∞

f ′(t)
∫ ∞

t

ds

f(s)
= Λ1, (1.4)

which already appeared in [21, 50, 48, 49, 3, 22, 51] in order to describe the variation
of f at infinity. It is worth mentioning that, f is rapidly varying at infinity (see
Definition 2.3 below) if Λ1 = Λ2 = 1. However, f is normalized regularly varying
at infinity (see Definition 2.2 below) with index Λ1/(Λ1 − 1) if Λ1 = Λ2 > 1.

Let us mention that condition similar to (1.4) have been used to describe the
variation of b(x) at zero. More precisely, set

B(t) =
∫ ∞

t

1
A(s)

ds, A(t) =
( ∫ t

0

b
1

p+1

) p+1
p−1

,

then

lim
t→0

(
A′(t)

∫ ∞

t

1
A(s)

ds
)

= lim
t→0

B(t)B′′(t)
B2(t)

,

which appears in [38, 27, 2].
Singular boundary value problem (1.1) arises naturally from a number of dif-

ferent areas and has a long history. Indeed, elliptic boundary blow-up problems
arise in completely different fields as Riemannian geometry [28, 29], population
dynamics[36, 18], stochastic control problem with state constraints[32, 33] and fluid
dynamics[15].

There is a great amount of research devoted to study boundary blow-up prob-
lems related with (1.1). Generally speaking, the existence problem is relatively
well understood but the uniqueness problem is only partially understood. Further-
more, besides their own intrinsic interest, the uniqueness results provide us with
the dynamics of the positive solutions in a large number of sublinear and superlin-
ear indefinite parabolic problems in the absence of steady-state solutions, when the
dynamics is governed by the metasolutions of the model, see [36, 37, 39] and the
references therein.
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When f(u) = up, p > 1 and weight function b(x) was permitted to vanish on ∂Ω,
with a precise rate of the form

lim
δ→0

b(x)
δα(x)

= β,

for some positive constants α, β, Garćıa-Melián et al [23], Du and Huang [18] ob-
tained the uniqueness of boundary blow-up solutions to (1.1). Further improve-
ments of the results of [23, 18] can be found in [9, 8].

Recently, by making use of an iteration technique due to Safonov, the uniqueness
also be established in [16, 4] provided f(u) = up, p > 1 and b(x) satisfies

C1δ
α(x) ≤ b(x) ≤ C2δ

α(x), x ∈ Ωη, (1.5)

where η > 0, 0 < C1 ≤ C2, α > 0 are constants and Ωη = {x ∈ Ω, 0 <
δ(x) < η}. For more general nonlinear term f , Garćıa-Melián proved the unique-
ness of (1.1) with b(x) ∈ C(Ω) satisfies (1.5), f satisfies (1.4)[21], or f satisfies
limu→∞ f(u)/up = 1, p > 1 and f(u)/u is increasing for u > 0 [20].

In a different direction, by using Karamata’s theory for regularly varying func-
tions, Ĉırstea and Du [7] showed that uniqueness of boundary blow-up solution to
(1.1) with f ∈ RVρ+1, ρ > 0 still holds provided (1.5) was relaxed to

C1k
2(δ(x)) ≤ b(x) ≤ C2k

2(δ(x)), x ∈ Ωη, (1.6)

where C1, C2, α are positive constants and k ∈ K`. Zhang and Mi [51] also shown
the uniqueness of (1.1) with b(x) satisfies (1.6) and f satisfies (1.4).

Our main objective of this paper is to establish uniqueness and boundary behav-
ior of boundary blow-up solutions to (1.1). A point worth emphasizing is that one
could not expect that the solutions are well-behaved near ∂Ω if the weight function
and nonlinear terms are not. Therefore, we can only obtain a control on boundary
blow-up solutions’s growth near ∂Ω under the assumptions (1.2) and (1.3).

It is worth pointing out that uniqueness of boundary blow-up solutions to elliptic
problems (1.1) has been obtained frequently in the literature by means of boundary
estimates (with the exception of [14, 38]). More precisely, proving uniqueness is
reduced to showing that every boundary blow-up solution has the same explosion
rate at the boundary, which can be obtained if b(x) has a prescribed behavior near
∂Ω and f has a prescribed behavior near infinity. Consequently, the quotient of
any two solutions tends to one as δ(x) tends to zero. The uniqueness is the direct
result of an additional monotonicity condition, like

f(t)
t

is increasing for t > 0. (1.7)

Note that, under the assumption of (1.2) and (1.3), we only can obtain a control
on boundary blow-up solutions’s growth near boundary, instead of a definite be-
havior of them near boundary, we will overcome the difficulty by Safonov iterative
technique. Furthermore, we only have (see Remark 1.3 below),

f(t)
tp

is increasing for t ≥ t0, 1 ≤ q < Λ, where Λ =

{
Λ1

Λ2−1 , Λ2 > 1,
∞, Λ2 = 1 ,

(1.8)

instead of (1.7) holds. For related but different uniqueness results, see [41, 42, 13,
25, 19, 17, 14] and the references therein.
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We begin by stating our result on boundary behavior and uniqueness of boundary
blow-up solutions to (1.1) when there is no competition between nonlinear term f
and weight function b.

Theorem 1.1. Suppose that (F1)–(F3), (B1), (B2) are satisfied. Then (1.1) has
unique positive solution u(x) satisfying,

lim inf
δ→0

u(x)
φ(ξ+K2(δ))

≥ 1, lim sup
δ→0

u(x)
φ(ξ−K2(δ))

≤ 1, (1.9)

if (Λ1 − 1) + C` > 0, where ∫ ∞

φ(t)

ds

f(s)
= t, (1.10)

and

ξ+ =
Ck

4(Λ1 − 1) + 2C`
, ξ− =

Ck

4(Λ2 − 1) + 2C`
.

Remark 1.2. According to Proposition 2.6 below, φ is the solution of the one-
dimensional problem

φ′(t) = −f(φ(t)), t ∈ (0,∞),

φ(0) = ∞,
(1.11)

where f satisfies (F1)–(F3). It is interesting to note that (1.11) is independent of
the weight function b(x), and is not the one-dimensional version of (1.1).

Remark 1.3. Using Proposition 2.5 below, we have

Λ1 − 1 = lim inf
t→∞

(
f ′(t)

∫ ∞

t

ds

f(s)
− 1

)
≤ lim inf

t→∞

f(t)
t

∫ ∞

t

ds

f(s)

≤ lim sup
t→∞

f(t)
t

∫ ∞

t

ds

f(s)
≤ lim sup

t→∞

(
f ′(t)

∫ ∞

t

ds

f(s)
− 1

)
= Λ2 − 1.

(1.12)

Then, by (1.3) we find that for large t,(
f ′(t)− p

f(t)
t

) ∫ ∞

t

ds

f(s)
≥ Λ1 − p(Λ2 − 1), (1.13)

while, (f(t)
tp

)′
=

1
tp

(
f ′(t)− p

f(t)
t

)
.

This fact, combineed with (1.13), shows that f(t)/tp is increasing for t ≥ t0 if
1 < p < Λ, where Λ appears in (1.8).

Remark 1.4. By Remark 1.3, we easily get that f(t) satisfies the following Keller-
Osserman condition ∫ ∞

t

ds√
2F (s)

<∞, F (t) =
∫ t

0

f(s)ds.

Then, by Theorem 1.1 in [9], we know that (1.1) has at least one boundary blow-up
solution. Other related results on the existence of the minimal solution to (1.1),
see [31, 10, 6, 47, 2, 9, 42] and the references therein.
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Remark 1.5. In particular, according to Proposition 2.5 below, we know that
φ ∈ NRV Z1−Λ1 if Λ1 = Λ2. Then( Ck

4(Λ1 − 1) + 2C`

)1−Λ1

≤ lim inf
δ→0

u(x)
φ(K2(δ))

≤ lim sup
δ→0

u(x)
φ(K2(δ))

≤
( Ck

4(Λ2 − 1) + 2C`

)1−Λ1

,

provided Λ1 = Λ2 > 1, and

lim
δ→0

u(x)
φ(K2(δ))

= 1, (1.14)

provided Λ1 = Λ2 = 1, 0 < C` ≤ C`. This fact shows that boundary blow-up
solution to (1.1) has a exact boundary behavior whereas the weight function not if
f is rapidly varying at infinity (Λ1 = Λ2 = 1), which differs from the case that f is
regularly varying at infinity (Λ1 = Λ2 > 1).

Remark 1.6. If f = up, p > 1, it is easy to find that

Λ1 = Λ2 =
p

p− 1
, φ(t) =

( 1
(p− 1)t

)1/(p−1)

.

Then, (1.9) implies that, for small δ > 0,

u(x) ≥
( Ck(p− 1)

4 + 2(p− 1)C`

)−1/(p−1)( 1
(p− 1)K2(δ)

)1/(p−1)

,

and

u(x) ≤
( Ck(p− 1)

4 + 2(p− 1)C`

)−1/(p−1)( 1
(p− 1)K2(δ)

)1/(p−1)

.

Remark 1.7. Let f = eu, it follows that Λ1 = Λ2 = 1, φ(t) = − log t. Therefore,

lim
δ→0

u(x)
logK(δ)

= −2,

provided 0 < C` ≤ C`. Note that f = eu does not satisfy f(0) = 0, but this is no
importance for the results.

The next objective is to consider the case that Λ2 = 1.

Theorem 1.8. Suppose that (F1)–(F3) hold with Λ2 = 1, b satisfies (B1) and

lim inf
δ(x)→0

b(x)

k2(δ)
(K(δ)

k(δ)

)′ = Ck, lim sup
δ(x)→0

b(x)

k2(δ)
(K(δ)

k(δ)

)′ = C k, (1.15)

where k ∈ K0 with
(

K(δ)
k(δ)

)′′
≥ 0. Furthermore, K satisfies

lim
t→0

K(t)

k(t)
(K(t)

k(t)

)′ = 0, (1.16)

and

lim inf
t→0

(1− f ′(φ(K2(t)))
∫∞

φ(K2(t))
ds

f(s)(K(t)
k(t)

)′ )
= C` >

1
2
, (1.17)

lim sup
t→0

(1− f ′(φ(K2(t)))
∫∞

φ(K2(t))
ds

f(s)(K(t)
k(t)

)′ )
= C `. (1.18)
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Then (1.1) has a unique boundary blow-up solution u(x) satisfying (1.14).

Remark 1.9. As we already said, by a standard argument, the uniqueness of
boundary blow-up solution to (1.1) will be a direct consequence of boundary esti-
mate provided Λ2 = 1, since any boundary blow-up solution has the same boundary
behavior near the boundary. Hence we focus on boundary behavior of boundary
blow-up solution to (1.1) when Λ2 = 1.

Remark 1.10. Thanks to Theorem 1.8, we find that when f is rapidly varying
at infinity, which grows faster than any power functions, then the vanishing rate
of weight function b at boundary ∂Ω enters into competition with the growth of f
at infinity. This phenomena was firstly studied by Ĉırstea in [5], where b satisfies
(1.6) with k ∈ K0, instead of (1.15).

Remark 1.11. The transformation u = φ(v) changes (1.1) into

−∆v + Π(v)
|∇v|2

v
= b(x), x ∈ Ω,

v(x) = 0, x ∈ ∂Ω,
(1.19)

where

Π(t) = − tφ
′′(t)

φ′(t)
.

Obviously, for small t,

Π(t) = tf ′(φ(t)) = f ′(φ(t))
∫ ∞

φ(t)

ds

f(s)
,

which, together with (1.3), implies lim inft→0 Π(t) = Λ1, lim supt→0 Π(t) = Λ2.
Here, we will prove Theorem 1.1 and 1.8 directly, unlike earlier works [34, 35, 21],

considering boundary value problem (1.19) satisfied by v = ψ(u), where ψ defined
by

ψ(t) =
∫ ∞

t

ds

f(s)
.

The distribution of this paper is as follows. In Section 2, we collect some pre-
liminary results. Theorem 1.1 will be proved in Section 3. Section 4 is devoted to
prove Theorem 1.8. Some illustrative examples are analyzed in Section 5.

2. Preliminaries

We start by recalling some definitions and qualities about regular variation the-
ory. For detailed accounts of the theory of regular variation, its extensions and
many of its applications, we refer to [1, 45, 44, 24, 46, 40].

2.1. Regular variation theory.

Definition 2.1. A positive measurable function f defined on [D,∞) for some
D > 0, is called regularly varying (at infinity) with index ρ ∈ R (written f ∈ RVρ)
if for all ξ > 0

lim
u→∞

f(ξu)
f(u)

= ξρ.

When the index of regular variation ρ is zero, we say that the function is slowly
varying.
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Definition 2.2. A function f(u) defined for u > B is called a normalized regularly
varying function of index q (in short f ∈ NRVρ) if it is C1 and satisfies

lim
u→∞

uf ′(u)
f(u)

= ρ.

Note that f ∈ NRVρ+1 if and only if f is C1 and f ′ ∈ RVρ.
The notion of regular variation can be extended to any real number. We say that

f(u) is regularly varying (respectively, normalized regularly varying) at the origin
from the right with index ρ ∈ R, denoted by f ∈ RV Zρ (respectively, f ∈ NRV Zρ),
if f(1/u) ∈ RV−ρ (respectively, f(1/u) ∈ NRV−ρ).

Definition 2.3. A positive measurable function f defined on (A,∞) for some
A > 0 is called rapidly varying at infinity if for each p > 1,

lim
u→∞

f(u)
up

= ∞.

For the sake of convenience, we introduce several classes of functions.
Let RV[ρ1,ρ2] denote the set of all positive measurable function f defined on

[D,∞) for some D > 0, satisfying

lim inf
u→∞

f(ξu)
f(u)

≥ ξρ1 , lim sup
u→∞

f(ξu)
f(u)

≤ ξρ2 , ξ > 0.

In particular, when ρ1 = ρ2, f is called regularly varying at infinity with index ρ1.
One can show that all regularly varying functions belong to this class. This is also
true for all positive measurable functions which are on (A,∞) bounded away from
both 0 and ∞.

It is sometimes necessary to transfer attention from infinity to the origin. More
precisely, let RV Z[ρ1,ρ2] denote the set of all positive measurable function f defined
on [D,∞) for some D > 0, satisfy

lim inf
u→0

f(ξu)
f(u)

≥ ξρ1 , lim sup
u→0

f(ξu)
f(u)

≤ ξρ2 , ξ > 0.

Let NRV[ρ1,ρ2] denote the set of all C1 functions satisfying

lim inf
u→∞

uf ′(u)
f(u)

≥ ρ1 lim sup
u→∞

uf ′(u)
f(u)

≤ ρ2 , ρ ∈ R.

Clearly, when ρ1 = ρ2, f is called normalized regularly varying at infinity with
index ρ1 and NRVρ ⊂ NRV[ρ1,ρ2] for any ρ ∈ [ρ1, ρ2].

Similarly, NRV Z[ρ1,ρ2] denotes the set of all C1 functions satisfying

lim inf
u→0

uf ′(u)
f(u)

≥ ρ1 , lim sup
u→0

uf ′(u)
f(u)

≤ ρ2 , ρ ∈ R.

2.2. Comparison principle. The following comparison principle will play an im-
portant role in the proof of our main theorem.

Proposition 2.4. Let f be continuous on (0,∞) such that f(u)/u is increasing for
u > 0, and b(x) ∈ C(Ω) be a non-negative function. Assume that u1, u2 ∈ C2(Ω)
are positive functions such that

∆u1 − b(x)f(u1) ≤ 0 ≤ ∆u2 − b(x)f(u2), x ∈ Ω,

lim sup
δ(x)→0

(u2 − u1)(x) ≤ 0.
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Then we have u1 ≥ u2 in Ω.

The proof of the above proposition can be found in [9, 11], see also [35] for a
version corresponding to the p-Laplacian case.

2.3. General l’Hôpital rule. For the sake of computation, we mention here the
general l’Hôpital rule which appears in [34] and is used throughout the paper.

Proposition 2.5. Suppose f(x) and g(x) are differentiable functions defined on
(α, β) for with g′(x) 6= 0 for all x ∈ (α, β), where −∞ ≤ α < β ≤ ∞. If
lim inft→β

f ′(t)
g′(t) and lim supt→β

f ′(t)
g′(t) exist and limt→β g(t) = ∞. Then

lim inf
t→β

f ′(t)
g′(t)

≤ lim inf
t→β

f(t)
g(t)

≤ lim sup
t→β

f(t)
g(t)

≤ lim sup
t→β

f ′(t)
g′(t)

.

The proof of this results follows by slight modification of the usual proof of
l’Hôpital rule, hence we omit it.

2.4. Properties of f and φ. In this subsection we quote some results about f
and φ which are used in subsequent sections.

Proposition 2.6. Suppose that f satisfies (F1)–(F3). Then

(i) Λ1−1
Λ2

= lim inft→∞
f(t)

tf ′(t) ≤ lim supt→∞
f(t)

tf ′(t) ≤
Λ2−1
Λ1

.
(ii) f is rapidly varying at infinity if Λ2 = 1.
(iii) φ is well defined on (0,∞), φ(t) > 0, t > 0, φ(0) = ∞, φ(∞) = 0, φ′(t) =

−f(φ(t)), φ′′(t) = f(φ(t))f ′(φ(t)).
(iv) −φ′ ∈ NRV Z[−Λ2,−Λ1], φ ∈ NRV Z[1−Λ2,1−Λ1].
(v) tpφ(t) is increasing for t ≥ t0 if p > Λ2 − 1, is decreasing for t ≥ t0 if

p < Λ1 − 1.

Proof. (i). Direct computations show that

Λ1 − 1
Λ2

≤ 1
Λ2

lim inf
t→∞

f(t)
∫∞

t
dτ

f(τ)

t
≤ lim inf

t→∞

f(t)
∫∞

t
dτ

f(τ)

tf ′(t)
∫∞

t
dτ

f(τ)

= lim inf
t→∞

f(t)
tf ′(t)

≤ lim sup
t→∞

f(t)
∫∞

t
dτ

f(τ)

tf ′(t)
∫∞

t
dτ

f(τ)

≤ 1
Λ1

lim sup
t→∞

f(t)
∫∞

t
dτ

f(τ)

t
≤ Λ2 − 1

Λ1
.

(ii). By (i), we find that there exists a positive constant t0, such that for all
t > t0,

f ′(t)
f(t)

> (q + 1)t−1.

Integrating the above inequality from t0 to t, we have∫ t

t0

f ′(s)ds
f(s)

= ln f(t)− ln f(t0) > (q + 1)(ln t− ln t0).

That is,
f(t)
tp

>
f(t0)t
tp+1
0

,

which implies that f is rapidly varying at infinity.
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(iii). For the proof of this results, see [3, 50, 21].
(iv). By (iii), it can be easily seen that, for small t > 0,

− tφ
′′(t)

φ′(t)
= f ′(φ(t))

∫ ∞

φ(t)

ds

f(s)
,

which implies that

− lim inf
t→0

tφ′′(t)
φ′(t)

= Λ1, − lim sup
t→0

tφ′′(t)
φ′(t)

= Λ2.

That is, −φ′(t) ∈ RV[−Λ2,−Λ1]. Consequently, f(φ(t)) ∈ RV[−Λ2,−Λ1] and

1− Λ1 = lim inf
t→0

tφ′′(t) + φ′(t)
φ′(t)

≤ lim inf
t→0

tφ′(t)
φ(t)

≤ lim sup
t→0

tφ′(t)
φ(t)

≤ lim sup
t→0

tφ′′(t) + φ′(t)
φ′(t)

= 1− Λ2.

(v) A simple calculation yields

(tpφ(t))′ = tp−1φ(t)
(
tφ′(t)
φ(t)

+ p

)
.

This fact, together with (iv), shows that (tpφ(t))′ > 0 if p > Λ2−1 and (tpφ(t))′ < 0
if p < Λ1 − 1. �

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1. As remarked in the introduction, the
main point is that the behavior of the solutions can be characterized in terms of a
one-dimensional first-order equation. For clarity, we divide the lengthy proof into
two steps.

3.1. Asymptotic Behavior.

Proof. We now diminish η > 0 to ensure that, for all ε ∈ (0, Ck/2), δ ∈ (0, η) and
β ∈ (0, δ),

(i) k(x) is non-increasing on (0, 2η).
(ii) (Ck − ε)k2(δ(x) − β) ≤ b(x) < (Ck + ε)k2(δ + β) in the set Ω2η = {x ∈

Ω, 0 < δ(x) < 2η}.
(iii) ‖∇δ(x)‖ = 1 for every x ∈ Ω2η.
(iv) δ(x) is C2−function in the set Ω2η.

For β ∈ (0, δ), define

u±β (x) = φ(ξ±ε K
2(δ(x)± β)), x ∈ Ω±β ,

where φ is given by (1.10), Ω−β = Ω2η\Ω̄β , Ω+
β = Ω2η−β and

ξ+ε =
Ck + 2ε

4(Λ1 − 1) + 2C`
, ξ−ε =

Ck − 2ε
4(Λ2 − 1) + 2C`

.

Then

∆u+
β − b(x)f(u+

β )

≥ 4(ξ+ε )2φ′′(ξ+ε K
2(δ + β))K2(δ + β)k2(δ + β) + 2ξ+ε φ

′(ξ+ε K
2(δ + β))k2(δ + β)

+ 2ξ+ε φ
′(ξ+ε K

2(δ + β))K(δ + β)k′(δ + β)
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+ 2ξ+ε φ
′(ξεK2(δ + β))K(δ + β)k(δ + β)∆δ − (Ck + ε)k2(δ + β)f(u+

β )

= k2(δ + β)f(u+
β )[A+

1 (δ + β) +A+
2 (δ + β) +A+

3 (δ + β) +A+
4 (δ + β)∆δ

− (Ck + ε)],

and

∆u−β − b(x)f(u−β )

≤ 4(ξ−ε )2φ′′(ξ−ε K
2(δ − β))K2(δ − β)k2(δ − β) + 2ξ−ε φ

′(ξεK2(δ − β))k2(δ − β)

+ 2ξ−ε φ
′(ξεK2(δ − β))K(δ − β)k′(δ − β)

+ 2ξ−ε φ
′(ξεK2(δ − β))K(δ − β)k(δ − β)∆δ − (Ck − ε)k2(δ − β)f(u−β )

= k2(δ − β)f(u−β )[A−1 (δ − β) +A−2 (δ − β) +A−3 (δ − β) +A−4 (δ − β)∆δ

− (Ck − ε)],

where

A±1 (t) = 4(ξ±ε )2
φ′′(ξ±ε K

2(t))K2(t)
f(φ(ξ±ε K2(t))

, A±2 (t) = 2ξ±ε
φ′(ξ±ε K

2(t))
f(φ(ξ±ε K2(t))

,

A±3 (t) = 2ξ±ε
φ′(ξ±ε K

2(t))K(t)k′(t)
k2(t)f(φ(ξ±ε K2(t))

, A±4 (t) = 2ξε
φ′(ξ±ε K

2(t))K(t)
k(t)f(φ(ξ±ε K2(t))

.

By Proposition 2.5, we obtain

lim inf
t→0

A±1 (t) = 4ξ±ε Λ1, lim sup
t→0

A±1 (t) = 4ξ±ε Λ2,

lim
t→0

A±2 (t) = −2ξ±ε , lim
t→0

A±4 (t) = 0,

lim inf
t→0

A±3 (t) = −2ξ±ε lim inf
t→0

K(t)k′(t)
k2(t)

= 2ξ±ε lim inf
t→0

((K(t)
k(t)

)′
− 1

)
= 2ξ±ε (C` − 1),

lim sup
t→0

A±3 (t) = −2ξ±ε lim sup
t→0

K(t)k′(t)
k2(t)

= 2ξ±ε lim sup
t→0

((K(t)
k(t)

)′
− 1

)
= 2ξ±ε (C` − 1).

The above computation leads to

lim inf
δ+β→0

[A+
1 (δ + β) +A+

2 (δ + β) +A+
3 (δ + β) +A+

4 (δ + β)∆δ − (Ck + ε)] = ε,

lim sup
δ−β→0

[A−1 (δ − β) +A−2 (δ − β) +A−3 (δ − β) +A−4 (δ − β)∆δ − (Ck − ε)] = −ε.

Thus diminish η if necessary such that

∆u+
β − b(x)f(u+

β ) > 0, x ∈ Ω+
β ,

∆u−β − b(x)f(u−β ) < 0, x ∈ Ω−β .

It is obvious that

u+
β (x) ≤ N(η) + u(x), x ∈ {x ∈ Ω : δ(x) = 2η − β},

lim
δ→0

[u+
β (x)−N(η)− u(x)] = −∞,

where N(η) = φ(ξεK2(η)), u is a positive solution to (1.1), which implies that

u+
β (x) ≤ N(η) + u(x), x ∈ ∂Ω+

β .
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Clearly,

∆(u+
β (x)−N(η)) = ∆u+

β (x) ≥ b(x)f(u+
β ) ≥ b(x)f(u+

β (x)−N(η)).

This fact, combined with Proposition 2.4, shows that

u+
β (x) ≤ N(η) + u(x), x ∈ Ω+

β . (3.1)

On the other hand,

u(x) ≤M(2η) + u−β , x ∈ {x ∈ Ω : δ(x) = 2η},
lim
δ→β

[M(2η) + u−β − u(x)] = ∞,

where M(2η) = maxδ(x)≥2η u(x). That is u(x) ≤ M(2η) + u−β , x ∈ ∂Ω−β , which
combined with Proposition 2.4 and

∆(M(2η) + u−β ) = ∆u−β ≤ b(x)f(u−β ) ≤ b(x)f(M(2η) + u−β ),

shows that
u(x) ≤M(2η) + u−β , x ∈ Ω−β . (3.2)

Using (3.1) and (3.2), we infer that

u+
β (x)−N(η) ≤ u(x) ≤M(2η) + u−β , x ∈ Ω−β ∩ Ω+

β ,

where Ω−β ∩Ω+
β = {x ∈ Ω, β < δ(x) < 2η−β}. This yields that for any x ∈ Ω−β ∩Ω+

β ,

u(x)
φ(ξ−ε K2(δ(x)− β))

− M(2η)
φ(ξ−ε K2(δ(x)− β))

≤ 1,

u(x)
φ(ξ+ε K2(δ(x) + β))

+
N(η)

φ(ξ+ε K2(δ(x) + β))
≥ 1.

Letting β → 0, we arrive at
u(x)

φ(ξ−ε K2(δ))
− M(2η)
φ(ξ−ε K2(δ))

≤ 1, (3.3)

u(x)
φ(ξ+ε K2(δ))

+
N(η)

φ(ξ+ε K2(δ))
≥ 1. (3.4)

In view of Proposition 2.6 and boundedness of N(η), M(2η), letting δ → 0 and
ε→ 0 in (3.3) and (3.4), we derive that (1.9) holds. �

3.2. Uniqueness. The aim of the present section is proving that any two positive
solutions u1(x), u2(x) to (1.1) satisfy u1(x)/u2(x) → 1 as δ(x) → 0, which together
with (1.7), leads to uniqueness. The proof is a refinement of the iterative technique
attributed to Safonov, which has been used in [21, 22, 30, 51].

Proof. Step 1. We first remark that, thanks to Proposition 2.5, given any two
positive strong solutions to (1.1), it follows that the quotient of any two solutions
is bounded and bounded away from zero.

Step 2. Let u1, u2 be arbitrary positive solutions to (1.1). To prove the unique-
ness it suffices to show that

lim
δ→0

u1(x)
u2(x)

= 1.

Firstly, we show that

λ = lim sup
δ→0

u1(x)
u2(x)

≤ 1.
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The argument proceeds by contradiction; that is λ > 1. Given a small ε > 0 such
that ε ∈ (0,max{λ− 1, Ck}); thus, there exist δε > 0 and x0 such that

(i)
u1(x)
u2(x)

< λ+ ε, x ∈ Ωδε
, (3.5)

(ii) b(x) ≥ (Ck − ε)k2(δ).
(iii) u1(x0)

u2(x0)
> λ− ε, x0 ∈ Ω2δε/3.

(iv) (λ− ε)u2(x) > t0, where t0 is such that f(t)/tp is increasing for t ≥ t0 and
some p ∈ (1, Λ1

Λ2−1 ).
(v) u(x) ≥ φ(ξ+K2(δ)), x ∈ Ωδε

.
(vi) f(φ(K2(δ)))K2(δ) ≤ (Λ2 − 1)φ(K2(δ)), x ∈ Ωδε .
Define

Ω0 = {x ∈ Ω : u1(x) > (λ− ε)u2(x)} ∩Bρ(x0),

where Bρ(x0) = {x ∈ Ω : |x− x0| < ρ} and ρ = δ(x0)/2. In the set Ω0, we find

∆(u1 − (λ− ε)u2) = b(x)[f(u1)− (λ− ε)f(u2)]

≥ b(x)[f((λ− ε)u2)− (λ− ε)f(u2)]

≥ b(x)[(λ− ε)p − (λ− ε)]f(u2)

≥ (Ck − ε)[(λ− ε)p − (λ− ε)]k2(δ)f(u2)

≥ (Ck − ε)[(λ− ε)p − (λ− ε)]k2(δ(x))f
(
φ(ξ+K2(δ))

)
≥ (Ck − ε)[(λ− ε)p − (λ− ε)]k2(ρ/2)f

(
ξ+φ(K2(3ρ/2))

)
≥ C(λ− ε)K2(ρ)f(φ(K2(Cρ))),

(3.6)

where C is a positive constant which can be taken independently of ε varying from
line to line.

Define ϑ(x) = (ρ2 − |x− x0|2)/2N . Obviously, ϑ(x) satisfies

−∆ϑ(x) = 1, x ∈ Bρ(x0), ϑ(x) = 0, x ∈ ∂Bρ(x0),

which together with (3.6), we arrive at

∆(u1 − (λ− ε)u2 +M1ϑ) ≥ 0, x ∈ Ω0,

where M1 = C(λ−ε)K2(ρ)f(φ(K2(Cρ))). Then, according to maximum principle,
we find that there exists x1 ∈ ∂Ω0 such that

u1(x0)− (λ− ε)u2(x0) +M1ϑ(x0) ≤ u1(x1)− (λ− ε)u2(x1) +M1ϑ(x1). (3.7)

If x1 ∈ Bρ(x0), then u1(x1) = (λ − ε)u2(x1), taking into account (3.7), we infer
that ϑ(x0) < ϑ(x1), which is impossible. Thus x1 ∈ ∂Bρ(x0), namely, ϑ(x1) = 0,
this fact, combined with (3.7), implies

M1ρ
2/2N = M1ϑ(x0) ≤ u1(x1)− (λ− ε)u2(x1). (3.8)

On the other hand, by δ(x1) < 3δ(x0)/2 ≤ δε,

M1ρ
2/2N > C(λ− ε)K2(ρ)f(φ(K2(Cρ))) ≥ C(λ− ε)u2(x1), (3.9)

which, combined with (3.8) and (3.9), shows that

u1(x1) ≥ (1 + C)(λ− ε)u2(x1). (3.10)
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Thus, taking into account (3.5), we obtain λ + ε ≥ (1 + C)(λ − ε), letting ε → 0,
we arrive at 1 ≥ (1 +C), which is impossible. This contradiction leads to λ ≤ 1. A
symmetric argument proves that λ ≥ 1.

Step 3. The uniqueness follows from a standard argument. For completeness we
include the short proof. Let umin(x), umax(x) are minimal and maximal solutions
to (1.1), separately, in the sense that any other solutions u(x) to (1.1) must satisfy
umin(x) ≤ u(x) ≤ umax(x). Subsequently, we will show that umin(x) = umax(x).

Then, taking into account step 2, we have

lim
δ(x)→0

umin(x)
umax(x)

= 1.

Thus given ε > 0, there is η0 > 0 such that

(1− ε)umax(x) ≤ umin(x), x ∈ Ωη0 .

By (1.7), we have

∆((1− ε)umax(x)) = (1− ε)∆umax(x)

= (1− ε)b(x)f(umax) ≥ b(x)f((1− ε)umax(x)).

Let ω be the unique solution of

∆ω = b(x)f(ω), x ∈ O,
ω = umin(x), x ∈ ∂O,

where O = {x ∈ Ω : δ(x, ∂Ω) ≥ η0}. By the comparison principle, it follows that

(1− ε)umax(x) ≤ umin(x), x ∈ O,
On the other hand, in view of the uniqueness of ω, we derive that ω(x) = umin(x),
x ∈ O. Consequently,

(1− ε)umax(x) ≤ ω(x), x ∈ Ω,

which implies that umax(x) ≤ umin(x), x ∈ Ω. By the definition of umax(x) and
umin(x), we have umax(x) = umin(x). �

4. Proof of Theorem 1.8

Proof. Fix ε ∈ (0,max{1− 2C `,Ck}) and choose ς > 0 such that
(i) δ(x) is a C2 function in the set Ως .
(ii) k(x) is non-decreasing in (0, δ).

(iii) (Ck − ε)k2(δ − β)
(

K(δ−β)
k(δ−β)

)′
< b(x) < (C k + ε)k2(δ + β)

(
K(δ+β)
k(δ+β)

)′
in the

set Ως .
Define u±β (x) = φ(ξ±ε κ(δ(x)± β)), x ∈ Ω±β for any β ∈ (0, ς), where κ(t) = K2(t),

ξ+ε =
C k + ε

1− 2C` − ε
, ξ−ε =

Ck − ε

1− 2C ` + ε
.

Then

∆u+
β − b(x)f(u+

β )

≥ (ξ+ε )2φ′′(ξ+ε κ(δ(x) + β))(κ′(δ(x) + β))2 + ξ+ε φ
′(ξ+ε κ(δ + β))κ′′(δ(x) + β)

+ ξ+ε φ
′(ξ+ε κ(δ(x) + β))κ′(δ(x) + β)∆δ − (C k + ε)k2(δ + β)

(
K(δ + β)
k(δ + β)

)′
f(u+

β )
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= ξ+ε φ
′(ξ+ε κ(δ(x) + β))κ(δ(x) + β)

(
κ′(δ(x) + β)
κ(δ(x) + β)

)′
×

[
B+

1 (δ + β)−B+
2 (δ + β) +B+

3 (δ + β)(C k + ε)
]
,

and

∆u−β − b(x)f(u−β )

≤ (ξ−ε )2φ′′(ξ−ε κ(δ(x)− β))(κ′(δ(x)− β))2 + ξ−ε φ
′(ξ−ε κ(δ − β))κ′′(δ(x)− β)

+ ξ−ε φ
′(ξ−ε κ(δ(x)− β))κ′(δ(x)− β)∆δ − (C k + ε)k2(δ − β)

(
K(δ − β)
k(δ − β)

)′
f(u−β )

= ξ−ε φ
′(ξ−ε κ(δ(x)− β))κ(δ(x)− β)

(
κ′(δ(x)− β)
κ(δ(x)− β)

)′
×

[
B−1 (δ − β)−B−2 (δ − β) +B−3 (δ − β)(Ck − ε)

]
,

where

B±1 (t) = 1−
κ(t)
κ′(t)( κ(t)
κ′(t)

)′∆δ, B±2 (t) =
1 + ξ±ε κ(t)φ′′(ξ±ε κ(t))

φ′(ξ±ε κ(t))( κ(t)
κ′(t)

)′ ,

B±3 (t) = −
k2(t)

(K(t)
k(t)

)′
ξ±ε κ(t)

(κ′(t)
κ(t)

)′ .
By (1.16), we have limt→0B

±
1 (t) = 1, using (1.17) and (1.18), we find

lim inf
t→0

B±2 (t) = 2C`, lim sup
t→0

B±2 (t) = 2C `, lim
t→0

B±3 (t) = −1/2ξ±ε .

We can use the same line of arguments as in the proof of Theorem 1.1 to obtain
this results, here we omit the details of the proof. �

5. Examples

We now give some examples of nonlinearity f which satisfy the assumptions of
the main theorem in this paper.

Example 5.1. Let f(t) = tρ + sin tρ + 2, ρ > 0, thus

lim inf
t→∞

f(ξt)
f(t)

= lim sup
t→∞

f(ξt)
f(t)

= ξρ, ξ > 0.

Namely, f(t) ∈ RVρ. However,

lim inf
t→∞

tf ′(t)
f(t)

= 0, lim sup
t→∞

tf ′(t)
f(t)

= 2ρ,

which implies that f ∈ NRV[0,2ρ].

Example 5.2. Let f(t) is a positive, differentiable function satisfying

C1t
ρ1 ≤ f ′(t) ≤ C2t

ρ2 , f(0) = 0, for large t > 0, (5.1)

where C1 ≤ C1, 0 < ρ1 ≤ ρ2 are positive constant. Then, by (5.1), we find

C1

1 + ρ1
t1+ρ1 ≤ f(t) ≤ C2

1 + ρ2
t1+ρ2 . (5.2)
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Taking into account (5.1) and (5.2), we obtain

C1(1 + ρ2)
C2ρ2

tρ1−ρ2 ≤ f ′(t)
∫ ∞

t

ds

f(s)
≤ C2(1 + ρ1)

C1ρ1
tρ2−ρ1 ,

which implies that 0 ≤ Λ1 ≤ Λ2, however, we do not obtain a finite upper bound
for Λ2. In particular, if ρ1 = ρ2,

C1(1 + ρ1)
C2ρ1

≤ Λ1 ≤ Λ2 ≤
C2(1 + ρ1)
C1ρ1

.

Example 5.3. Let f ∈ NRV[1+θ1,1+θ2] satisfies f(0) = 0, where 0 < θ1 ≤ θ2. It
follows that

lim
t→∞

t

f(t)
= 0,

which together with Proposition 2.5, shows that

1
θ2
≤ lim inf

t→∞

1
tf ′(t)
f(t) − 1

≤ lim inf
t→∞

f(t)
∫∞

t
ds

f(s)

t

≤ lim sup
t→∞

f(t)
∫∞

t
ds

f(s)

t
≤ lim sup

t→∞

1
tf ′(t)
f(t) − 1

≤ 1
θ1
.

This inequality, combined with

f ′(t)
∫ ∞

t

ds

f(s)
=
tf ′(t)
f(t)

f(t)
∫∞

t
ds

f(s)

t
,

implies that
1 + θ1
θ2

≤ Λ1 ≤ Λ2 ≤
1 + θ2
θ1

.

Example 5.4. Let f = eg(t), where g(t) ∈ NRV[θ1,θ2] with 0 < θ1 ≤ θ2. Obviously,

lim
t→∞

t

g(t)eg(t)
= 0.

Hence, in view of Proposition 2.5, we have

1
θ2
≤ lim inf

t→∞

1
tg′(t)−g(t)

g2(t) + tg′(t)
g(t)

≤ lim inf
t→∞

g(t)eg(t)

t

∫ ∞

t

ds

eg(s)

≤ lim sup
t→∞

g(t)eg(t)

t

∫ ∞

t

ds

eg(s)
≤ lim sup

t→∞

1
tg′(t)−g(t)

g2(t) + tg′(t)
g(t)

≤ 1
θ1
.

Consequently, by

f ′(t)
∫ ∞

t

ds

f(s)
=
tg′(t)
g(t)

g(t)eg(t)

t

∫ ∞

t

ds

eg(s)
,

we derive that
θ1
θ2
≤ Λ1 ≤ Λ2 ≤

θ2
θ1
.
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[8] F. Ĉırstea, V. Rădulescu; Uniqueness of the blow-up boundary solution of logistic equations
with absorbtion, C. R. Acad. Sci. Paris, Ser. I. 335 (2002) 447-452.
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[20] J. Garćıa-Melián; Nondegeneracy and uniqueness for boundary blow-up elliptic problems, J.
Differential Equations 223 (2006) 208-227.
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