Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 142, pp. 1-8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu

IRREGULAR OBLIQUE DERIVATIVE PROBLEMS FOR SECOND-ORDER NONLINEAR ELLIPTIC EQUATIONS ON INFINITE DOMAINS

GUO CHUN WEN

Abstract

In this article, we study irregular oblique derivative boundaryvalue problems for nonlinear elliptic equations of second order in an infinite domain. We first provide the formulation of the above boundary-value problem and obtain a representation theorem. Then we give a priori estimates of solutions by using the reduction to absurdity and the uniqueness of solutions. Finally by the above estimates and the Leray-Schauder theorem, the existence of solutions is proved.

1. Formulation of the problem

Let D be an $(N+1)$-connected domain including the infinite point with the boundary $\Gamma=\cup_{j=0}^{N} \Gamma_{j}$ in \mathbb{C}, where $\Gamma \in C_{\mu}^{2}(0<\mu<1)$. Without loss of generality, we assume that D is a circular domain in $|z|>1$, where the boundary consists of $N+1$ circles $\Gamma_{0}=\Gamma_{n+1}=\{|z|=1\}, \Gamma_{j}=\left\{\left|z-z_{j}\right|=r_{j}\right\}, j=1, \ldots, N$ and $z=\infty \in D$. In this article, the notation is as the same in References [1, 2, 3, 4, 5, 6, We consider the second-order nonlinear elliptic equation in the complex form

$$
\begin{gather*}
u_{z \bar{z}}=F\left(z, u, u_{z}, u_{z z}\right), \quad F=\operatorname{Re}\left[Q u_{z z}+A_{1} u_{z}\right]+\hat{A}_{2} u+A_{3} \\
Q=Q\left(z, u, u_{z}, u_{z z}\right), A_{j}=A_{j}\left(z, u, u_{z}\right), \quad j=1,2,3, \hat{A}_{2}=A_{2}+|u|^{\sigma} \tag{1.1}
\end{gather*}
$$

satisfying the following conditions.
Condition (C). (1) $Q(z, u, w, U), A_{j}(z, u, w)(j=1,2,3)$ are continuous in $u \in \mathbb{R}$, $w \in \mathbb{C}$ for almost every $z \in D, U \in \mathbb{C}$, and $Q=0, A_{j}=0(j=1,2,3)$ for $z \notin D, \sigma$ is a positive number.
(2) The above functions are measurable in D for all continuous functions $u(z)$, $w(z)$ in \bar{D}, and satisfy

$$
\begin{equation*}
L_{p, 2}\left[A_{j}(z, u, w), \bar{D}\right] \leq k_{0}, \quad j=1,2, L_{p, 2}\left[A_{3}(z, u, w), \bar{D}\right] \leq k_{1} \tag{1.2}
\end{equation*}
$$

in which $p_{0}, p\left(2<p_{0} \leq p\right), k_{0}, k_{1}$ are non-negative constants.
(3) Equation (1.1) satisfies the uniform ellipticity condition

$$
\begin{equation*}
\left|F\left(z, u, w, U_{1}\right)-F\left(z, u, w, U_{2}\right)\right| \leq q_{0}\left|U_{1}-U_{2}\right|, \quad A_{2} \geq 0, \text { in } D, \tag{1.3}
\end{equation*}
$$

[^0]for almost every point $z \in D$, any number $u \in \mathbb{R}$, $w, U_{1}, U_{2} \in \mathbb{C}$, where $q_{0}(<1)$ is a non-negative constant.

Problem (P). In the domain D, find a solution $u(z)$ of equation 1.1), which is continuous in \bar{D}, and satisfies the boundary conditions

$$
\begin{align*}
& \frac{1}{2} \frac{\partial u}{\partial \nu}+c_{1}(z) u(z)=c_{2}(z), \quad z \in \Gamma, u\left(a_{j}\right)=b_{j}, j=0,1, \ldots, K^{\prime}, \text { i.e. } \tag{1.4}\\
& \operatorname{Re}\left[\overline{\lambda(z)} u_{z}\right]+c_{1}(z) u=c_{2}(z), \quad z \in \Gamma, u\left(a_{j}\right)=b_{j}, j=0,1, \ldots, K^{\prime}
\end{align*}
$$

where the vector $\nu(\neq 0)$ can be arbitrary at every point on $\Gamma, K^{\prime}(=2 K-2 N+J+$ $1 \geq 0), J$ are non-negative integers as stated below, $\lambda(z)=\cos (\nu, x)+i \sin (\nu, x)=$ $\mathrm{e}^{i(\nu, x)} \neq 0,(\nu, x)$ is the angle between ν and the x-axis, $a_{j}\left(\in \Gamma_{j}, j=0,1, \ldots, K^{\prime}\right)$ are distinct points on Γ. Suppose that $\lambda(z), c_{1}(z), c_{2}(z), b_{j}\left(j=0,1, \ldots, K^{\prime}\right)$ satisfy the conditions

$$
\begin{gather*}
C_{\alpha}[\lambda(z), \Gamma] \leq k_{0}, \quad C_{\alpha}\left[c_{1}(z), \Gamma\right] \leq k_{0}, \quad C_{\alpha}\left[c_{2}(z), \Gamma\right] \leq k_{2} \\
\left|b_{j}\right| \leq k_{2}, \quad j=0,1, \ldots, K^{\prime}, \quad c_{1}(z) \cos (\nu, n) \geq 0 \quad \text { on } \Gamma \tag{1.5}
\end{gather*}
$$

in which $\alpha(1 / 2<\alpha<1), k_{2}$ are non-negative constants. The boundary $\partial D=\Gamma$ can be divided into two parts, namely $E^{+} \subset\left\{z \in \partial D, \cos (\nu, n) \geq 0, c_{1} \geq 0\right\}$ and $E^{-} \subset\left\{z \in \partial D, \cos (\nu, n) \leq 0, c_{1} \leq 0\right\}$, and $E^{+} \cap E^{-}=\emptyset, E^{+} \cup E^{-}=\Gamma$, $\overline{E^{+}} \cap \overline{E^{-}}=E^{0}$. For every component $L=\Gamma_{j}(0 \leq j \leq N)$ of Γ, there are three cases:

1. $L \subset E^{+}$.
2. $L \subset E^{-}$. In these cases, if $\cos (\nu, n) \equiv 0, c_{1}(z) \equiv 0$ on $\Gamma_{j}(1 \leq j \leq$ $J, J \leq N+1)$, and the above identical formulas on $\Gamma_{j}(J<j \leq N+1)$ do not hold, then we need the conditions $\int_{\Gamma_{j}} c_{2}(z) \mathrm{d} s=0(1 \leq j \leq J)$, and $u\left(a_{j}\right)=b_{j}$, $j=0,1, \ldots, K^{\prime}(\geq J)$, in which $a_{j}, b_{j}\left(j=0,1, \ldots, K^{\prime}\right)$ are as stated before, and denote $\Gamma^{\prime}=\cup_{j=1}^{J} \Gamma_{j}, \Gamma^{\prime \prime}=\cup_{j=J+1}^{N+1} \Gamma_{j}$.
3. There exists at least a point on each component of $L^{+}=E^{+} \cap L$ and $L^{-}=$ $E^{-} \cap L$, such that $\cos (\nu, n) \neq 0$ at the point, and $E^{0} \cap L \in\left\{a_{0}, a_{1}, \ldots, a_{K^{\prime}}\right\}$, such that every component of L^{+}, L^{-}includes its initial point and does not include its terminal point; and $a_{j} \in \overline{L^{+}} \cap L^{-}\left(0 \leq j \leq K^{\prime}\right)$, when the direction of ν at a_{j} is equal to the direction of L; and $a_{j} \in L^{+} \cap \overline{L^{-}}\left(0 \leq j \leq K^{\prime}\right)$, when the direction of ν at a_{j} is opposite to the direction of L; and $\cos (\nu, n)$ changes the sign once on the two components with the end point $a_{j}\left(0 \leq j \leq K^{\prime}\right)$; we may assume that $u\left(a_{j}\right)=b_{j}, j=0,1, \ldots, K^{\prime}$. The number

$$
\begin{equation*}
K=\frac{1}{2}\left(K_{1}+\cdots+K_{N+1}\right), \quad K_{j}=\Delta_{\Gamma_{j}} \arg \lambda(z), \quad j=1, \ldots, N+1 \tag{1.6}
\end{equation*}
$$

is called the index of Problem (P). We can choose $K^{\prime}=2 K-2 N+J+1$. In the following, we shall prove the next theorem. Now we prove the uniqueness of solutions for Problem (P) of (1.1).

Theorem 1.1. Suppose that (1.1) satisfy Condition (C). Then Problem (P) for equation 1.1) with the condition that $A_{3}=0$ in $D, c_{2}=0$ on Γ and $b_{j}=0(j=$ $\left.0,1, \ldots, K^{\prime}\right)$ has only the trivial solution.
Proof. Let $u(z)$ be any solution of Problem (P) for equation (1.1) with $A_{3}=0$, $c_{2}=0$ on Γ and $b_{j}=0\left(j=0,1, \ldots, K^{\prime}\right)$. From Condition (C), it is easily seen that
$u(z)$ is a solution of the following uniformly elliptic equation

$$
\begin{equation*}
u_{z \bar{z}}=\operatorname{Re}\left[Q u_{z z}+A_{1} u_{z}\right]+\hat{A}_{2} u, \quad|Q| \leq q_{0}<1, \hat{A}_{2}=A_{2}+|u|^{\sigma} \geq 0 \quad \text { in } D \tag{1.7}
\end{equation*}
$$

and satisfies the boundary condition

$$
\begin{equation*}
\frac{\partial u}{\partial \nu}+2 c_{1}(z) u(z)=0 \quad \text { on } \Gamma^{*}, u\left(a_{j}\right)=0, j=0,1, \ldots, K^{\prime} . \tag{1.8}
\end{equation*}
$$

Substitute the solution $u(z)$ into the coefficients of equation (1.7), we can find a solution $\Psi(z)$ of 1.7 satisfying the condition

$$
\Psi(z)=1 \quad \text { on } \Gamma
$$

thus the function $U(z)=u(z) / \Psi(z)$ is a solution of the equation

$$
\begin{equation*}
U_{z \bar{z}}=\operatorname{Re}\left[Q U_{z z}+A_{0} U_{z}\right], \quad A_{0}=-2(\log \Psi)_{\bar{z}}+2 Q(\log \Psi)_{z}+A_{1} \tag{1.9}
\end{equation*}
$$

satisfying the boundary conditions

$$
\begin{equation*}
\frac{\partial U}{\partial \nu}+c_{1}^{*}(z) U(z)=0 \quad \text { on } \Gamma^{*}, U\left(a_{j}\right)=0, j=0,1, \ldots, K^{\prime} \tag{1.10}
\end{equation*}
$$

where $a_{1}^{*}(z)=c_{1}(z)+(\partial \Psi / \partial \nu) / \Psi(z), c_{1}^{*}(z) \cos (\nu, n) \geq 0$ on Γ^{*}.
If $M=\max _{\bar{D}} U(z)>0$ in D, then there exists a point $z^{*} \in \Gamma$ such that $M=U\left(z^{*}\right)=\max _{\bar{D}} U(z)>0$. When $z^{*} \in \Gamma^{\prime}$, noting that $\cos (\nu, n) \equiv 0, c_{1}(z) \equiv 0$, $\partial \Psi(z) / \partial \nu \equiv 0$ on Γ^{\prime}, we have $\partial U / \partial \nu \equiv 0, U(z) \equiv M$ on $\Gamma_{j}\left(1 \leq j \leq J^{\prime}\right)$, this contradicts the point conditions in 1.10 . When $z^{*} \in \Gamma^{\prime \prime}$, if $\cos (\nu, n)>0$ at z^{*}, from [3, Corollary 2.11, Chapter III], we have $\partial U / \partial \nu>0$ at z^{*}, this contradicts (1.10) on $\Gamma^{\prime \prime}$. If $\cos (\nu, n)=0$ and $c_{1}^{*}\left(z^{*}\right) \neq 0$ at z^{*}, then $\partial U / \partial \nu+c_{1}^{*}(z) U \neq 0$ at z^{*}, it is also impossible. Denote by L the longest curve of Γ including the point z^{*}, such that $\cos (\nu, n)=0$ and $c^{*}(\underset{\sim}{z})=0$, thus $u(z)=M$ on L, from the point conditions in 1.10, any point of $\tilde{T}=\left\{z_{0}, z_{1}, \ldots, z_{K^{\prime}}\right\}$ cannot be an end point of L, then there exists a point $z^{\prime} \in \Gamma^{\prime \prime}$, such that at $z^{\prime}, \cos (\nu, n)>0(<0)$, $\partial U / \partial n>0, \cos (\nu, s)>0(<0), \partial U / \partial s \geq 0$, or $\cos (\nu, n)<0(>0), \partial U / \partial n>0$, $\cos (\nu, s)>0(<0), \partial U / \partial s \leq 0$, hence

$$
\frac{\partial U}{\partial \nu}=\cos (\nu, n) \frac{\partial U}{\partial n}+\cos (\nu, s) \frac{\partial U}{\partial s}>0, \quad \text { or }<0 \text { at } z^{\prime}
$$

holds, where s is the tangent vector at $z^{\prime} \in \Gamma^{\prime \prime}$, and then

$$
\frac{\partial U}{\partial \nu}+c_{1}^{*} U>0, \quad \text { or } \frac{\partial U}{\partial \nu}+c_{1}^{*} U<0 \text { at } z^{\prime}
$$

it is also impossible. This shows that $u(z)$ cannot attain its maximum M at a point $z^{*} \in \Gamma$. Similarly we can prove that $u(z)$ cannot attain its minimum at a point $z_{*} \in \Gamma$, hence $u(z)=0$ on Γ, thus $u(z)=0$ in \bar{D}.

By a similar way as stated before, we can prove the uniqueness theorem of solutions of Problem (P) for equation (1.1) with $\sigma=0$ as follows.

Corollary 1.2. Suppose that(1.1) with $\sigma=0$ satisfies Condition (C) and the following condition, for any real functions $u_{j}(z) \in C^{1}(\bar{D}), V_{j}(z) \in L_{p_{0}, 2}(\bar{D})(j=$ $1,2)$, the following equality holds:

$$
\begin{aligned}
& F\left(z, u_{1}, u_{1 z}, V_{1}\right)-F\left(z, u_{2}, u_{2 z}, V_{2}\right) \\
& =\operatorname{Re}\left[\tilde{Q}\left(V_{1}-V_{2}\right)+\tilde{A}_{1}\left(u_{1}-u_{2}\right)_{z}\right]+\tilde{A}_{2}\left(u_{1}-u_{2}\right) \quad \text { in } D
\end{aligned}
$$

where $|\tilde{Q}| \leq q_{0}$ in $D, A_{1}, \tilde{A}_{2} \in L_{p_{0}, 2}(\bar{D})$. Then Problem (P) for equation (1.1) has at most one solution.

2. A Priori estimates

We consider the nonlinear elliptic equations of second order

$$
\begin{equation*}
u_{z \bar{z}}-\operatorname{Re}\left[Q u_{z z}+A_{1} u_{z}\right]-\hat{A}_{2} u=A_{3} \tag{2.1}
\end{equation*}
$$

where $\hat{A}_{2}=A_{2}+|u|^{\sigma}, \sigma$ is a positive number, and assume that the above equation satisfies Condition (C).

Theorem 2.1. Let 2.1) satisfy Condition (C). Then any solution of Problem (P) for (2.1) satisfies the estimates

$$
\begin{gather*}
\hat{C}_{\beta}[u, \bar{D}]=C_{\beta}^{1}\left[|u|^{\sigma+1}, \bar{D}\right] \leq M_{1}, \quad\|u\|_{W_{p_{0}, 2}^{2}(D)} \leq M_{1}, \tag{2.2}\\
\hat{C}_{\beta}[u, \bar{D}] \leq M_{2}\left(k_{1}+k_{2}\right)
\end{gather*}
$$

in which $k=\left(k_{0}, k_{1}, k_{2}\right), \beta(0<\beta \leq \alpha), M_{1}=M_{1}\left(q_{0}, p_{0}, \beta, k, D\right), M_{2}=$ $M_{2}\left(q_{0}, p_{0}, \beta, k_{0}, p, D\right)$ are non-negative constants.

Proof. Using the reduction to absurdity, we shall prove that any solution $u(z)$ of Problem (P) satisfies the estimate

$$
\begin{equation*}
\hat{C}[u, \bar{D}]=C\left[|u|^{\sigma+1}, \bar{D}\right]+C\left[u_{z}, \bar{D}\right] \leq M_{3}, \tag{2.3}
\end{equation*}
$$

where $M_{3}=M_{3}\left(q_{0}, p_{0}, \alpha, k, p, D\right)$ is a non-negative constant. Suppose that 2.3) is not true, then there exist sequences of coefficients $\left\{A_{j}^{(m)}\right\}(j=1,2,3),\left\{Q^{(m)}\right\}$, $\left\{\lambda^{(m)}(z)\right\},\left\{c_{j}^{(m)}\right\}(j=1,2),\left\{b_{j}^{(m)}\right\}\left(j=0,1, \ldots, N_{0}\right)$, which satisfy the same conditions of Condition (C) and 1.6-1.8, such that $\left\{A_{j}^{(m)}\right\}(j=1,2,3),\left\{Q^{(m)}\right\}$, $\left\{\lambda^{(m)}(z)\right\},\left\{c_{j}^{(m)}\right\}(j=1,2)$ and $\left\{b_{j}^{(m)}\right\}\left(j=0,1, \ldots, N_{0}\right)$ in \bar{D}, Γ weakly converge or uniformly converge to $A_{j}^{(0)}(j=1,2,3), Q^{(0)}, \lambda^{(0)}(z), c_{j}^{(0)}(j=1,2), b_{j}^{(0)}$ $\left(j=0,1, \ldots, N_{0}\right)$, and the corresponding boundary-value problem

$$
\begin{equation*}
u_{z \bar{z}}-\operatorname{Re}\left[Q^{(m)} u_{z z}+A_{1}^{(m)} u_{z}\right]-\hat{A}_{2}^{(m)} u=A_{3}^{(m)}, \hat{A}_{2}^{(m)}=A_{2}^{(m)}+|u|^{\sigma}, \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2} \frac{\partial u}{\partial \nu}+a_{1}^{(m)}(z) u=c_{2}^{(m)}(z) \quad \text { on } \Gamma, u\left(a_{j}\right)=b_{j}, j=0,1, \ldots, N_{0} \tag{2.5}
\end{equation*}
$$

have the solutions $\left\{u^{(m)}(z)\right\}$, where $\hat{C}\left[u^{(m)}(z), \bar{D}\right](m=1,2, \ldots)$ are unbounded. Hence we can choose a subsequence of $\left\{u^{(m)}(z)\right\}$ denoted by $\left\{u^{(m)}(z)\right\}$ again, such that $h_{m}=\hat{C}\left[u^{(m)}(z), \bar{G}\right] \rightarrow \infty$ as $m \rightarrow \infty$. We can assume $h_{m} \geq \max \left[k_{1}, k_{2}, 1\right]$. It is obvious that $\tilde{u}^{(m)}(z)=u^{(m)}(z) / h_{m}(m=1,2, \ldots)$ are solutions of the boundaryvalue problems

$$
\begin{equation*}
\tilde{u}_{z \bar{z}}-\operatorname{Re}\left[Q^{(m)} \tilde{u}_{z z}+A_{1}^{(m)} \tilde{u}_{z}\right]-\hat{A}_{2}^{(m)} \tilde{u}=A_{3}^{(m)} / h_{m} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2} \frac{\partial \tilde{u}}{\partial \nu}+c_{1}^{(m)}(z) \tilde{u}=c_{2}^{(m)}(z) / h_{m} \quad \text { on } \Gamma, \tilde{u}\left(a_{j}\right)=b_{j}^{(m)}, j=0,1, \ldots, N_{0} \tag{2.7}
\end{equation*}
$$

We can see that the functions in the above equation and boundary conditions satisfy condition (C), 1.6-1.8, and

$$
\begin{gather*}
|u|^{\sigma+1} / h_{m} \leq 1, \quad L_{p, 2}\left[A_{3}^{(m)} / h_{m}, \bar{D}\right] \leq 1 \\
\left|c_{2}^{(m)} / h_{m}\right| \leq 1, \quad\left|b_{j}^{(m)} / h_{m}\right| \leq 1, \quad j=0,1, \ldots, N_{0} \tag{2.8}
\end{gather*}
$$

hence from [3, Theorem 4.10, Chapter III], we obtain the estimate

$$
\hat{C}_{\beta}\left[\tilde{u}^{(m)}(z), \bar{D}\right] \leq M_{4},\left\|\tilde{u}^{(m)}(z)\right\|_{W_{p_{0}, 2}^{2}(D)} \leq M_{4}
$$

in which $M_{4}=M_{4}\left(q_{0}, p_{0}, \beta, k, D\right)$ is a non-negative constant. Thus from the sequence of functions $\left\{\tilde{u}^{(m)}(z)\right\}$, we can choose the subsequence denoted by $\left\{\tilde{u}^{(m)}(z)\right\}$, which converges uniformly to $\tilde{u}^{(0)}(z)$ in \bar{D}, and their partial derivatives $\tilde{u}_{x}^{(m)}, \tilde{u}_{y}^{(m)}$ in \bar{D} are uniformly convergent and $\tilde{u}_{x x}^{(m)}, \tilde{u}_{y y}^{(m)}, \tilde{u}_{x y}^{(m)}$ in \bar{D} weakly convergent. This shows $\tilde{u}_{0}(z)$ is a solution of the boundary-value problem

$$
\begin{equation*}
\tilde{u}_{0 z \bar{z}}-\operatorname{Re}\left[Q^{(0)} \tilde{u}_{0 z z}+A_{1}^{(0)} \tilde{u}_{0 z}\right]-\hat{A}_{2}^{(0)} \tilde{u}_{0}=0 \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2} \frac{\partial \tilde{u}_{0}}{\partial \nu}+c_{1}^{(0)}(z) \tilde{u}_{0}=0 \quad \text { on } \Gamma, u_{0}\left(a_{j}\right)=0, j=0,1, \ldots, N_{0} . \tag{2.10}
\end{equation*}
$$

We see that 2.9 possesses the condition $A_{3}^{(0)}=0$ and 2.10 is the homogeneous boundary condition. On the basis of Theorem 1.1 , the solution satisfies $\tilde{u}_{0}(z)=0$. However, from $\hat{C}\left[\tilde{u}^{(m)}(z), \bar{D}\right]=1$, we can derive that there exists a point $z^{*} \in \bar{D}$, such that $\left[\left|\tilde{u}_{0}(z)\right|^{\sigma+1}+\left|\tilde{u}_{0 z}\right|\right]_{z=z^{*}} \neq 0$, which is impossible. This shows the first of two estimates in 2.2 is true. It is not difficult to verify the third estimate in (2.2).

3. Solvability

By the above estimates and the Leray-Schauder theorem, we can prove the existence of solutions of Problem (P) for equation (1.1). We first introduce the nonlinear elliptic equation of second order

$$
\begin{align*}
u_{z \bar{z}} & =f_{m}\left(z, u, u_{z}, u_{z z}\right), f_{m}\left(z, u, u_{z}, u_{z z}\right) \\
& =\operatorname{Re}\left[Q_{m} u_{z z}+A_{1 m} u_{z}\right]+\hat{A}_{2 m} u+A_{3} \quad \text { in } D \tag{3.1}
\end{align*}
$$

with the coefficients

$$
\begin{gathered}
Q_{m}=\left\{\begin{array}{ll}
Q & \text { in } D_{m} \\
0 & \text { in } \mathbb{C} \backslash D_{m}
\end{array} \quad A_{j m}=\left\{\begin{array}{ll}
A_{j} & \text { in } D_{m} \\
0 & \text { in } \mathbb{C} \backslash D_{m}
\end{array} \quad j=1,3,\right.\right. \\
\hat{A}_{2 m}= \begin{cases}\hat{A}_{2} & \text { in } D_{m} \\
0 & \text { in } \mathbb{C} \backslash D_{m}\end{cases}
\end{gathered}
$$

where $D_{m}=\{z \in D: \operatorname{dist}(z, \Gamma \cup\{\infty\}) \geq 1 / m\}, m$ is a positive integer.
Theorem 3.1. If (3.1) satisfies Condition (C), and $u(z)$ is any solution of Problem (P) for equation (3.1), then $u(z)$ can be expressed in the form

$$
u(z)=U(z)+\tilde{v}(z)=U(z)+\hat{v}(z)+v(z)
$$

where $\tilde{v}(z)=\hat{v}(z)+v(z)$ is a solution of (3.1) with the homogeneous Dirichlet boundary condition

$$
\begin{equation*}
\tilde{v}(z)=0 \quad \text { on } \partial D_{0}=\{|z|=1\} . \tag{3.2}
\end{equation*}
$$

Here

$$
v(z)=H f_{m}=\frac{2}{\pi} \iint_{D_{0}} \frac{f_{m}(1 / \zeta)}{|\zeta|^{4}} \ln \left|\frac{1-\zeta z}{\zeta}\right| d \sigma_{\zeta}
$$

in which D_{0} is the image under the mapping $z=1 / \zeta, U(z)$ is a solution of the Dirichlet boundary-value problem for $U_{z \bar{z}}=0$ in D, and $U(z)$ and $\tilde{v}(z)$ satisfy the estimates

$$
\begin{equation*}
\hat{C}_{\beta}^{1}[U, \bar{D}]+\left\|\left.U\right|_{W_{p_{0}, 2}^{2}(D)} \leq M_{5}, \quad \hat{C}_{\beta}^{1}\left[\tilde{v}, \overline{D_{0}}\right]+\right\| \tilde{v} \|_{W_{p_{0}, 2}^{2}\left(D_{0}\right)} \leq M_{6} \tag{3.3}
\end{equation*}
$$

where $\beta(>0), M_{j}=M_{j}\left(q_{0}, p_{0}, \beta, k, D_{m}\right)(j=5,6)$ are non-negative constants.
Proof. It is clear that the solution $u(z)$ can be expressed as before. On the basis of Theorem 2.1, it is easy to see that \tilde{v} satisfies the second estimate in (3.3), and then we know that $U(z)$ satisfies the first estimate of (3.3).

Theorem 3.2. If (1.1) satisfies Condition (C), then Problem (P) for equation (1.1) has a solution.

Proof. To prove the existence of solutions of Problem (P) for 3.1) by using the Leray-Schauder theorem, we introduce the equation with the parameter $t \in[0,1]$:

$$
\begin{equation*}
V_{z \bar{z}}=t f_{m}\left(z, u, u_{z},(U+V)_{z z}\right) \quad \text { in } D . \tag{3.4}
\end{equation*}
$$

Denote by B_{M} a bounded open set in the Banach space $B=\hat{W}_{p_{0}, 2}^{2}\left(D_{0}\right)=\hat{C}_{\beta}^{1}\left(\overline{D_{0}}\right) \cap$ $W_{p_{0}, 2}^{2}\left(D_{0}\right)(0<\beta \leq \alpha)$, the elements of which are real functions $V(z)$ satisfying the inequalities

$$
\begin{equation*}
\hat{C}_{\beta}^{1}\left[V(z), \overline{D_{0}}\right]+\|V\|_{W_{p_{0}, 2}^{2}\left(D_{0}\right)}<M_{7}=M_{6}+1 \tag{3.5}
\end{equation*}
$$

in which M_{6} is a non-negative constants as stated in (3.3). We choose any function $V(z) \in \overline{B_{M}}$ and make an integral $v(z)=H \rho$ as follows:

$$
\begin{equation*}
v(z)=H \rho=\frac{2}{\pi} \iint_{D_{0}} \frac{\rho(1 / \zeta)}{|\zeta|^{4}} \log \left|\frac{1-\zeta z}{\zeta}\right| d \sigma_{\zeta} \tag{3.6}
\end{equation*}
$$

where $\rho(z)=V_{z \bar{z}}$. Next we find a solution $\hat{v}(z)$ of the boundary-value problem in D_{0} :

$$
\begin{gather*}
\hat{v}_{z \bar{z}}=0 \quad \text { in } D_{0} \tag{3.7}\\
\hat{v}(z)=-v(z) \quad \text { on } \partial D_{0} . \tag{3.8}
\end{gather*}
$$

Denote $\tilde{v}(z)=\hat{v}(z)+v(z)$. Moreover we find a solution $U(z)$ of the boundary-value problem in D :

$$
\begin{gather*}
U_{z \bar{z}}=0 \quad \text { in } D \tag{3.9}\\
\frac{1}{2} \frac{\partial U}{\partial \nu}+c_{1}(z) U=c_{2}(z)-\frac{\partial \tilde{v}}{\partial \nu}-c_{1}(z) \tilde{v} \quad \text { on } \Gamma . \tag{3.10}
\end{gather*}
$$

Now we discuss the equation

$$
\begin{equation*}
\tilde{V}_{z \bar{z}}=t f_{m}\left(z, u, u_{z}, U_{z z}+\tilde{v}_{z z}\right), \quad 0 \leq t \leq 1 \tag{3.11}
\end{equation*}
$$

where $u(z)=U(z)+\tilde{v}(z)$. By Condition (C), the principle of contracting mapping and the results in Subsection 3.2, Problem (D) for the equation (3.11) in D_{0} has a unique solution $\tilde{V}(z)$ with the boundary condition

$$
\tilde{V}(z)=0 \quad \text { on } \partial D_{0}
$$

Denote by $\tilde{V}=S(V, t)(0 \leq t \leq 1)$ the mapping from V onto \tilde{V}. Furthermore, if $u(z)$ is a solution of Problem (P) in D for the equation

$$
\begin{equation*}
u_{z \bar{z}}=t f_{m}\left(z, u, u_{z}, u_{z z}\right), \quad 0 \leq t \leq 1 \tag{3.12}
\end{equation*}
$$

then from Theorem 2.1, the solution $u(z)$ of Problem (P) for (3.12) satisfies 2.2), consequently $\tilde{V}(z)=u(z)-U(z) \in B_{M}$. Set $B_{0}=B_{M} \times[0,1]$. In the following, we shall verify that the mapping $\tilde{V}=S(V, t)$ satisfies the following three conditions of Leray-Schauder theorem:

1. For every $t \in[0,1], \tilde{V}=S(V, t)$ continuously maps the Banach space B into itself, and is completely continuous in B_{M}. Besides, for every function $V(z) \in \overline{B_{M}}$, $S(V, t)$ is uniformly continuous with respect to $t \in[0,1]$.

In fact, we arbitrarily choose $V_{n}(z) \in \overline{B_{M}}, n=1,2, \ldots$. It is clear that from $\left\{V_{n}(z)\right\}$ there exists a subsequence $\left\{V_{n_{k}}(z)\right\}$, such that $\left\{V_{n_{k}}(z)\right\},\left\{V_{n_{k} z}(z)\right\}$ and corresponding functions $\left\{U_{n_{k}}(z)\right\},\left\{U_{n_{k} z}(z)\right\}$ uniformly converge to $V_{0}(z), V_{0 z}(z)$, $U_{0}(z), U_{0 z}(z)$ in \bar{D} respectively. We can find a solution $\tilde{V}_{0}(z)$ of Problem (D) for the equation

$$
\tilde{V}_{0 z \bar{z}}=t f_{m}\left(z, u_{0}, u_{0 z}, U_{0 z z}+\tilde{v}_{0 z z}\right), \quad 0 \leq t \leq 1
$$

Noting that $u_{n_{k} z \bar{z}}=U_{n_{k} z \bar{z}}+\tilde{v}_{n_{k} z \bar{z}}$, from $\tilde{V}_{n_{k}}=S\left(V_{n_{k}}, t\right)$ and $\tilde{V}_{0}=S\left(V_{0}, t\right)$, we have

$$
\begin{aligned}
\left(\tilde{V}_{n_{k}}-\tilde{V}_{0}\right)_{z \bar{z}}= & t\left[f_{m}\left(z, u_{n_{k}}, u_{n_{k} z}, U_{n_{k} z z}+\tilde{v}_{n_{k} z z}\right)\right. \\
& \left.-f_{m}\left(z, u_{n_{k}}, u_{n_{k} z}, U_{n_{k} z z}+\tilde{v}_{0 z z}\right)+C_{n_{k}}(z)\right], \quad 0 \leq t \leq 1
\end{aligned}
$$

where

$$
C_{n_{k}}=f_{m}\left(z, u_{n_{k}}, u_{n_{k} z}, U_{n_{k} z z}+\tilde{v}_{0 z z}\right)-f_{m}\left(z, u_{0}, u_{0}, U_{0 z z}+\tilde{v}_{0 z z}\right), z \in D_{0}
$$

Similarly to [6, (2.4.18), Chapter 2], we obtain

$$
L_{p_{0}, 2}\left[C_{n_{k}}, \overline{D_{0}}\right] \rightarrow 0 \quad \text { as } k \rightarrow \infty .
$$

Similarly to $2.2-2.10$, we obtain

$$
\begin{equation*}
\left\|\tilde{V}_{n_{k}}-\tilde{V}_{0}\right\|_{\hat{W}_{p_{0}, 2}^{2}\left(D_{0}\right)} \leq L_{p_{0}, 2}\left[C_{n_{k}}, \overline{D_{0}}\right] /\left[1-q_{0}\right] \tag{3.13}
\end{equation*}
$$

where $q_{0}<1$. It is easy to show that $\left\|\tilde{V}_{n_{k}}-\tilde{V}_{0}\right\|_{\hat{W}_{p_{0}, 2}^{2}(D)} \rightarrow 0$ as $k \rightarrow \infty$. Moreover, from Theorem 2.1, we can verify that from $\left\{\tilde{V}_{n_{k}}(z)-\tilde{V}_{0}(z)\right\}$, there exists a subsequence, denoted by $\left\{\tilde{V}_{n_{k}}(z)-\tilde{V}_{0}(z)\right\}$ again, such that $C_{\beta}^{1}\left[\tilde{V}_{n_{k}}-\tilde{V}_{0}, \overline{D_{0}}\right] \rightarrow 0$ as $k \rightarrow \infty$. This shows that the complete continuity of $\tilde{V}=S(V, t)(0 \leq t \leq 1)$ in $\overline{B_{M}}$. By using a similar method, we can prove that $\tilde{V}=S(V, t)(0 \leq t \leq 1)$ continuously maps $\overline{B_{M}}$ into B, and $\tilde{V}=S(V, t)$ is uniformly continuous with respect to $t \in[0,1]$ for $V \in \overline{B_{M}}$.
2. For $t=0$, from Theorem 2.1 and (3.5). It is clear that $\tilde{V}(z)=S(V, 0) \in B_{M}$.
3. From Theorem 2.1 and (3.5), we see that $\tilde{V}=S(V, t)(0 \leq t \leq 1)$ does not have a solution $\tilde{V}(z)$ on the boundary $\partial B_{M}=\overline{B_{M}} \backslash B_{M}$.

Hence by the Leray-Schauder theorem, we know that Problem (P) for the equation (3.4) with $t=1$, namely (3.1 has a solution $u(z)=U(z)+\tilde{v}(z)=U(z)+$ $\hat{v}(z)+v(z) \in B_{M}$.

Theorem 3.3. Under the conditions in Theorem 3.1. Problem (P) for equation (1.1) has a solution.

Proof. By Theorems 2.1 and 3.2. Problem (P) for the equation (3.1) possesses a solution $u_{m}(z)$, and the solution $u_{m}(z)$ of Problem (P) for (3.1) satisfies the estimate (2.2), where $m=1,2, \ldots$ Thus, we can choose a subsequence $\left\{u_{m_{k}}(z)\right\}$, such that $\left\{u_{m_{k}}(z)\right\},\left\{u_{m_{k} z}(z)\right\}$ in \bar{D} uniformly converge to $u_{0}(z), u_{0 z}(z)$ respectively. Obviously, $u_{0}(z)$ satisfies the boundary conditions of Problem (P) for equation (1.1).

We can choose $K^{\prime}=2 K-2 N+J+1$. By using the similar method as Section $1-3$, we can prove the following theorem.

Theorem 3.4. Under the above conditions, Problem (P) for the equation (1.1) has a solution. Moreover we have the solvability result of Problem (P) for (1.1) with the boundary condition

$$
\frac{1}{2} \frac{\partial u}{\partial \nu}+c_{1}(z) u(z)=c_{2}(z), \quad z \in \Gamma .
$$

When $K \geq N-1 / 2$, the general solution includes $K^{\prime}+1=2 K-2 N+2+J$ arbitrary real constants.

References

[1] A.-V. Bitsadze; Some classes of partial differential equations, Gordon and Breach, New York, (1988).
[2] I.-N. Vekua; Generalized analytic functions, Pergamon, Oxford, (1962).
[3] G.-C, Wen, H. Begehr; boundary-value problems for elliptic equations and systems, Longman Scientific and Technical Company, Harlow, (1990).
[4] G.-C, Wen; Conformal mappings and boundary-value problems, Translations of Mathematics Monographs 106, Amer. Math. Soc., Providence, RI, (1992).
[5] G.-C, Wen, D.-C, Chen, Z.-L. Xu; Nonlinear complex analysis and its applications, Mathematics Monograph Series 1, Science Press, Beijing, (2008).
[6] G.-C, Wen; Recent progress in theory and applications of modern complex analysis, Science Press, Beijing, (2010).

Guo Chun Wen
LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China
E-mail address: Wengc@math.pku.edu.cn

[^0]: 2000 Mathematics Subject Classification. 35J65, 35J25, 35J15.
 Key words and phrases. Irregular oblique derivative problem; nonlinear elliptic equations; infinite domains.
 (C) 2012 Texas State University - San Marcos.

 Submitted July 20, 2012. Published August 20, 2012.

