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POSITIVE PERIODIC SOLUTIONS FOR SECOND-ORDER
NEUTRAL DIFFERENTIAL EQUATIONS WITH FUNCTIONAL

DELAY

ERNEST YANKSON

Abstract. We use Krasnoselskii’s fixed point theorem to prove the existence
of positive periodic solutions of the second-order nonlinear neutral differential
equation

d2

dt2
x(t) + p(t)

d

dt
x(t) + q(t)x(t) = c

d

dt
x(t− τ(t)) + f(t, h(x(t)), g(x(t− τ(t)))).

1. Introduction

In this work, we prove the existence of positive periodic solutions for the second-
order nonlinear neutral differential equation

d2

dt2
x(t)+p(t)

d

dt
x(t)+q(t)x(t) = c

d

dt
x(t−τ(t))+f(t, h(x(t)), g(x(t−τ(t)))), (1.1)

where p and q are positive continuous real-valued functions. The function f : R×
R×R → R is continuous in its respective arguments. We are mainly motivated by
the articles [4, 10, 11, 12, 14] and the references therein. In [12], the Krasnoselskii’s
fixed point theorem was used to establish the existence of positive periodic solutions
for the first-order nonlinear neutral differential equation

d

dt
x(t) = r(t)x(t) + c

d

dt
x(t− τ)− f(t, x(t− τ)) (1.2)

To show the existence of solutions, we transform (1.1) into an integral equation
which is then expressed as a sum of two mappings, one is a contraction and the
other is compact.

The rest of this article is organized as follows. In Section 2, we introduce some
notation and state some preliminary results needed in later sections. Then we give
the Green’s function of (1.1), which plays an important role in this paper. Also, we
present the inversion of (1.1) and Krasnoselskii’s fixed point theorem. For details
on Krasnoselskii theorem we refer the reader to [13]. In Section 3, we present our
main results on existence.
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2. Preliminaries

For T > 0, let PT be the set of continuous scalar functions x that are periodic
in t, with period T . Then (PT , ‖ · ‖) is a Banach space with the supremum norm

‖x‖ = sup
t∈R

|x(t)| = sup
t∈[0,T ]

|x(t)|.

In this paper we make the following assumptions.

p(t+ T ) = p(t), q(t+ T ) = q(t), τ(t+ T ) = τ(t), (2.1)

with τ being scalar function, continuous, and τ(t) ≥ τ∗ > 0. Also, we assume∫ T

0

p(s)ds > 0,
∫ T

0

q(s)ds > 0. (2.2)

We also assume that f(t, h, g) is periodic in t with period T ; that is,

f(t+ T, h, g) = f(t, h, g). (2.3)

Lemma 2.1 ([9]). Suppose that (2.1) and (2.2) hold and

R1[exp(
∫ T

0
p(u)du)− 1]

Q1T
≥ 1, (2.4)

where

R1 = max
t∈[0,T ]

∣∣ ∫ t+T

t

exp(
∫ s

t
p(u)du)

exp(
∫ T

0
p(u)du)− 1

q(s)ds
∣∣,

Q1 =
(
1 + exp

( ∫ T

0

p(u)du
))2

R2
1.

Then there are continuous and T -periodic functions a and b such that b(t) > 0,∫ T

0
a(u)du > 0, and

a(t) + b(t) = p(t),
d

dt
b(t) + a(t)b(t) = q(t), for t ∈ R.

Lemma 2.2 ([14]). Suppose the conditions of Lemma 2.1 hold and φ ∈ PT . Then
the equation

d2

dt2
x(t) + p(t)

d

dt
x(t) + q(t)x(t) = φ(t),

has a T -periodic solution. Moreover, the periodic solution can be expressed as

x(t) =
∫ t+T

t

G(t, s)φ(s)ds,

where

G(t, s) =

∫ s

t
exp[

∫ u

t
b(v)dv +

∫ s

u
a(v)dv]du+

∫ t+T

s
exp[

∫ u

t
b(v)dv +

∫ s+T

u
a(v)dv]du

[exp
( ∫ T

0
a(u)du

)
− 1][exp

( ∫ T

0
b(u)du

)
− 1]

.

Corollary 2.3. [14] Green’s function G satisfies the following properties

G(t, t+ T ) = G(t, t), G(t+ T, s+ T ) = G(t, s),

∂

∂s
G(t, s) = a(s)G(t, s)−

exp
( ∫ s

t
b(v)dv

)
exp

( ∫ T

0
b(v)dv

)
− 1

,
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∂

∂t
G(t, s) = −b(t)G(t, s) +

exp
( ∫ s

t
a(v)dv

)
exp

( ∫ T

0
a(v)dv

)
− 1

.

We next state and prove the following lemma which will play an essential role in
obtaining our results.

Lemma 2.4. Suppose (2.1)-(2.3) and (2.4) hold. If x ∈ PT , then x is a solution
of (1.1) if and only if

x(t) =
∫ t+T

t

cE(t, s)x(s− τ(s))ds

+
∫ t+T

t

G(t, s)[−a(s)cx(s− τ(s)) + f(s, h(x(s)), g(x(s− τ(s))))]ds,

(2.5)

where

E(t, s) =
exp(

∫ s

t
b(v)dv)

exp(
∫ T

0
b(v)dv)− 1

. (2.6)

Proof. Let x ∈ PT be a solution of (1.1). From Lemma 2.2, we have

x(t) =
∫ t+T

t

G(t, s)[c
∂

∂s
x(s− τ(s)) + f(s, h(x(s)), g(x(s− τ(s))))]ds. (2.7)

Integrating by parts, we have∫ t+T

t

cG(t, s)
∂

∂s
x(s− τ(s))ds

= −
∫ t+T

t

c[
∂

∂s
G(t, s)]x(s− τ(s))ds

=
∫ t+T

t

cx(s− τ(s))[E(t, s)− a(s)G(t, s)]ds,

(2.8)

where E is given by (2.6). Then substituting (2.8) in (2.7) completes the proof. �

Lemma 2.5 ([14]). Let A =
∫ T

0
p(u)du, B = T 2 exp

(
1
T

∫ T

0
ln(q(u))du

)
. If

A2 ≥ 4B, (2.9)

then

min
{ ∫ T

0

a(u)du,
∫ T

0

b(u)du
}
≥ 1

2
(A−

√
A2 − 4B) := l,

max
{ ∫ T

0

a(u)du,
∫ T

0

b(u)du
}
≤ 1

2
(A+

√
A2 − 4B) := m.

Corollary 2.6 ([14]). Functions G and E satisfy

T

(em − 1)2
≤ G(t, s) ≤

T exp
( ∫ T

0
p(u)du

)
(el − 1)2

, |E(t, s)| ≤ em

el − 1
.

To simplify notation, we introduce the constants

β =
em

el − 1
, α =

T exp
( ∫ T

0
p(u)du

)
(el − 1)2

, γ =
T

(em − 1)2
. (2.10)
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Lastly in this section, we state Krasnoselskii’s fixed point theorem which enables
us to prove the existence of periodic solutions to (1.1). For its proof we refer the
reader to [13].

Theorem 2.7 (Krasnoselskii). Let M be a closed convex nonempty subset of a
Banach space (B, ‖ · ‖). Suppose that A and B map M into B such that

(i) x, y ∈ M, implies Ax+ By ∈ M,
(ii) A is compact and continuous,
(iii) B is a contraction mapping.

Then there exists z ∈ M with z = Az + Bz.

3. Main results

We present our existence results in this section by considering two cases; c ≥ 0,
c ≤ 0. For some non-negative constant K and a positive constant L we define the
set

D = {ϕ ∈ PT : K ≤ ϕ ≤ L},
which is a closed convex and bounded subset of the Banach space PT . In addition
we assume that there exist a positive constant σ such that

σ < E(t, s), for all (t, s) ∈ [0, T ]× [0, T ], (3.1)

c ≥ 0 (3.2)

and for all s ∈ R, µ ∈ D
K(1− σcT )

γT
≤ f(s, h(µ), g(µ))− ca(s)µ ≤ L(1− βcT )

αT
. (3.3)

To apply Theorem 2.7, we construct two mappings in which one is a contraction
and the other is completely continuous. Thus, we set the map A : D → PT

(Aϕ)(t)

=
∫ t+T

t

G(t, s)[f(s, h(ϕ(s)), g(ϕ(s− τ(s))))− ca(s)ϕ(s− τ(s))]ds.
(3.4)

Similarly, we define the map B : D → PT by

(Bϕ)(t) =
∫ t+T

t

cE(t, s)ϕ(s− τ(s))ds. (3.5)

Lemma 3.1. If B is given by (3.5) with

cβT < 1, (3.6)

then B : D → PT is a contraction.

Proof. It is easy to see that (Bϕ)(t+ T ) = (Bϕ)(t). Let ϕ,ψ ∈ D then

‖Bϕ− Bψ‖ = sup
t∈[0,T ]

|(Bϕ)(t)− (Bψ)(t)| ≤ cβT‖ϕ− ψ‖.

Hence B : PT → PT is a contraction. �

Lemma 3.2. Suppose that conditions (2.1)-(2.3), and (3.1)-(3.3),(3.6) hold. Then
A : PT → PT is completely continuous on D.
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Proof. Let A be defined by (3.4). It is easy to see that (Aϕ)(t+T ) = (Aϕ)(t). For
t ∈ [0, T ] and for ϕ ∈ D we have that

|(Aϕ)(t)| ≤ |
∫ t+T

t

G(t, s)[f(s, h(ϕ(s)), g(ϕ(s− τ(s))))− ca(s)ϕ(s− τ(s))]ds|

≤ Tα
L(1− βcT )

αT
= L(1− βcT ).

Thus from the estimation of |(Aϕ)(t)| we have

‖Aϕ‖ ≤ L(1− βcT ).

This shows that A(D) is uniformly bounded. We next show that A(D) is equicontin-
uous. Let ϕ ∈ D. By using (2.1), (2.2) and (2.3) we obtain by taking the derivative
in (3.4) that

d

dt
(Aϕ)(t) =

∫ t+T

t

[−b(t)G(t, s) +
exp

( ∫ s

t
a(v)dv

)
exp

( ∫ T

0
a(v)dv

)
− 1

]

× [−ca(s)ϕ(s− τ(s)) + f(s, h(ϕ(s)), g(ϕ(s− τ(s))))]ds.

Consequently, by invoking (2.10), and (3.3), we obtain

| d
dt

(Aϕ)(t)| ≤ T (‖b‖α+ β)
L(1− βcT )

αT
≤M,

for some positive constant M . Hence (Aϕ) is equicontinuous. Then by the Ascoli-
Arzela theorem we obtain that A is a compact map. Due to the continuity of all
the terms in (3.4), we have that A is continuous. This completes the proof. �

Theorem 3.3. Let α, β and γ be given by (2.10). Suppose that conditions (2.1)-
(2.4), (2.9),(3.2),(3.3) and (3.6) hold, then Equation (1.1) has a positive periodic
solution z satisfying K ≤ z ≤ L.

Proof. Let ϕ,ψ ∈ D. Using (3.4) and (3.5) we obtain

(Bψ)(t) + (Aϕ)(t)

=
∫ t+T

t

cE(t, s)ϕ(s− τ(s))ds+
∫ t+T

t

G(t, s)[f(s, h(ψ(s)), g(ψ(s− τ(s))))

− ca(s)ψ(s− τ(s))]ds

≤ cβLT + α

∫ t+T

t

[f(s, h(ψ(s)), g(ψ(s− τ(s))))− ca(s)ψ(s− τ(s))]ds

≤ cβLT + αT
L(1− βcT )

αT
= L.

On the other hand,

(Bψ)(t) + (Aϕ)(t)

=
∫ t+T

t

cE(t, s)ϕ(s− τ(s))ds+
∫ t+T

t

G(t, s)[f(s, h(ψ(s)), g(ψ(s− τ(s))))

− ca(s)ψ(s− τ(s))]ds

≥ cσKT + γ

∫ t+T

t

[f(s, h(ψ(s)), g(ψ(s− τ(s))))− ca(s)ψ(s− τ(s))]ds
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≥ cσKT + γT
K(1− σcT )

γT
= K.

This shows that Bψ + Aϕ ∈ D. Thus all the hypotheses of Theorem 2.7 are
satisfied and therefore equation (1.1) has a periodic solution in D. This completes
the proof. �

We next consider the case when c ≤ 0. To this end we substitute conditions
(3.2) and (3.3) with the following conditions respectively.

c ≤ 0 (3.7)

and for all s ∈ R, µ ∈ D
K − cβLT

γT
≤ f(s, h(µ), g(µ))− ca(s)µ ≤ L− cσKT

αT
. (3.8)

Theorem 3.4. Let α, β and γ be given by (2.10). Suppose that conditions (2.1)-
(2.4), (2.9),(3.6), (3.7), and (3.8) hold, then (1.1) has a positive periodic solution
z satisfying K ≤ z ≤ L.

The proof follows along the lines of Theorem 3.3, and hence we omit it.
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