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CONTROLLABILITY OF NONLINEAR DIFFERENTIAL
EVOLUTION SYSTEMS IN A SEPARABLE BANACH SPACE

BHEEMAN RADHAKRISHNAN, KRISHNAN BALACHANDRAN

Abstract. In this article, we study the controllability of semilinear evolu-
tion differential systems with nonlocal initial conditions in a separable Banach
space. The results are obtained by using Hausdorff measure of noncompactness
and a new calculation method.

1. Introduction

In various fields of science and engineering, many problems that are related to
linear viscoelasticity, nonlinear elasticity and Newtonian or non-Newtonian fluid
mechanics have mathematical models. Popular models essentially fall into two cat-
egories: the differential models and the integrodifferential models. A large class
of scientific and engineering problems is modelled by partial differential equations,
integral equations or coupled ordinary and partial differential equations which can
be described as differential equations in infinite dimensional spaces using semi-
groups. In general functional differential equations or evolution equations serve as
an abstract formulation of many partial integrodifferential equations which arise
in problems connected with heat-flow in materials with memory and many other
physical phenomena.

It is well known that the systems described by partial differential equations
can be expressed as abstract differential equations [18]. These equations occur in
various fields of study and each system can be represented by different forms of
differential or integrodifferential equations in Banach spaces. Using the method
of semigroups, various solutions of nonlinear and semilinear evolution equations
have been discussed by Pazy [18] and the nonlocal problem for the same equations
has been first studied by Byszewskii [6, 7]. There have been appeared a lot of
papers concerned with the existence of semilinear evolution equations with nonlocal
conditions [14, 21].

Motivated by the fact that a dynamical system may evolve through an observ-
able quantity rather than the state of the system, a general class of evolutionary
equations is defined. This class includes standard ordinary and partial differential
equations as well as functional differential equations of retarded and neutral type.
In this way, the theory serves as a unifier of these classical problems. Included
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in this general formulation is a general theory for the evolution of temperature in
a solid material. In the general case, temperature is transmitted as waves with
a finite speed of propagation. Special cases include a theory of delayed diffusion.
When physical problems are simulated, the model often takes the form of semilinear
evolution equations. Such problems in the control fluid flow can be modelled by a
semilinear evolution system in a Banach space. For actual flow, control problems
leading to this kind of model and the resulting model equation are discussed in [11].
Control theory, on the other hand, is that branch of application-oriented mathe-
matics that deals with the basic principles underlying the analysis and design of
control systems. To control an object implies the influence of its behaviour so as
to accomplish a desired goal. In order to implement this influence, practitioners
build devices and their interaction with the object being controlled is the subject of
control theory. In control theory, one of the most important qualitative aspects of
a dynamical system is controllability. Controllability is an important property of a
control system and the controllability property plays a crucial role in many control
problems such as stabilization of unstable systems by feedback or optimal control.
Roughly the concept of controllability denotes the ability to move a system around
in its entire configuration space using only certain admissible manipulations.

Controllability of linear and nonlinear systems represented by ordinary differen-
tial equations in finite-dimensional spaces has been extensively investigated. The
problem of controllability of linear systems represented by differential equations in
Banach spaces has been extensively studied by several authors [10]. Several papers
have appeared on finite dimensional controllability of linear systems [13] and infinite
dimensional systems in abstract spaces [9]. Of late the controllability of nonlinear
systems in finite-dimensional spaces is studied by means of fixed point principles [1].
Several authors have extended the concept of controllability to infinite-dimensional
spaces by applying semigroup theory [8, 18, 23, 24]. Controllability of nonlinear
systems with different types of nonlinearity has been studied by many authors with
the help of fixed point principles [2]. Naito [17] discussed the controllability of
nonlinear Volterra integrodifferential systems and in [15, 16] he studied the con-
trollability of semilinear systems whereas Yamamoto and Park [22] investigated the
same problem for a parabolic equation with a uniformly bounded nonlinear term.

A standard approach is to transform the controllability problem into a fixed
point problem for an appropriate operator in a function space. Most of the above
mentioned works require the assumption of compactness of the semigroups. Bal-
achandran and Kim [3] pointed out that controllability results are only true for
ordinary differential systems in finite dimensional spaces if the corresponding semi-
group is compact. However, controllability results maybe true for abstract differen-
tial systems in infinite dimensional spaces if the compactness of the corresponding
operator semigroup is dropped.

Consider the semilinear evolution differential system with nonlocal conditions

x′(t) = A(t)x(t) + Bu(t) + f(t, x(t)), t ∈ J, (1.1)

x(0) = g(x), (1.2)

where the state variable x(·) takes values in a separable Banach space X with norm
‖ · ‖, A(t) : Dt ⊂ X → X generates an evolution system {U(t, s)}0≤s≤t≤b on the
separable Banach space X. The control function u(·) is given in L2(J, U), a Banach
space of admissible control functions with U as a Banach space and the interval
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J = [0, b]. The functions g : C(J,X) → X and f : J ×X → X are continuous and
B is a bounded linear operator from U into X.

In this paper, we give conditions guaranteeing the controllability for nonlocal
evolution system (1.1)–(1.2) without assumptions on the compactness of f, g and
the evolution system {U(t, s)} is strongly continuous. The results obtained are
based on the new calculation method which employs the technique of a measure of
noncompactness.

2. Preliminaries

In this section, we collect some definitions, notation, lemmas and results which
are used later. Let (X, ‖ · ‖) be a real Banach space with zero element θ. Denote
by B(y, r) the closed ball in X centered at y and with radius r. The collections of
all linear and bounded operators from X into itself will be denoted by B(X). If Y
is a subset of X we write Y ,Conv Y to denote the closure and convex closure of Y
respectively.

Moreover we denote by FX the family of all nonempty and bounded subsets of
X and by GX its subfamily consisting of relatively compact sets.

Definition 2.1 ([5]). A function χ : FX → R+ is said to be a measure of noncom-
pactness if it satisfies the following conditions:

(i) The family kerχ = {Y ∈ FX : χ(Y ) = 0} is nonempty and kerχ ⊂ GX .
(ii) Y ⊂ Z ⇒ χ(Y ) ≤ χ(Z).
(iii) χ(Conv Y ) = χ(Y ).
(iv) χ(λY + (1− λ)Z) ≤ λχ(Y ) + (1− λ)χ(Z), for λ ∈ [0, 1].
(v) If {Yn}∞n=1 is a sequence of nonempty, bounded and closed subsets of X

such that Yn+1 ⊂ Yn (n = 1, 2, . . . ) and if limn→∞ χ(Yn) = 0, then the
intersection Y∞ = ∩∞n=1Yn is nonempty and compact in X.

The family kerχ defined in (i) is called the kernel of the measure of noncom-
pactness χ.

Remark 2.2. Let us notice that the intersection set Y∞ described in axiom (v) is
a member of the kernel of the measure of noncompactness χ. In fact the inequality
χ(Y∞) ≤ χ(Yn), for n = 1, 2, . . . implies that χ(Y∞) = 0. Hence Y∞ ∈ ker χ. This
property of the set Y∞ will be important in our investigations.

Throughout this paper, {A(t) : t ∈ R} is a family of closed linear operators
defined on a common domain D which is dense in X and we assume that the linear
non-autonomous system

u′(t) = A(t)u(t), s ≤ t ≤ b,

u(s) = x ∈ X,
(2.1)

has associated evolution family of operators {U(t, s) : 0 ≤ s ≤ t ≤ b}. In the next
definition, L(X) is a space of bounded linear operators from X into X endowed
with the uniform convergence topology.

Definition 2.3. A family of operators {U(t, s) : 0 ≤ s ≤ t ≤ b} ⊂ L(X) is called
a evolution family of operators for (3) if the following properties hold:

(a) U(t, s)U(s, τ) = U(t, τ) and U(t, t)x = x, for every s ≤ τ ≤ t and all x ∈ X;
(b) For each x ∈ X, the function for (t, s) → U(t, s)x is continuous and

U(t, s) ∈ L(X), for every t ≥ s, and



4 B. RADHAKRISHNAN, K. BALACHANDRAN EJDE-2012/138

(c) For 0 ≤ s ≤ t ≤ b, the function t → U(t, s), for (s, t] ∈ L(X), is differen-
tiable with ∂

∂tU(t, s) = A(t)U(t, s).

The most frequently applied measure of noncompactness is defined in the follow-
ing way

β(Y ) = inf{r > 0 : Y can be covered by a finite number of balls with radii r}.

The measure β is called the Hausdorff measure of noncompactness.
In the sequel, we work in the space C(J,X) consisting of all functions defined

and continuous on J with values in the Banach space X. The space C(J,X) is
furnished with the standard norm

‖x‖C = sup{‖x(t)‖ : t ∈ J = [0, b]}.

To define the measure, let us fix a nonempty bounded subset Y of the space C(J,X)
and a positive number t ∈ J . For y ∈ Y and ε ≥ 0 denote by ωt(y, ε) the modulus
of continuity of the function y on the interval [0, t]; that is,

ωt(y, ε) = sup{‖y(t2)− y(t1)‖ : t1, t2 ∈ [0, t], |t2 − t1| ≤ ε}.

Further let us put

ωt(Y, ε) = sup{ωt(y, ε) : y ∈ Y }, ωt
0(Y ) = lim

ε→0+
ωt(Y, ε).

Apart from this, put
β(Y ) = sup{β(Y (t)) : t ∈ J},

where β denotes the Hausdroff measure of noncompactnesss in X. Finally we define
the function χ on the family FC(J,X) by putting

χ(Y ) = ωt
0(Y ) + β(Y ).

It may be shown that the function χ is the measure of noncompactness in the space
C(J,X) (see [4, 5]). The kernel ker χ is the family of all nonempty and bounded
subsets Y such that functions belonging to Y are equicontinuous on J and the set
Y (t) is relatively compact in X, for t ∈ J .

Next, for a given set Y ∈ FC(J,X), let us denote∫ t

0

Y (s)ds =
{∫ t

0

y(s)ds : y ∈ Y
}

, t ∈ J,

Y ([0, t]) = {y(s) : y ∈ Y, s ∈ [0, t]}.

Lemma 2.4 ([12]). If the Banach space X is separable and a set Y ⊂ C(J,X) is
bounded, then the function t → β(Y (t)) is measurable and

β
( ∫ t

0

Y (s)ds
)
≤

∫ t

0

β(Y (s))ds, for each t ∈ J.

Remark 2.5. Observe that in the above lemma we do not require the equiconti-
nuity of functions from the set Y .

Lemma 2.6. Assume that a set Y ⊂ C(J,X) is bounded. Then

β(Y ([0, t])) ≤ ωt
0(Y ) + sup

s≤t
β(Y (s)), for t ∈ J. (2.2)
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Proof. Let δ > 0 be arbitrary. Then there exists ε > 0 such that

ωt(Y, ε) ≤ ωt
0(Y ) + δ/2. (2.3)

Let us take a partition 0 = t0 < t1 < · · · < tk = t such that ti − ti−1 ≤ ε, for
i = 1, 2, . . . , k. Then, for each t′ ∈ [ti−1, ti] and y ∈ Y , the following inequality is
satisfied

‖y(t′)− y(ti)‖ ≤ ωt
0(Y ) + δ/2. (2.4)

Let us notice that, for each i = 1, 2, . . . , k, there are points zij ∈ X(j = 1, 2, . . . , ni)
such that

Y (ti) ⊂ ∪ni
j=1B(zij , sup

s≤t
β(Y (s)) + δ/2). (2.5)

We show that

Y ([0, t]) = ∪k
i=1 ∪

ni
j=1 B(zij , sup

s≤t
β(Y (s)) + ωt

0(Y ) + δ). (2.6)

Let us choose an arbitrary element q ∈ Y ([0, t]). Then we can find t′ ∈ [0, t] and
y ∈ Y , such that q = y(t′). Choosing i such that t′ ∈ [ti−1, ti] and j such that
B(zij , sups≤t β(Y (s)) + δ/2), we obtain, from (2.4) and (2.5),

‖q − zij‖ = ‖y(t′)− zij‖ ≤ ‖y(t′)− y(ti)‖+ ‖y(ti)− zij‖
≤ ωt

0(Y ) + sup
s≤t

β(Y (s)) + δ

and this verifies (2.6). Condition (2.6) yields

β(Y ([0, t])) ≤ ωt
0(Y ) + sup

s≤t
β(Y (s)) + δ.

Letting δ → 0+, we obtain (2.2). �

Definition 2.7. A function x(·) ∈ C([0, b], X) is said to be a mild solution of (1.1)–
(1.2) if x(s) = g(x), for s ∈ [0, b], and the following integral equation is satisfied.

x(t) = U(t, 0)g(x) +
∫ t

0

U(t, s)Bu(s)ds +
∫ t

0

U(t, s)f(s, x(s))ds, t ∈ J.

To study the controllability problem, we assume the following hypotheses:
(H1) A(t) generates a strongly continuous semigroup of a family of evolution

operators U(t, s) and there exist constants N1 > 0, N0 > 0 such that

‖U(t, s)‖ ≤ N1, for 0 ≤ s ≤ t ≤ b,

and N0 = sup{‖U(s, 0)‖ : 0 ≤ s ≤ t}.
(H2) The linear operator W : L2(J, U) → X defined by

Wu =
∫ b

0

U(b, s)Bu(s)ds

has an inverse operator W−1 which takes values in L2(J, U)/ ker W and
there exists a positive constant K1 such that ‖BW−1‖ ≤ K1.

(H3) (i) The mapping f : J × X → X satisfies the Caratheódory condition,
that is, f(·, x) is measurable for x ∈ X and f(t, ·) is continuous for a.e.
t ∈ J .

(ii) The mapping f is bounded on bounded subsets of C(J,X).
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(iii) There exists a constant mf > 0 such that, for any bounded set Y ⊂
C(J,X), the inequality

β(f([0, t]× Y )) ≤ mfβ(Y ([0, t]))

holds for t ∈ J , where f([0, t]× Y ) = {f(s, x(s)) : 0 ≤ s ≤ t, x ∈ Y }.
(H4) The function g : C(J,X) → X is continuous and there exists a constant

mg ≥ 0 such that

β(g(Y )) ≤ mgβ(Y (J)),

for each bounded set Y ⊂ C(J,X).
(H5) There exists a constant r > 0 such that

(1 + bN1K1)
[
N0 sup

x∈B(θ,r)

‖g(x)‖+ N1 sup
x∈B(θ,r)

∫ b

0

‖f(τ, x(τ))‖dτ
]

+ bN1K1‖x1‖ ≤ r,

for t ∈ J , where B(θ, r) is a closed ball in C(J,X) centered at θ and with
radius r.

(H6)

min{3mgN0(b) + 3mfbN0(b) + 3bmgN0(b)N1(b)K1

+ 2mfb2N0(b)N2
1 (b)K1} < 1.

Definition 2.8 ([19, 20]). System (1.1)–(1.2) is said to be controllable on the
interval J , if for every initial functions x0 ∈ X and x1 ∈ X, there exists a control
u ∈ L2(J, U) such that the solution x(·) of (1.1)–(1.2) satisfies x(0) = x0 and
x(b) = x1.

3. Controllability Result

Mathematical control theory is the area of application oriented mathematics
that deals with the basic principles underlying the analysis and design of control
systems. To control an object means to influence its behavior so as to achieve a
desired goal. In this section, we study the controllability results for the semilinear
differential system (1.1)–(1.2).

Using (H2) for an arbitrary function x(·) ∈ C(J,X), we define the control

u(t) = W−1
[
x1 − U(b, 0)g(x)−

∫ b

0

U(b, s)f
(
s, x(s)

)
ds

]
(t). (3.1)

Consider the Banach space Z = C(J,X) with norm ‖x‖ = sup{|x(t)| : t ∈ J}.
We shall show that when using the control u(t), the operator Ψ : Z → Z defined

by

(Ψx)(t) = U(t, 0)g(x) +
∫ t

0

U(t, s)f
(
s, x(s)

)
ds

+
∫ t

0

U(t, s)BW−1
[
x1 − U(b, 0)g(x)−

∫ b

0

U(b, s)f
(
s, x(τ)

)
dτ

]
(s)ds

has a fixed point x(·). This fixed point is a mild solution of the system (1.1)–(1.2)
and this implies that the system is controllable on J .

Next consider the operators v1, v2, v3 : C(J,X) → C(J,X) defined by

(v1x)(t) = U(t, 0)g(x),
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(v2x)(t) =
∫ t

0

U(t, s)f
(
s, x(s)

)
ds,

(v3x)(t) =
∫ t

0

U(t, s)BW−1
[
x1 − U(b, 0)g(x)−

∫ b

0

U(b, τ)f
(
τ, x(τ)

)
dτ

]
(s)ds.

Lemma 3.1. Assume that (H1), (H3) are satisfied and a set Y ⊂ C(J,X) is
bounded. Then

ωt
0(v2Y ) ≤ 2bN1β(f([0, b]× Y )), for t ∈ J.

Proof. Fix t ∈ J and denote Q = f([0, t]× Y ),

qt(ε) = sup
{
‖(U(t2, s)− U(t1, s))q‖ : 0 ≤ s ≤ t1 ≤ t2 ≤ t, t2 − t1 ≤ ε, q ∈ Q

}
.

At the beginning, we show that

lim
ε→0+

qt(ε) ≤ 2N1β(Q). (3.2)

Suppose the contrary. Then there exists a number d such that

lim
ε→0+

qt(ε) > d > 2N1β(Q). (3.3)

Fix δ > 0 such that

lim
ε→0+

qt(ε) > d + δ > d > 2N1(β(Q) + δ). (3.4)

Condition (3.3) yields that there exist sequences {t2,n}, {t1,n}, {sn} ⊂ J and {qn} ⊂
Q such that t2,n → t′, t1,n → t′, sn → s and

‖(U(t2,n, sn)− U(t1,n, sn))qn‖ > d. (3.5)

Let the points z1, z2, . . . , zk ∈ X be such that Q ⊂ ∪k
i=1B(zi, β(Q)+δ). Then there

exists a point zi and a subsequence {qn} such that {qn} ∈ B(zi, β(Q) + δ); that is,

‖zj − qn‖ ≤ β(Q) + δ, for n = 1, 2, . . .

Further we obtain

‖U(t2,n, sn)qn − U(t1,n, sn)qn‖
≤ ‖U(t2,n, sn)qn − U(t1,n, sn)zj‖+ ‖U(t2,n, sn)zj − U(t1,n, sn)zj‖
× ‖U(t2,n, sn)zj − U(t1,n, sn)qn‖

≤ N1‖qn − zj‖+ N1‖zj − qn‖+ ‖U(t2,n, sn)zj − U(t1,n, sn)zj‖
≤ 2N1(β(Q) + δ) + ‖U(t2,n, sn)zj − U(t1,n, sn)zj‖.

Letting n →∞ and using the properties of the evolution system {U(t, s)} we obtain

lim sup
n→∞

‖U(t2,n, sn)qn − U(t1,n, sn)qn‖ ≤ 2N1(β(Q) + δ).

This contradicts (3.3) and (3.4).
Now fix ε > 0 and t1, t2 ∈ [0, t] such that 0 ≤ t2 − t1 ≤ ε. Applying (H3), we

obtain

‖(v2x)(t2)− (v2x)t1‖

≤
∫ t1

0

‖(U(t2, s)− U(t1, s))f(s, x(s))‖ds +
∫ t2

t1

‖U(t2, s)f(s, x(s))‖ds

+
∫ t

0

‖(U(t2, s)− U(t1, s))f(s, x(s))‖ds + εN1 sup{‖f(s, x(s))‖ : x ∈ Y }.
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Hence we derive the inequality

ωt(v1Y, ε) ≤ sup
{∫ t

0

‖(U(t2, s)− U(t1, s))f(s, x(s))‖ds : t1, t2 ∈ [0, t],

0 ≤ t2 − t1 ≤ ε, x ∈ Y
}

+ εN1 sup{‖f(s, x(s))‖ : x ∈ Y }.

Letting ε → 0+, we obtain the result. �

Lemma 3.2. Assume that the assumptions (H1), (H4) are satisfied and a set Y ⊂
C(J,X) is bounded. Then

ωt
0(v1Y ) ≤ 2N0(t)β(g(Y )), for t ∈ J.

The proof of the above lemma simple and is omitted.

Lemma 3.3. Assume that the assumptions (H1)–(H4) are satisfied and a set Y ⊂
C(J,X) is bounded. Then

ωt
0(v3Y ) ≤ 2bN1K1

(
‖x1‖+ N0β(g(Y )) + bN1β(f(Q))

)
, for t ∈ J.

Proof. As in the Lemmas 3.1 and 3.2, also fix ε > 0 and t1, t2 ∈ [0, t], 0 ≤ t2−t1 ≤ ε.
Applying (H3) and (H4), we obtain

‖(v3x)(t2)− (v3x)(t1)‖

≤
∫ t1

0

∥∥∥(U(t2, s)− U(t1, s))BW−1
[
x1 − U(b, 0)g(x)−

∫ b

0

U(b, τ)f(τ, x(τ))dτ
]∥∥∥ds

+
∫ t2

t1

∥∥∥U(t2, s))BW−1
[
x1 − U(b, 0)g(x)−

∫ b

0

U(b, τ)f(τ, x(τ))dτ
]∥∥∥ds

≤ K1

∫ t1

0

‖U(t2, s)− U(t1, s)‖
[
‖x1‖+ ‖U(b, 0)g(x)‖

+
∫ b

0

‖U(b, τ)f(τ, x(τ))dτ‖
]
ds

+ εK1N1

[
‖x1‖+ N0 sup{‖g(x)‖ : x ∈ Y }+ N1 sup{‖f(s, x(s))‖ : x ∈ Y }

]
.

Hence we derive the inequality

ωt
0(v3Y )

≤ sup
{

K1

∫ t1

0

‖U(t2, s)− U(t1, s)‖
[
‖x1‖+ ‖U(b, 0)g(x)‖

+
∫ b

0

‖U(b, τ)f(τ, x(τ))dτ‖
]
ds : t1, t2 ∈ [0, b], 0 ≤ t2 − t1 ≤ ε, x ∈ Y

}
+ εK1N1

[
‖x1‖+ N0 sup{‖g(x)‖ : x ∈ Y }+ N1 sup{‖f(s, x(s))‖ : x ∈ Y }

]
.

Letting ε → 0+, we obtain

ωt
0(v3Y ) ≤ 2bN1K1

(
‖x1‖+ N0β(g(Y )) + bN1β(f(Q))

)
.

The proof is complete. �

Our main result is as follows.
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Theorem 3.4. If the Banach space X is separable and assumptions (H1)-(H4) are
satisfied then system (1.1)–(1.2) is controllable on J .

Proof. Consider the operator P defined by

(Px)(t) = U(t, 0)g(x) +
∫ t

0

U(t, s)f
(
s, x(s)

)
ds

+
∫ t

0

U(t, s)BW−1
[
x1 − U(b, 0)g(x)−

∫ b

0

U(b, s)f
(
s, x(τ)

)
dτ

]
(s)ds.

For an arbitrary x ∈ C(J,X) and t ∈ J , we obtain

‖(Px)(t)‖ ≤ N0‖g(x)‖+ N1

∫ t

0

‖f(s, x(s))‖ds

+ N1K1

∫ t

0

[
‖x1‖+ N0‖g(x)‖+ N1

∫ b

0

‖f(τ, x(τ))‖dτ
]
ds

≤ (1 + bN1K1)
[
N0‖g(x)‖+ N1

∫ b

0

‖f(τ, x(τ))‖dτ
]

+ bN1K1‖x1‖.

From the above estimate and assumption (H5) we infer that there exists a constant
r > 0 such that the operator P transforms closed ball B into itself.

Now we prove that the operator P is continuous on B(θ, r).
Let us fix x ∈ B(θ, r) and take an arbitrary sequence {xn} ∈ B(θ, r) such that

xn → x in C(J,X). Next we have

‖Pxn − Px‖

≤ N0‖g(xn)− g(x)‖+ N1

∫ t

0

‖f(s, xn(s))− f(s, x(s))‖ds

+ K1

∫ t

0

‖U(t, s)‖
[
N0‖g(xn)− g(x)‖+ N1

∫ b

0

‖f(τ, xn(τ))− f(τ, x(τ))‖dτ
]
ds

≤ (1 + bN1K1)
[
N0‖g(xn)− g(x)‖+ N1

∫ b

0

‖f(τ, xn(τ))− f(τ, x(τ))‖dτ
]
.

Applying Lebesgue dominated convergence theorem, we derive that P is continuous
on B(θ, r).

Now we consider the sequence of sets {Ωn} defined by induction as follows:

Ω0 = B(θ, r), Ωn+1 = Conv(PΩn), for n = 1, 2, . . . .

This sequence is decreasing; that is, Ωn ⊃ Ωn+1, for n = 1, 2, . . . .
Further let us put

vn(t) = β(Ωn([0, t])), wn(t) = ωt
0(Ωn).

Observe that each of the functions vn(t) and wn(t) is nondecreasing, while sequences
{vn(t)} and {wn(t)} are non-increasing at any fixed t ∈ J . Put

v∞(t) = lim
n→∞

vn(t), w∞(t) = lim
n→∞

wn(t), for t ∈ J.

Using Lemmas 2.6, 3.2 and (H4), we obtain

β(v1Ωn([0, t])) ≤ ωt
0(v1Ωn) + sup

s≤t
β(v1Ωn(s))

≤ 2N0(t)β(g(Ωn)) + sup
s≤t

N0(s)β(g(Ωn))
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≤ 3N0(t)β(g(Ωn))

≤ 3mgN0(t)β(Ωn([0, b]))

= 3mgN0(t)vn(b);

that is,
β(v1Ωn([0, t])) ≤ 3mgN0(t)vn(b). (3.6)

Moreover,

β(v2Ωn([0, t])) ≤ ωt
0(v2Ωn) + sup

s≤t
β(v2Ωn(s))

≤ 2bN1(t)β(f([0, t]× Ωn)) + sup
s≤t

β
( ∫ s

0

U(s, τ)f(τ,Ωn(τ))dτ
)

≤ 2mfbN1(t)β(Ωn([0, t])) + sup
s≤t

N1(t)
∫ s

0

β(f(τ,Ωn(τ)))dτ

≤ 2mfbN1(t)vn(t) + mfN1(t)
∫ t

0

vn(τ)dτ

and

β(v3Ωn([0, t]))

≤ ωt
0(v3Ωn) + sup

s≤t
β(v3Ωn(s))

≤ 2bN1(t)K1

(
‖x1‖+ N0β(g(Ωn)) + bN1β(f(Q))

)
+ sup

s≤t
β
{∫ t

0

U(t, s)BW−1
[
x1 − U(b, 0)g(Ωn)

−
∫ b

0

U(b, τ)f
(
τ,Ωn(τ)

)
dτ

]
(s)ds

}
≤ 2bN1(t)K1

(
‖x1‖+ N0(t)β(g(Ωn)) + bN1(t)β(f([0, t]× Ωn)))

}
+ sup

s≤t
bN1(s)K1

{
‖x1‖+ N0β(g(Ωn)) + N1(t)

∫ s

0

β(f(τ,Ωn(τ)))dτ
}

≤ 3bN1(t)K1

(
‖x1‖+ mgN0(t)vn(b)

)
+ bmfN1(t)K1

(
2bN1(t)vn(t)

+ N1

∫ t

0

vn(τ)dτ
)
.

Linking this estimate with (3.5), we obtain

vn+1(t) = β(Ωn+1([0, t]))

= β(PΩn([0, t]))

≤ β(v1Ωn([0, t])) + β(v2Ωn([0, t])) + β(v3Ωn([0, t]))

≤ 3mgN0(t)vn(b) + 2mfbN1(t)vn(t) + mfN1(t)
∫ t

0

vn(τ)dτ

+ 3bN1(t)K1

(
‖x1‖+ mgN0(t)vn(b)

)
+ bmfN1(t)K1

(
2bN1(t)vn(t) + N1

∫ t

0

vn(τ)dτ
)
.
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Letting n →∞, we obtain

v∞(t) ≤ 3mgN0(t)v∞(b) + 2mfbN1(t)v∞(t) + mfN1(t)
∫ t

0

v∞(τ)dτ

+ bmfN1(t)K1

(
2bN1(t)v∞(t) + N1

∫ t

0

v∞(τ)dτ
)

+ 3bmgN0(t)N1(t)K1v∞(b).

Hence putting t = b, in view of (H6), we obtain

v∞(b) = 0. (3.7)

Furthermore, applying Lemmas 3.1, 3.2, 3.3, we have

wn+1(t)

= ωt
0(Ωn+1)

= ωt
0(PΩn)

≤ ωt
0(v1Ωn) + ωt

0(v2Ωn) + ωt
0(v3Ωn)

≤ 2mgN0vn(b) + 2mfbN1vn(t) + 2bN1K1

(
‖x1‖+ N0β(g(Y )) + bN1β(f(Q))

)
≤ 2mgN0vn(b) + 2mfbN1vn(t) + 2bN1K1

(
‖x1‖+ mgN0vn(b) + bmfN1vn(t)

)
≤ (2 + bN1K1)[mgN0vn(b) + mfbN1vn(t)].

Letting n →∞, we obtain

w∞(t) ≤ (2 + bN1K1)[mgN0v∞(b) + mfbN1v∞(t)].

Putting t = b and applying (3.7), we conclude that w∞(b) = 0. This fact together
with (3.7) implies that limn→∞ χ(Ωn) = 0. Hence, in view of the Remark 2.2,
we deduce that the set Ω∞ = ∩∞n=0Ωn is nonempty, compact and convex. Finally.
linking the above obtained facts concerning the set Ω∞ and the operator P : Ω∞ →
Ω∞ and using the classical Schauder fixed point theorem, we infer that the operator
P has at least one fixed point x in the set Ω∞. Obviously the function x = x(t)
is a mild solution of (1.1)–(1.2) satisfying x(b) = x1. Hence the given system is
controllable on J . �

Remark 3.5. Let us consider the case when the mapping g is

g(x) =
n∑

i=1

dix(ti),

where 0 ≤ t1 < t2 < . . . < tn ≤ b, d1, d2, . . . , dn are given constants. For a bounded
set Y ⊂ C(J,X) we obtain

β(g(Y )) ≤
n∑

i=1

|di|β(Y (ti)) ≤
n∑

i=1

|di|β(Y (J)).

Similarly,

β(g(Y )) ≤
n∑

i=1

|di|β(Y (ti)) ≤
n∑

i=1

|di|. sup
t∈J

β(Y (t)).
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These inequalities imply that the constant mg from assumption (H4) satisfies the
estimate

mg ≤
n∑

i=1

|di|.

Now let us consider the case, when the mapping g is of the form

g(x) =
∫ b

0

h(t, x(t))dt,

where the mapping h : J × X → X satisfies the Carathéodory condition, and
moreover

β(h(t, W )) ≤ m(t)β(W )
hold, for a.e. t ∈ J and W ⊂ X, where the function m : J → R+ is integrable.
Then, for a bounded set Y ⊂ C(J,X), we have

β(g(Y )) ≤ β
( ∫ b

0

h(t, Y (t))dt
)
≤

∫ b

0

m(t)β(Y (t))dt ≤
∫ b

0

m(t). sup
t∈J

β(Y (t))dt

and therefore the constant mg from (H4) satisfies the estimate mg ≤
∫ b

0
m(t).
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