Electron. J. Diff. Equ., Vol. 2012 (2012), No. 122, pp. 1-14.

Multiple symmetric solutions for a singular semilinear elliptic problem with critical exponent

Alfredo Cano, Eric Hernandez-Martinez

Abstract:
Let be $\Gamma$ a closed subgroup of $O(N)$. We consider the semilinear elliptic problem
$$\displaylines{
 -\Delta u-\frac{b(x)}{| x|^2}u-a(x)u=f(x)| u|^{2^{\ast }-2}u\quad
 \hbox{in }\Omega ,\cr
  u=0 \quad\hbox{on } \partial \Omega ,
 }$$
where $\Omega \subset \mathbb{R}^{N}$ is a smooth bounded domain, $N\geq 4$. We establish the multiplicity of symmetric positive solutions, nodal solutions, and solutions which are $\Gamma$ invariant but are not $\widetilde{\Gamma}$ invariant, where $\Gamma \subset \widetilde{\Gamma}\subset O(N)$.

Submitted March 27, 2012. Published July 20, 2012.
Math Subject Classifications: 35J75, 35J57, 35J60.
Key Words: Critical exponent; singular problem; symmetric solutions.

Show me the PDF file (305 KB), TEX file, and other files for this article.

Alfredo Cano
Universidad Autónoma del Estado de México
Facultad de Ciencias, Departamento de Matemáticas
Campus El Cerrillo Piedras Blancas, Carretera Toluca-Ixtlahuaca
Km 15.5, Toluca, Estado de México, México
email: calfredo420@gmail.com
Eric Hernández-Martínez
Universidad Autónoma de la Ciudad de México, Colegio de Ciencia y Tecnología, Academia de Matemáticas, Calle Prolongación San Isidro No. 151
Col. San Lorenzo Tezonco, Del. Iztapalapa
C.P. 09790, México D.F., México
email: ebric2001@hotmail.com

Return to the EJDE web page