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SOLVABILITY OF (K,N-K) CONJUGATE BOUNDARY-VALUE
PROBLEMS AT RESONANCE

WEIHUA JIANG, JIQING QIU

Abstract. Using the coincidence degree theory due to Mawhin and construct-
ing suitable operators, we prove the existence of solutions for (k, n− k) conju-
gate boundary-value problems at resonance.

1. Introduction

The existence of solutions for (k, n − k) conjugate boundary-value problems at
non-resonance has been studied in many papers (see [1, 2, 3, 4, 7, 8, 11, 12, 13,
14, 17, 22, 26, 27, 28, 31, 32, 33]). For example, using fixed point theorem in a
cone, Jiang [13] obtained the existence of positive solutions for (k, n− k) conjugate
boundary-value problem

(−1)n−ky(n)(t) = f(t, y(t)), 0 < t < 1,

y(i)(0) = y(j)(1) = 0, 0 ≤ i ≤ k − 1, 0 ≤ j ≤ n− k − 1,

where f(t, y) may be singular at y = 0, t = 0, t = 1. By using fixed point
index theory, Zhang and Sun [33] studied the existence of positive solutions for the
problem

(−1)n−kϕ(n)(x) = h(x)f(ϕ(x)), 0 < x < 1, n ≥ 2, 1 ≤ k ≤ n− 1,

subject to the boundary conditions

ϕ(0) =
m−2∑
i=1

aiϕ(ξi), ϕ(i)(0) = ϕ(j)(1) = 0, 1 ≤ i ≤ k − 1, 0 ≤ j ≤ n− k − 1,

and

ϕ(1) =
m−2∑
i=1

aiϕ(ξi), ϕ(i)(0) = ϕ(j)(1) = 0, 0 ≤ i ≤ k − 1, 1 ≤ j ≤ n− k − 1,

respectively. Solvability of boundary-value problems at resonance has been inves-
tigated by many authors (see [5, 6, 9, 10, 15, 16, 18, 19, 20, 21, 23, 25, 29, 30, 34]).
For example, in [5], using the coincidence degree theory due to Mawhin, Du, Lin

2000 Mathematics Subject Classification. 35B34, 34B10, 34B15.
Key words and phrases. Resonance; Fredholm operator; boundary-value problem.
c©2012 Texas State University - San Marcos.
Submitted May 1, 2012. Published July 5, 2012.

1



2 W. JIANG, J. QIU EJDE-2012/114

and Ge investigated the existence of solutions for the (n − 1, 1) boundary-value
problems at resonance

x(n)(t) = f(t, x(t), x′(t), . . . , x(n−1)(t)) + e(t), a.e. t ∈ (0, 1),

x(0) =
m−2∑
i=1

αix(ξi), x′(0) = x′′(0) = · · · = x(n−2)(0) = 0, x(1) = x(η).

Motivated by the results in [5, 13, 33], in this paper, we discuss the existence of
solutions for the (k, n− k) conjugate boundary-value problem at resonance

(−1)n−ky(n)(t) = f(t, y(t), y′(t), . . . , y(n−1)(t)) + ε(t), a.e. t ∈ [0, 1], (1.1)

y(i)(0) = y(j)(1) = 0, 0 ≤ i ≤ k − 1, 0 ≤ j ≤ n− k − 2,

y(n−1)(1) =
m∑

i=1

αiy
(n−1)(ξi),

(1.2)

where 1 ≤ k ≤ n− 1, 0 < ξ1 < ξ2 < · · · < ξm < 1.
As far as we know, this is the first paper to study the existence of solutions for

(k, n− k) boundary-value problems at resonance with 1 ≤ k ≤ n− 1.
In this paper, we assume the following conditions:
(H1) 0 < ξ1 < ξ2 < · · · < ξm < 1,

∑m
i=1 αi = 1,

∑m
i=1 αiξi 6= 1.

(H2) ε(t) ∈ L∞[0, 1], f : [0, 1] × Rn → R satisfies Caratháodory conditions;
i.e., f(·, x) is measurable for each fixed x ∈ Rn, f(t, ·) is continuous for
a.e. t ∈ [0, 1], and for each r > 0, there exists Φr ∈ L∞[0, 1] such that
|f(t, x1, x2, . . . , xn)| ≤ Φr(t) for all |xi| ≤ r, i = 1, 2, . . . , n, a.e. t ∈ [0, 1].

2. Preliminaries

First, we introduce some notation and state a theorem to be used later. For
more details see [24].

Let X and Y be real Banach spaces and L : domL ⊂ X → Y be a Fredholm
operator with index zero, P : X → X, Q : Y → Y be projectors such that

ImP = kerL, kerQ = ImL, X = kerL⊕ kerP, Y = ImL⊕ ImQ.

It follows that
L

∣∣
dom L∩ker P

: domL ∩ kerP → ImL

is invertible. We denote the inverse by KP .
Assume that Ω is an open bounded subset ofX, domL∩Ω 6= ∅, the mapN : X →

Y will be called L-compact on Ω if QN(Ω) is bounded and KP (I −Q)N : Ω → X
is compact.

Theorem 2.1 ([24]). Let L : domL ⊂ X → Y be a Fredholm operator of index
zero and N : X → Y L-compact on Ω. Assume that the following conditions are
satisfied:

(1) Lx 6= λNx for every (x, λ) ∈ [(domL \ kerL) ∩ ∂Ω]× (0, 1);
(2) Nx /∈ ImL for every x ∈ kerL ∩ ∂Ω;
(3) deg(QN |ker L,Ω ∩ kerL, 0) 6= 0, where Q : Y → Y is a projection such that

ImL = kerQ.
Then the equation Lx = Nx has at least one solution in domL ∩ Ω.
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Take X = Cn−1[0, 1] with norm ‖u‖ = max{‖u‖∞, ‖u′‖∞, . . . , ‖u(n−1)‖∞},
where ‖u‖∞ = maxt∈[0,1] |u(t)|, Y = L1[0, 1] with norm ‖x‖1 =

∫ 1

0
|x(t)|dt. De-

fine the operator Ly(t) = (−1)n−ky(n)(t) with

domL = {y ∈ X : y(n) ∈ Y, y(i)(0) = y(j)(1) = 0, 0 ≤ i ≤ k − 1,

0 ≤ j ≤ n− k − 2, y(n−1)(1) =
m∑

i=1

αiy
(n−1)(ξi)}.

Let N : X → Y be defined as

Ny(t) = f(t, y(t), y′(t), . . . , y(n−1)(t)) + ε(t), t ∈ [0, 1].

Then problem (1.1), (1.2) becomes Ly = Ny.

3. Main results

By Cramer’s rule, we can get the following lemmas.

Lemma 3.1. For given u ∈ Y , the system of linear equations

xk

k!
+

xk+1

(k + 1)!
+ · · ·+ xn−2

(n− 2)!
+

(−1)n−k

(n− 1)!

∫ 1

0

(1− s)n−1u(s)ds = 0

xk

(k − 1)!
+
xk+1

k!
+ · · ·+ xn−2

(n− 3)!
+

(−1)n−k

(n− 2)!

∫ 1

0

(1− s)n−2u(s)ds = 0

. . .
xk

[k − (n− k − 2)]!
+

xk+1

[k + 1− (n− k − 2)]!
+ · · ·+ xn−2

[n− 2− (n− k − 2)]!

+
(−1)n−k

[n− 1− (n− k − 2)]!

∫ 1

0

(1− s)k+1u(s)ds = 0

(3.1)

has an only one solution, (xk, xk+1, . . . , xn−2) with

xm =
∫ 1

0

(−1)n−k−1m!
(m− k)!(k − 1)!(n−m− 2)!

m−k∑
i=0

(−1)m−k−iC
i
m−k

m− i

×
[ n−m−2∑

j=0

(−1)jCj
n−m−2

(1− s)n−1−i−j

n− 1− i− j

]
u(s)ds, m = k, k + 1, . . . , n− 2.

Lemma 3.2. The system of linear equations

xk

k!
+

xk+1

(k + 1)!
+ · · ·+ xn−2

(n− 2)!
+

1
(n− 1)!

= 0

xk

(k − 1)!
+
xk+1

k!
+ · · ·+ xn−2

(n− 3)!
+

1
(n− 2)!

= 0

. . .
xk

[k − (n− k − 2)]!
+

xk+1

[k + 1− (n− k − 2)]!
+ . . .

+
xn−2

[n− 2− (n− k − 2)]!
+

1
[n− 1− (n− k − 2)]!

= 0

(3.2)
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has an only one solution, (xk, xk+1, . . . , xn−2) with

xm = − m!
(m− k)!(k − 1)!(n−m− 2)!

m−k∑
i=0

(−1)m−k−iC
i
m−k

m− i

×
( n−m−2∑

j=0

(−1)jCj
n−m−2

1
n− 1− i− j

)
, m = k, k + 1, . . . , n− 2.

Let (Bk(u), Bk+1(u), . . . , Bn−2(u)) denote the only solution of (3.1), and let
(Ak, Ak+1, . . . , An−2) denote the only solution of (3.2), and let An−1 = 1.

In order to obtain our main results, we firstly present and prove the following
lemmas.

Lemma 3.3. Suppose (H1) holds, then L : domL ⊂ X → Y is a Fredholm operator
of index zero and the linear continuous projector Q : Y → Y can be defined as

Qu =
1

1−
∑m

i=1 αiξi

m∑
i=1

αi

∫ 1

ξi

u(s)ds,

and the linear operator KP : ImL→ domL ∩ kerP can be written as

KPu =
n−2∑
i=k

Bi(u)
i!

ti +
(−1)n−k

(n− 1)!

∫ t

0

(t− s)n−1u(s)ds.

Proof. By simple calculations, we obtain that

kerL =
{
y : y = c

( n−1∑
i=k

Ai

i!
ti

)
, c ∈ R

}
.

Define linear operator P : X → X as follows

Py(t) =
( n−1∑

i=k

Ai

i!
ti

)
y(n−1)(0).

Obviously, ImP = kerL and P 2y = Py. For any y ∈ X, it follows from y =
(y − Py) + Py that X = kerP + kerL. By simple calculation, we can get that
kerL ∩ kerP = {0}. So, we have

X = kerL⊕ kerP. (3.3)

We will show that

ImL =
{
u ∈ Y :

m∑
i=1

αi

∫ 1

ξi

u(s)ds = 0
}
.

In fact, if u ∈ ImL, there exists y ∈ domL such that u = Ly ∈ Y . So, we have

y =
n−1∑
i=k

ci
i!
ti +

(−1)n−k

(n− 1)!

∫ t

0

(t− s)n−1u(s)ds.

Since
∑m

i=1 αi = 1 and y(n−1)(1) =
∑m

i=1 αiy
(n−1)(ξi), we have∫ 1

0

u(s)ds =
m∑

i=1

αi

∫ ξi

0

u(s)ds;

i.e.,
∑m

i=1 αi

∫ 1

ξi
u(s)ds = 0.
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On the other hand, if u ∈ Y satisfies
∑m

i=1 αi

∫ 1

ξi
u(s)ds = 0, we take

y =
n−2∑
i=k

Bi(u)
i!

ti +
(−1)n−k

(n− 1)!

∫ t

0

(t− s)n−1u(s)ds.

Obviously, Ly = u and y(n−1)(1) =
∑m

i=1 αiy
(n−1)(ξi). By Lemma 3.1, we obtain

that y ∈ domL; i.e., u ∈ ImL.
Define operator Q : Y → Y as follows

Qu =
1

1−
∑m

i=1 αiξi

( m∑
i=1

αi

∫ 1

ξi

u(s)ds
)
.

Obviously, Q2y = Qy and ImL = kerQ. For y ∈ Y , set y = (y −Qy) +Qy. Then
y − Qy ∈ kerQ = ImL, Qy ∈ ImQ. It follows from kerQ = ImL and Q2y = Qy
that ImQ ∩ ImL = {0}. So we have

Y = ImL⊕ ImQ.

This, together with (3.3), means that L is a Fredholm operator of index zero.
Define operator KP : Y → X as follows

KPu =
n−2∑
i=k

Bi(u)
i!

ti +
(−1)n−k

(n− 1)!

∫ t

0

(t− s)n−1u(s)ds.

Now we show that KP (ImL) ⊂ domL ∩ kerP . Take u ∈ ImL. Obviously,
(KP (u))(n−1)(0) = 0. This implies that KP (u) ∈ kerP . It is easy to see that
(KP (u))(i)(0) = 0, 0 ≤ i ≤ k−1. It follows from Lemma 3.1 that (KP (u))(j)(1) = 0,
0 ≤ j ≤ n− k − 2. From u ∈ ImL, we obtain

(KP (u))(n−1)(1) =
m∑

i=1

αi(KP (u))(n−1)(ξi).

So, KP (u) ∈ domL.
Now we prove that KP is the inverse of L|dom L∩ker P . Obviously, LKPu = u,

for u ∈ ImL. On the other hand, for y ∈ domL ∩ kerP , we have

KPLy(t) =
n−2∑
i=k

Bi(Ly)
i!

ti +
(−1)n−k

(n− 1)!

∫ t

0

(t− s)n−1(−1)n−ky(n)(s)ds

=
n−2∑
i=k

(Bi(Ly)− y(i)(0)
i!

)
ti + y(t).

Since y and KPLy ∈ domL, we have (KPLy)(j)(1) = y(j)(1) = 0, 0 ≤ j ≤ n−k−2.
This means that (Bk(Ly)−y(k)(0), Bk+1(Ly)−y(k+1)(0), . . . , Bn−2(Ly)−y(n−2)(0))
is the only zero solution of the system of linear equations

xk

k!
+

xk+1

(k + 1)!
+ · · ·+ xn−2

(n− 2)!
= 0

xk

(k − 1)!
+
xk+1

k!
+ · · ·+ xn−2

(n− 3)!
= 0

. . .
xk

[k − (n− k − 2)]!
+

xk+1

[k + 1− (n− k − 2)]!
+ · · ·+ xn−2

[n− 2− (n− k − 2)]!
= 0.
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So, we have KPLy = y, for y ∈ domL∩ kerP . Thus, KP = (L|dom L∩ker P )−1. The
proof is complete. �

Lemma 3.4. Assume Ω ⊂ X is an open bounded subset and domL ∩ Ω 6= ∅, then
N is L-compact on Ω.

Proof. Obviously, QN(Ω) is bounded. Now we will show thatKP (I−Q)N : Ω → X
is compact.

It follows from (H2) that there exists constant M0 > 0 such that |(I −Q)Ny| ≤
M0; a.e., t ∈ [0, 1], y ∈ Ω. Thus, KP (I − Q)N(Ω) is bounded. By (H2) and
Lebesgue Dominated Convergence theorem, we get that KP (I − Q)N : Ω → X

is continuous. Since
{ ∫ t

0
(t − s)j(I − Q)Ny(s)ds, y ∈ Ω

}
, j = 0, 1 . . . , n − 1 are

equi-continuous, and tj , j = 0, 1 . . . , n− 1 are uniformly continuous on [0, 1], using
Ascoli-Arzela theorem, we obtain that KP (I − Q)N : Ω → X is compact. The
proof is complete. �

To obtain our main results, we need the following conditions.
(H3) There exists a constant M > 0 such that if |y(n−1)(t)| > M , t ∈ [ξm, 1] then

m∑
i=1

αi

∫ 1

ξi

[
f(s, y(s), y′(s), . . . , y(n−1)(s)) + ε(s)

]
ds 6= 0.

(H4) There exist functions g, h, ψi ∈ L1[0, 1], i = 1, 2, . . . , n, with
∑n

i=1 ‖ψi‖1 <
1/2, θ ∈ [0, 1), some 1 ≤ j ≤ n such that

|f(t, x1, x2, . . . , xn)| ≤ g(t) +
n∑

i=1

ψi(t)|xi|+ h(t)|xj |θ.

(H5) There exists a constant c0 > 0 such that, if |c| > c0, one of the following
two conditions holds

c

m∑
i=1

αi

∫ 1

ξi

[
f
(
s, c

( n−1∑
i=k

Ai

i!
si

)
, c

( n−1∑
i=k

Ai

(i− 1)!
si−1

)
, . . . , c

)
+ ε(s)

]
ds > 0, (3.4)

c

m∑
i=1

αi

∫ 1

ξi

[
f
(
s, c

( n−1∑
i=k

Ai

i!
si

)
, c

( n−1∑
i=k

Ai

(i− 1)!
si−1

)
, . . . , c

)
+ ε(s)

]
ds < 0. (3.5)

Lemma 3.5. Assume (H1)–(H4). Then the set

Ω1 =
{
y ∈ domL \ kerL : Ly = λNy, λ ∈ (0, 1)

}
is bounded.

Proof. Take y ∈ Ω1. Since Ny ∈ ImL, we have
m∑

i=1

αi

∫ 1

ξi

[
f(s, y(s), y′(s), . . . , y(n−1)(s)) + ε(s)

]
ds = 0. (3.6)

Since Ly = λNy and y ∈ domL, it follows that

y(t) =
n−1∑
i=k

ci
i!
ti +

(−1)n−k

(n− 1)!
λ

∫ t

0

(t− s)n−1
[
f(s, y(s), y′(s), . . . , y(n−1)(s)) + ε(s)

]
ds,

(3.7)
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where ci, i = k, k + 1, . . . , n− 1 satisfy

n−1∑
i=k

ci
i!

= − (−1)n−k

(n− 1)!
λ

∫ 1

0

(1− s)n−1
[
f(s, y(s), y′(s), . . . , y(n−1)(s)) + ε(s)

]
ds

n−1∑
i=k

ci
(i− 1)!

= − (−1)n−k

(n− 2)!
λ

∫ 1

0

(1− s)n−2
[
f(s, y(s), y′(s), . . . , y(n−1)(s)) + ε(s)

]
ds

. . .

n−1∑
i=k

ci
[i− (n− k − 2)]!

= − (−1)n−k

[n− 1− (n− k − 2)]!
λ

∫ 1

0

(1− s)k+1

×
[
f(s, y(s), y′(s), . . . , y(n−1)(s)) + ε(s)

]
ds.

It follows from y(i)(0) = y(j)(1) = 0, 0 ≤ i ≤ k − 1, 0 ≤ j ≤ n − k − 2 that there
exists at least one point δi ∈ [0, 1] such that y(i)(δi) = 0, i = 0, 1, . . . , n− 2. So, we
have

y(i)(t) =
∫ t

δi

y(i+1)(s)ds, i = 0, 1, . . . , n− 2.

Therefore,

‖y(i)‖∞ ≤ ‖y(i+1)‖1 ≤ ‖y(i+1)‖∞, i = 0, 1, . . . , n− 2. (3.8)

By (3.6) and (H3), there exists t0 ∈ [ξm, 1] such that |y(n−1)(t0)| ≤ M . This,
together with (3.7), implies

|cn−1| ≤M +
∫ 1

0

∣∣∣f(s, y(s), y′(s), . . . , y(n−1)(s))
∣∣∣ ds+ ‖ε‖1. (3.9)

It follows from (3.7)-(3.9) and (H4) that

‖y(n−1)‖∞ ≤M + 2
∫ 1

0

∣∣f(s, y(s), y′(s), . . . , y(n−1)(s))
∣∣ds+ 2‖ε‖1

≤M + 2[‖g‖1 +
n∑

i=1

‖ψi‖1‖y(i−1)‖∞ + ‖h‖1‖y(j−1)‖θ
∞] + 2‖ε‖1

≤M + 2‖g‖1 + 2
n∑

i=1

‖ψi‖1‖y(n−1)‖∞ + 2‖h‖1‖y(n−1)‖θ
∞ + 2‖ε‖1.

So, we obtain

‖y(n−1)‖∞ ≤ M + 2‖g‖1 + 2‖ε‖1

1− 2
∑n

i=1 ‖ψi‖1
+

2‖h‖1

1− 2
∑n

i=1 ‖ψi‖1
‖y(n−1)‖θ

∞.

Then θ ∈ [0, 1) implies that {‖y(n−1)‖∞| : y ∈ Ω1} is bounded. Considering of
(3.8), we obtain that Ω1 is bounded. �

Lemma 3.6. Assume (H1), (H2), (H5). Then the set

Ω2 = {y : y ∈ kerL, Ny ∈ ImL}

is bounded.
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Proof. Take y ∈ Ω2, then y(t) = c
( ∑n−1

i=k
Ai

i! t
i
)
, c ∈ R and Ny ∈ ImL. So, we have

c

m∑
i=1

αi

∫ 1

ξi

[
f
(
s, c

( n−1∑
i=k

Ai

i!
si

)
, c

( n−1∑
i=k

Ai

(i− 1)!
si−1

)
, . . . , c

)
+ ε(s)

]
ds = 0.

By (H5), we obtain that |c| ≤ c0. So, Ω2 is bounded. �

Lemma 3.7. Assume (H1), (H2), (H5). Then the set

Ω3 = {y ∈ kerL : λJy + (1− λ)θQNy = 0, λ ∈ [0, 1]}

is bounded, where J : kerL→ ImQ is a linear isomorphism given by

J
(
c

n−1∑
i=k

Ai

i!
ti

)
=

c

1−
∑m

i=1 αiξi
, c ∈ R

and θ =

{
1 if (3.4) holds,
−1, if (3.5) holds.

.

Proof. For y ∈ Ω3, we get y = c
( ∑n−1

i=k
Ai

i! t
i
)

with

λc+(1−λ)θ
m∑

i=1

αi

∫ 1

ξi

[
f
(
s, c

( n−1∑
i=k

Ai

i!
si

)
, c

( n−1∑
i=k

Ai

(i− 1)!
si−1

)
, . . . , c

)
+ε(s)

]
ds = 0.

If λ = 0, by (H5), we get |c| ≤ c0. If λ = 1, c = 0. For λ ∈ (0, 1), if |c| ≥ c0, then

λc2 = −(1− λ)θc
m∑

i=1

αi

∫ 1

ξi

[
f
(
s, c

( n−1∑
i=k

Ai

i!
si

)
, c

( n−1∑
i=k

Ai

(i− 1)!
si−1

)
, . . . , c

)
+ ε(s)

]
ds < 0.

This is a contradiction. So, Ω3 is bounded. �

Theorem 3.8. Assume (H1)–(H5) Then problem (1.1)–(1.2) has at least one so-
lution in X.

Proof. Let Ω ⊃ ∪3
i=1Ωi ∪ {0} be a bounded open subset of X. It follows from

Lemma 3.4 that N is L−compact on Ω. By Lemmas 3.5 and 3.6, we obtain: (1)
Ly 6= λNy for every (y, λ) ∈ [(domL \ kerL)∩ ∂Ω]× (0, 1); and (2) Ny /∈ ImL for
every y ∈ kerL ∩ ∂Ω. We need to prove only (3) deg(QN |ker L, Ω ∩ kerL, 0) 6= 0.
To do this, we take

H(y, λ) = λJy + θ(1− λ)QNy.

According to Lemma 3.7, we know H(y, λ) 6= 0 for y ∈ ∂Ω∩kerL. By the homotopy
of degree, we obtain

deg(QN |ker L,Ω ∩ kerL, 0) = deg(θH(·, 0),Ω ∩ kerL, 0)

= deg(θH(·, 1),Ω ∩ kerL, 0)

= deg(θJ,Ω ∩ kerL, 0) 6= 0.

By Theorem 2.1, we obtain that Ly = Ny has at least one solution in domL ∩ Ω;
i.e., (1.1)-(1.2) has at least one solution in X. The prove is complete. �
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