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EXISTENCE OF SOLUTIONS FOR NON-AUTONOMOUS
FUNCTIONAL EVOLUTION EQUATIONS WITH NONLOCAL

CONDITIONS

XIANLONG FU

Abstract. In this work, we study the existence of mild solutions and strict
solutions of semilinear functional evolution equations with nonlocal conditions,
where the linear part is non-autonomous and generates a linear evolution sys-
tem. The fraction power theory and α-norm are used to discuss the problems so
that the obtained results can be applied to the equations in which the nonlin-
ear terms involve spatial derivatives. In particular, the compactness condition
or Lipschitz condition for the function g in the nonlocal conditions appearing
in various literatures is not required here. An example is presented to show
the applications of the obtained results.

1. Introduction

In this article, we study the existence of solutions for semilinear neutral func-
tional evolution equations with nonlocal conditions. More precisely, we consider
the nonlocal Cauchy problem

d

dt
[x(t) + F (t, x(t))] + A(t)x(t) = G(t, x(r(t))), 0 ≤ t ≤ T,

x(0) + g(x) = x0,
(1.1)

where the family {A(t) : 0 ≤ t ≤ T} of linear operators generates a linear evolution
system, and F,G are given functions to be specified later. The nonlocal Cauchy
problem was considered by Byszewski [4] and the importance of nonlocal conditions
in different fields has been discussed in [4] and the references therein. In the past
several years theorems about existence, uniqueness and stability of differential and
functional differential abstract evolution Cauchy problems with nonlocal conditions
have been studied extensively, see, for example, papers [1]-[9] and the references
therein.

When F (·, ·) = 0 and A generating a C0− semigroup in Eq. (1.1), Byszewski
and Akca have investigated the existence of mild solutions and classical solutions in
paper [5] by using Schauder’s fixed point theorem. To take away an unsatisfactory
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condition on solutions and extend the results in [5] to neutral equations, in [14] the
authors have studied the existence of mild solutions and strong solutions for the
equations with the form

d

dt
[x(t) + F (t, x(h1(t)))] + Ax(t) = G(t, x(h2(t))), 0 ≤ t ≤ T,

x(0) + g(x) = x0 ∈ X,

where the operator −A generates a compact analytic semigroup. The main tools
and techniques in [14] are the properties of fractional power and Sadovskii fixed
point theorem. Papers [3], [8] and [12] have established the corresponding results
for the situation in which the linear operator A is non-densely defined. Paper [9]
and [13] have investigated the existence topics on impulsive nonlocal problems, and
in Papers [1] and [25] the authors have studied the nonlocal Cauchy problems for the
case that A generates a nonlinear semigroup. Existence of solutions for quasilinear
delay integrodifferential equations with nonlocal conditions has been established
in Paper [2]. In order to establish the existence results for the non-autonomous
equations, Paper [15] has considered existence of solutions for (1.1) which is a more
general situation as A(t) is non-autonomous. However, although the system

∂

∂t
[u(t, x) + f(t, u(b(t), x),

∂

∂x
u(b1(t), x))] + c(t)

∂2

∂x2
u(t, x)

= h(t, u(a(t), x),
∂

∂x
u(a1(t), x)),

u(0) + g(x) = u0.

(1.2)

can also be rewritten as an abstract equation of form (1.1), those results founded in
[15] become invalid for it, since the functions f, h in (1.2) involve spatial derivatives.

The purpose of the present note is to extend and develop the work in [15] and
[13]. We shall discuss this problem by using fractional power operators theory and
α−norm; i.e., we will restrict this equation in a Banach space Xα(t0)(⊂ X) and
investigate the existence and regularity of mild solutions for (1.1). In Particular,
borrowing the idea from [17] we do not require the function g in the nonlocal
condition satisfy the compactness condition or Lipschitz condition, instead, it is
continuous and is completely determined on [τ, T ] for some small τ > 0. The
compactness condition or Lipschitz condition for g appear, respectively, in almost
all the papers on the topics of nonlocal problem, for example in [3, 5, 7, 13, 18, 25].
Although paper [25] has also discussed the case that the function g is continuous,
it assumed additionally some pre-compact condition relative to g. In addition, the
obtained results extend also the ones in [20] and [21].

This article is organized as follows: we firstly introduce some preliminaries about
the linear evolution operator and fractional power operator theory in Section 2. The
main results are arranged in Section 3. In Subsection 3.1 we discuss the existence
of mild solutions by Sadovskii fixed point theorem and limit arguments, and in
Subsection 3.2 we show the regularity of mild solutions. Finally, an examples is
presented in Section 4 to show the applications of our obtained results.

2. Preliminaries

Throughout this paper X will be a Banach space with norm ‖ · ‖. For the family
{A(t) : 0 ≤ t ≤ T} of linear operators, we impose the following restrictions:
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(B1) The domain D(A) of {A(t) : 0 ≤ t ≤ T} is dense in X and independent of
t, A(t) is closed linear operator;

(B2) For each t ∈ [0, T ], the resolvent R(λ, A(t)) exists for all λ with Reλ ≤ 0
and there exists K > 0 so that ‖R(λ, A(t))‖ ≤ K/(|λ|+ 1);

(B3) There exists 0 < δ ≤ 1 and K > 0 such that ‖(A(t) − A(s))A−1(τ)‖ ≤
K|t− s|δ for all t, s, τ ∈ [0, T ];

(B4) For each t ∈ [0, T ] and some λ ∈ ρ(A(t)), the resolvent set of A(t), the
resolvent R(λ, A(t)), is a compact operator.

Under these assumptions, the family {A(t) : 0 ≤ t ≤ T} generates a unique linear
evolution system, or called linear evolution operator, U(t, s), 0 ≤ s ≤ t ≤ T , and
there exists a family of bounded linear operators {R(t, τ)|0 ≤ τ ≤ t ≤ T} with
‖R(t, τ)‖ ≤ K|t− τ |δ−1 such that U(t, s) has the representation

U(t, s) = e−(t−s)A(t) +
∫ t

s

e−(t−τ)A(τ)R(τ, s)dτ, (2.1)

where exp(−τA(t)) denotes the analytic semigroup having infinitesimal generator
−A(t) (note that Assumption (B2) guarantees that −A(t) generates an analytic
semigroup on X). The family of the linear operator{U(t, s) : 0 ≤ s ≤ t ≤ T}
satisfies the following properties:

(a) U(t, s) ∈ L(X), the space of bounded linear transformations on X, when-
ever 0 ≤ s ≤ t ≤ T and for each x ∈ X, the mapping (t, s) → U(t, s)x is
continuous;

(b) U(t, s)U(s, τ) = U(t, τ) for 0 ≤ τ ≤ s ≤ t ≤ T ;
(c) U(t, t) = I;
(d) U(t, s) is a compact operator whenever t− s > 0;
(e) ∂

∂tU(t, s) = −A(t)U(t, s), for s < t.
Condition (B4) ensures the generated evolution operator satisfies (d) (see [10,
Proposition 2.1]). We have also the following inequalities:

‖e−tA(s)‖ ≤ K, t ≥ 0, s ∈ [0, T ],

‖A(s)e−tA(s)‖ ≤ K

t
, t, s ∈ [0, T ],

‖A(t)U(t, s)‖ ≤ K

|t− s|
, 0 ≤ s ≤ t ≤ T.

Furthermore, Assumptions (B1)–(B3) imply that for each t ∈ [0, T ], the integral

A−α(t) =
1

Γ(α)

∫ +∞

0

sα−1e−sA(t)ds

exists for each α ∈ (0, 1]. The operator defined by this formula is a bounded linear
operator and yields A−α(t)A−β(t) = A−(α+β)(t). Thus, we can define the fractional
power as

Aα(t) = [A−α(t)]−1,

which is a closed linear operator with D(Aα(t)) dense in X and D(Aα(t)) ⊂
D(Aβ(t)) for α ≥ β. D(Aα(t)) becomes a Banach space endowed with the norm
‖x‖α,t = ‖Aα(t)x‖, and is denoted by Xα(t).

The following estimates and lemmas are from ([11, Part II]):

‖Aα(t)A−β(s)‖ ≤ C(α,β), (2.2)
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where C(α,β) is a constant related to T and δ, t, s ∈ [0, T ] and 0 ≤ α < β.

‖Aβ(t)e−sA(t)‖ ≤ Cβ

sβ
e−ws, t > 0, β ≤ 0, w > 0, (2.3)

‖Aβ(t)U(t, s)‖ ≤ Cβ

|t− s|β
, 0 < β < δ + 1, (2.4)

‖Aβ(t)U(t, s)A−β(s)‖ ≤ C ′β , 0 < β < δ + 1, (2.5)

for some t > 0, where C(α,β) Cβ and C ′β indicate their dependence on the constants
α, β.

Lemma 2.1. Assume that (B1)–(B3) hold. If 0 ≤ γ ≤ 1, 0 ≤ β ≤ α < 1 + δ,
0 < α− γ ≤ 1, then for any 0 ≤ τ < t + ∆t ≤ t0, 0 ≤ ζ ≤ T ,

‖Aγ(ζ)(U(t + ∆t, τ)− U(t, τ))A−β(τ)‖ ≤ C(β, γ, α)(∆t)α−γ |t− τ |β−α. (2.6)

Lemma 2.2. Assume that (B1)–(B3) hold and let 0 ≤ γ < 1. Then for any
0 ≤ τ < t + ∆t ≤ t0 and for any continuous function f(s),

‖Aγ(ζ)[
∫ t+∆t

t

U(t + ∆t, s)f(s)ds−
∫ t

τ

U(t, s)f(s)ds]‖

≤ Cγ(∆t)1−γ(| log(∆t)|+ 1) max
τ≤s≤t+∆t

‖f(s)‖.
(2.7)

For more details about the theory of linear evolution system, operator semigroups
and fraction powers of operators, we refer the reader to [11, 22, 23].

The considerations of this paper are based on the following result.

Theorem 2.3 ([24]). Let P be a condensing operator on a Banach space X; i.e.,
P is continuous and takes bounded sets into bounded sets, and α(P (B)) ≤ α(B) for
every bounded set B of X with α(B) > 0. If P (H) ⊂ H for a convex, closed and
bounded set H of X, then P has a fixed point in H (where α(·) denotes Kuratowski’s
measure of non-compactness).

3. Main results

The main results of this note are presented in this section. We shall study the
existence and regularity of mild solutions for (1.1), and we consider this problem on
the Banach subspace Xα(t0) defined in Section 2 for some 0 < α < 1 and t0 ∈ [0, T ].

3.1. Existence of mild solutions. Firstly we consider the existence of mild so-
lutions for (1.1). The mild solutions are defined as follows.

Definition 3.1. A continuous function x(·) : [0, T ] → Xα(t0) is said to be a mild
solution of the nonlocal Cauchy problem (1.1), if the function

U(t, s)A(s)F (s, x(s)), s ∈ [0, t)

is integrable on [0, t) and the following integral equation is verified:

x(t) = U(t, 0)[x0 + F (0, x(0))− g(x)]− F (t, x(t))

+
∫ t

0

U(t, s)A(s)F (s, x(s))ds

+
∫ t

0

U(t, s)G(s, x(r(s)))ds, 0 ≤ t ≤ T.

(3.1)
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Now we present the basic assumptions on (1.1).
(H1) F : [0, T ]×Xα(t0) → X is a continuous function, F ([0, T ]×Xα(t0)) ⊂ D(A),

and there exist constants L,L1 > 0 such that the function A(t)F satisfies
the Lipschitz condition

‖A(t)F (s1, x1)−A(t)F (s2, x2)‖ ≤ L(|s1 − s2|+ ‖x1 − x2‖α) (3.2)

for every 0 ≤ s1, s2 ≤ T , x1, x2 ∈ Xα(t0); and

‖A(t)F (t, x)‖ ≤ L1(‖x‖α + 1) . (3.3)

(H2) The function G : [0, T ]×Xα(t0) → X satisfies the following conditions:
(i) For each t ∈ [0, T ], the function G(t, ·) : Xα(t0) → X is continuous,

and for each x ∈ Xα(t0), the function G(·, x) : [0, T ] → X is strongly
measurable;

(ii) There is a positive function w(·) ∈ C([0, T ]) such that

sup
‖x‖α≤k

‖G(t, x)‖ ≤ w(k), lim inf
k→+∞

w(k)
k

= γ < ∞.

(H3) r ∈ C([0, T ]; [0, T ]). g : E → D(A) is a function satisfying that A(t)g is
continuous on E and there exists a constant L2 > 0 such that ‖A(t)g(u)‖ ≤
L2‖u‖E for each x ∈ E, where E = C([0, T ];Xα(t0)). In addition, there
is a τ(k) > 0 such that g(u) = g(v) for any u, v ∈ Bk with u(s) = v(s),
s ∈ [τ, a], where Bk = {u ∈ E : ‖u(·)‖E ≤ k},.

Theorem 3.2. If (B1)–(B4), (H1)–(H3) are satisfied, x0 ∈ Xβ(t0) for some β,
0 < α < β ≤ 1. Then the nonlocal Cauchy problem (1.1) has a mild solution
provided that L, L1 and γ are small enough; more precisely,

L0 :=
[
C ′βC(α,β)C(β,1) + C(α,1) + C(α,β)

CβT 1−β

1− β

]
L < 1 (3.4)

and

C ′βC ′1C(α,β)C(β,1)L2 +
[
C ′βC(α,β)C(β,1) + C(α,1) + C(α,β)

CβT 1−β

1− β

]
L1

+ C(α,β)
CβT 1−β

1− β
γ < 1.

(3.5)

We remark that inequalities (3.4) and (3.5) are verified explicitly by the example
given in Section 4, which shows that they are applicable.

Proof of Theorem 3.2. The proof is divided into two steps.
Step 1. We first consider that, for any ε > 0 very small, the existence of mild

solutions for the equation
d

dt
[x(t) + F (t, x(t))] + A(t)x(t) = G(t, x(r(t))), 0 ≤ t ≤ T,

x(0) + U(ε, 0)g(x) = x0.
(3.6)

Define the operator P on E by the formula

(Px)(t) = U(t, 0)[x0 + F (0, x(0))− U(ε, 0)g(x)]− F (t, x(t))

+
∫ t

0

U(t, s)A(s)F (s, x(s))ds +
∫ t

0

U(t, s)G(s, x(r(s)))ds, 0 ≤ t ≤ T.
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For each positive number k, Bk is clearly a nonempty bounded closed convex
set in E. We claim that there exists a positive number k such that P (Bk) v Bk.
If it is not true, then for each positive number k, there is a function xk(·) ∈ Bk,
but Pxk 6∈ Bk, that is ‖Pxk(t)‖α > k for some t(k) ∈ [0, T ]. On the other hand,
however, we have by conditions (H1)–(H3) and (2.2) (2.4) (2.5) that

k < ‖(Pxk)(t)‖α

=
∥∥∥Aα(t0)U(t, 0)[x0 − U(ε, 0)g(xk) + F (0, xk(0))]− F (t, xk(t))

+
∫ t

0

Aα(t0)U(t, s)A(s)F (s.xk(s))ds +
∫ t

0

Aα(t0)U(t, s)G(s, xk(r(s)))ds
∥∥∥

≤ ‖Aα(t0)A−β(t)‖ ‖Aβ(t)U(t, 0)A−β(0)‖

×
[
‖Aβ(0)x0‖+ ‖Aβ(0)A−1(t)‖ ‖A(t)F (0, xk(0))‖

]
+ ‖Aα(t0)A−β(t)‖ ‖Aβ(t)U(t, 0)A−β(0)‖ ‖Aβ(0)A−1(ε)‖
× ‖A(ε)U(ε, 0)A−1(0)‖ ‖A(0)g(xk)‖
+ ‖Aα(t0)A−1(t)‖ ‖A(t)F (t, xk(t))‖

+
∫ t

0

‖Aα(t0)A−β(t)‖ ‖Aβ(t)U(t, s)‖ ‖A(s)F (s.xk(s))‖ds

+
∫ t

0

‖Aα(t0)A−β(t)‖‖Aβ(t)U(t, s)‖ ‖G(s, xk(r(s)))‖ds

≤ C ′βC(α,β)C(β,1)‖Aβ(0)x0‖+ C ′βC ′1C(α,β)C(β,1)L2k

+ [C ′βC(α,β)C(β,1) + C(α,1) + C(α,β)
CβT 1−β

1− β
]L1(k + 1) + C(α,β)

CβT 1−β

1− β
w(k)

Dividing on both sides by k and taking the lower limit as k → +∞, we get that

C ′βC ′1C(α,β)C(β,1)L2 +
[
C ′βC(α,β)C(β,1) + C(α,1) + C(α,β)

CβT 1−β

1− β

]
L1

+ C(α,β)
CβT 1−β

1− β
γ ≥ 1.

This contradicts (3.5). Hence for some positive number k, PBk v Bk.
Next we will show that the operator P has a fixed point on Bk, which implies

that (3.6) has a mild solution. To this end, we decompose P into P = P1 + P2,
where the operators P1, P2 are defined on Bk respectively by

(P1x)(t) = U(t, 0)F (0, x(0))− F (t, x(t)) +
∫ t

0

U(t, s)A(s)F (s, x(s))ds,

(P2x)(t) = U(t, 0)[x0 − U(ε, 0)g(x)] +
∫ t

0

U(t, s)G(s, x(r(s)))ds,

for 0 ≤ t ≤ T and we will verify that P1 is a contraction while P2 is a compact
operator.

To prove that P1 is a contraction, we take x1, x2 ∈ Bk, then for each t ∈ [0, T ]
and by condition (H1), (2.2), (2.4), (2.5) and (3.4), we have

‖(P1x1)(t)− (P1x2)(t)‖α

≤ ‖Aα(t0)A−β(t)‖‖Aβ(t)U(t, 0)A−β(0)‖‖Aβ(0)A−1(t)‖
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× ‖A(t)[F (0, x1(0))− F (0, x2(0))]‖
+ ‖Aα(t0)A−1(t)‖‖A(t)[F (t, x1(t))− F (t, x2(t))]‖

+ ‖
∫ t

0

Aα(t0)A−β(t)‖‖Aβ(t)U(t, s)‖‖A(s)[F (s.x1(s))− F (s.x2(s))]‖ds

≤ [C ′βC(α,β)C(β,1) + C(α,1)]L sup
0≤s≤T

‖x1(s)− x2(s)‖α

+ C(α,β)
CβT 1−β

1− β
L sup

0≤s≤T
‖x1(s)− x2(s)‖α

≤ L[C ′βC(α,β)C(β,1) + C(α,1) + C(α,β)
CβT 1−β

1− β
] sup
0≤s≤T

‖x1(s)− x2(s)‖α

= L0 sup
0≤s≤T

‖x1(s)− x2(s)‖α.

Thus
‖P1x1 − P1x2‖α ≤ L0‖x1 − x2‖α,

which shows P1 is a contraction.
To prove that P2 is compact, firstly we prove that P2 is continuous on Bk. Let

{xn} v Bk with xn → x in Bk, then by (H2)(i), we have

G(s, xn(r(s))) → G(s, x(r(s))), n →∞.

Since
‖G(s, xn(r(s)))−G(s, x(r(s)))‖ ≤ 2w(k),

by the dominated convergence theorem we have

‖P2xn − P2x‖α

= sup
0≤t≤T

‖Aα(t0)U(t, 0)U(ε, 0)[g(xn)− g(x)]

+
∫ t

0

Aα(t0)U(t, s)[G(s, xn(r(s)))−G(s, x(r(s)))]ds‖

≤ sup
0≤t≤T

‖Aα(t0)U(t, 0)U(ε, 0)[g(xn)− g(x)]

+
∫ t

0

‖Aα(t0)A−β(t)‖‖Aβ(t)U(t, s)‖‖[G(s, xn(r(s)))−G(s, x(r(s)))]‖ds}

→ 0, as n → +∞;

i.e., P2 is continuous.
Next we prove that the family {P2x : x ∈ Bk} is a family of equi-continuous

functions. To do this, let 0 < t < T , h 6= 0 with t + h ∈ [0, T ], then

‖(P2x)(t + h)− (P2x)(t)‖α

= ‖Aα(t0)[U(t + h, 0)− U(t, 0)](x0 − U(ε, 0)g(x))

+
∫ t+h

0

Aα(t0)U(t + h, s)G(s, x(r(s)))ds−
∫ t

0

Aα(t0)U(t, s)G(s, x(r(s)))ds‖

≤ ‖Aα(t0)[U(t2, 0)− U(t1, 0)](x0 − U(ε, 0)g(x))‖

+
∫ t−ε

0

‖Aα(t0)(U(t + h, s)− U(t, s))‖‖G(s, x(r(s)))‖ds
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+
∫ t

t−ε

‖Aα(t0)(U(t + h, s)− U(t, s))‖‖G(s, x(r(s)))‖ds

+
∫ t+h

t

‖Aα(t0)U(t + h, s)‖‖G(s, x(r(s)))‖ds.

Formula (2.1) gives that

‖(P2x)(t + h)− (P2x)(t)‖α

≤ ‖Aα(t0)[U(t2, 0)− U(t1, 0)](x0 − U(ε, 0)g(x))‖

+ w(k))
∫ t−ε

0

‖Aα(t0)[e−(t+h−s)A(t+h) − e−(t−s)A(t)]‖ds

+ w(k)
∫ t−ε

0

‖Aα(t0)
∫ t

s

[e−(t+h−τ)A(τ) − e−(t−τ)A(τ)]R(τ, s)dτ‖ds

+ w(k)
∫ t−ε

0

‖Aα(t0)
∫ t+h

s

e−(t+h−τ)A(τ)R(τ, s)dτ‖ds‖

+ w(k)
∫ t

t−ε

‖Aα(t0)(U(t + h, s)− U(t, s))‖ds

+ w(k)
∫ t+h

t

‖Aα(t0)U(t + h, s)‖ds :=
6∑

i=1

Ii.

By Lemma 2.1 we deduce easily that I1 → 0 as h → 0. Since A(t)e−τA(s) is
uniformly continuous in (t, τ, s) for 0 ≤ t ≤ T , m ≤ τ ≤ T and 0 ≤ s ≤ T , where m
is any positive number (cf. [11] and [22] ), we see that I2 also tends to 0 as h → 0.
And

I3 = w(k)
∫ t−ε

0

‖
∫ t−ε

s

Aα(t0)[e−(t+h−τ)A(τ) − e−(t−τ)A(τ)]R(τ, s)dτ‖ds

+ w(k)
∫ t−ε

0

‖
∫ t

t−ε

Aα(t0)[e−(t+h−τ)A(τ) − e−(t−τ)A(τ)]R(τ, s)dτ‖ds

:= I3i + I32.

Again from the uniform continuity of A(t)e−τA(s) and the estimate of R(τ, s) it is
easy to infer that I31 → 0 as h → 0. For I32, there yields by (2.3) that

I32 ≤ w(k)
∫ t−ε

0

∫ t

t−ε

C(α,β)[
Cβ

t + h− τ
+

Cβ

t− τ
]

K

|τ − s|1−δ
dτds

≤ w(k)KCβC(α,β)

∫ t−ε

0

1
|t− ε− s|1−δ

ds

∫ t

t−ε

[
1

t + h− τ
+

1
t− τ

]dτ

= w(k)KCβC(α,β)
1
δ

1
1− β

(t− ε)δ[(h + ε)1−β − h1−β + ε1−β ] → 0.

Similarly, one can verify by the estimate of R(τ, s) and (2.2)-(2.4) that I4, I5 and
I6 all tend to 0 as h → 0. Therefore, ‖(P2x)(t + h) − (P2x)(t)‖α tends to zero
independently of x ∈ Bk as h → 0 with ε sufficiently small. Observe that U(ε, 0)g
is compact in X, by the similar method as above we also get that ‖(P2x)(t) −
(P2x)(0)‖α → 0 as t → 0+. Hence, P2 maps Bk into a family of equi-continuous
functions..
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It remains to prove that V (t) = {(P2x)(t) : x ∈ Bk} is relatively compact in
Xα(t0). It is easy to verify that V (0) is relatively compact in Xα(t0). Now, for any
β, 0 ≤ α < β < 1, and t ∈ (0, T ],

‖(Aβ(t0)Pxx)(t)‖ ≤
∫ t

0

‖Aβ(t0)U(t, s)G(s, x(r(s)))‖ds

≤ w(k)
∫ t

0

‖Aβ(t0)U(t, s)‖ds

≤ w(k)C(β,β′)
Cβ′

1− β′
aβ′

,

where β < β′ < 1. This shows that Aβ(t0)V (t) is bounded in X. On the other
hand, A−β(t0) is compact since A−1(t0) is compact by Assumption (B4), thus
A−β(t0) : X → Xα(t0) is compact for each β > α (note that the imbedding
Xβ(t0) ↪→ Xα(t0) is compact). Therefore, we infer that V (t) is relatively compact in
Xα(t0). Thus, by Arzela-Ascoli theorem P2 is a compact operator. These arguments
above enable us to conclude that P = P1 +P2 is a condense mapping on Bk, and by
Theorem 2.3 there exists a fixed point xε(·) for P on Bk, which is a mild solution
for the problem (3.6).

Step 2. We prove that there is a subsequence xε(·) converging to a mild solution
of (1.1). We denote by Σ the set of all the fixed points xε(·) of operator P on Bk

obtained above for ε > 0, that is,

Σ = {xε(·) ∈ E : xε(·) = (Pxε)(·)} .

We shall prove that Σ is relatively compact in E.
For ε > 0, each xε(·) ∈ Σ satisfies

xε(t) = U(t, 0)[x0 − U(ε, 0)g(xε)− F (0, xε(0))] + F (t, xε(t))

+
∫ t

0

U(t, s)A(s)F (s, xε(s))ds +
∫ t

0

U(t, s)G(s, xε(r(s)))ds.

Let 0 < t < T , h > 0 very small, then

‖xε(t + h)− xε(t)‖α

= ‖Aα(t0) (U(t + h, 0)− U(t, 0)) [x0 − U(ε, 0)g(xε)− F (0, xε(0))]‖
+ ‖Aα(t0)A−1(t)A(t)[F (t + h, xε(t + h))− F (t, xε(t))]‖

+ ‖Aα(t0)[
∫ t+h

0

U(t + h, s)A(s)F (s, xε(s))ds−
∫ t

0

U(t, s)A(s)F (s, xε(s))ds]‖

+ ‖Aα(t0)[
∫ t+h

0

U(t + h, s)G(s, xε(r(s)))ds−
∫ t

0

U(t, s)G(s, xε(r(s)))ds]‖.

From (3.2) and (3.4) it follows that

‖(1− C(α,1)L)xε(t + h)− xε(t)‖α

≤ ‖Aα(t0)U(t + h, 0)− U(t, 0)[x0 − U(ε, 0)g(xε)− F (0, xε(0))]‖+ C(α,1)Lh

+ ‖Aα(t0)[
∫ t+h

0

U(t + h, s)A(s)F (s, xε(s))ds−
∫ t

0

U(t, s)A(s)F (s, xε(s))ds]‖

+ ‖Aα(t0)[
∫ t+h

0

U(t + h, s)G(s, xε(r(s)))ds−
∫ t

0

U(t, s)G(s, xε(r(s)))ds]‖.
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Thus, using the similar arguments as proving the equi-continuity for the family
{P2x : x ∈ Bk} in Step 1, one can easily prove that Σ is an equi-continuous family
on C([τ, T ], Xα(t0)) for τ(k) > 0.

Next we show that, for each fixed t ∈ [τ, T ], Σ(t) is relatively compact in Xα(t0).
From

‖Aβ(t0)F (t, xε(t))‖ = ‖Aβ(t0)A−1A(t)F (t, xε(t))‖ ≤ C(β,1)L1(‖xε‖+ 1)

and the compactness of A−β(t0) : X → Xβ(t0) (⊂ Xα(t0)) it follows that, for each
t ∈ [τ, T ], {F (t, xε(t)) : xε ∈ Σ} is relatively compact in Xα(t0). Hence, we can also
prove that Σ(t) is relatively compact in Xα(t0) by the same techniques as in Step
1.

Hence, again by Arzela-Ascoli theorem we deduce that Σ|[τ,T ] is relatively com-
pact in the space C([τ, T ], Xα(t0)). Set

x̃ε(t) =

{
xε(t), t ∈ [τ, a],
xε(τ), t ∈ [0, τ ],

then g(x̃ε) = g(xε) by (H ′
3) and we may assume without loss of generality that

x̃ε(·) → x(·) on interval [τ, T ].
Next we need to prove that Σ(0) = {x0 − U(ε, 0)g(xε)} is relatively compact in

Xα(t0). In fact, by (2.2), (2.5), (2.6) and condition (H3), we obtain

‖Aα(t0)U(ε, 0)g(xε)−Aα(t0)g(x)‖
≤ ‖Aα(t0)U(ε, 0)g(xε)−Aα(t0)U(ε, 0)g(x)‖

+ ‖Aα(t0)U(ε, 0)Aα(t0)Aα(t0)g(x)−Aα(t0)g(x)‖
≤

∥∥Aα(t0)A−1(ε)
∥∥∥∥A(ε)U(ε, 0)A−1(0)

∥∥ ‖A(0)g(x̃ε)−A(0)g(x)‖
+

∥∥Aα(t0) [U(ε, 0)− I]A−1(0)
∥∥ ‖A(0)g(x)−A(0)g(x)‖ → 0, as ε → 0+.

To complete the proof for the relative compactness of Σ in E it remains to verify
that Σ is equi-continuous at t = 0, while this can be reached readily by the relative
compactness of {U(ε, 0)g(xε) : ε > 0}.

Therefore, Σ is relatively compact in E and we may assume that xε(·) → x(·) in
E for some x(·). Then, by taking the limit as ε → 0+ in xε(·) = Pxε(·) and using
the Lebesgue dominated convergence theorem, we deduce without difficulty that
x(·) is a mild solution to System (1.1). The proof is complete. �

3.2. Existence of strict solutions. In this subsection, we provide conditions
which allow the differentiability of the mild solutions obtained in Section 3.1.

Definition 3.3. A function x(·) : [0, T ] → Xα(t0) is said to be a strict solution of
the nonlocal Cauchy problem (1.1), if

(1) x belongs to C([0, T ];Xα(t0)) ∩ C1((0, T ];X);
(2) x satisfies

d

dt
[x(t) + F (t, x(t))] + A(t)x(t) = G(t, x(r(t)))

on (0, T ], and x(0) + g(x) = x0.

For the next theorem, we define the following assumptions:
(H1’) For any function y ∈ E, the mapping t → F (t, y(t)) is Hölder continuous

on [0, T ];
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(H4) G(·, ·) is Hölder continuous; i.e. for each (t0, x0) ∈ [0, T ] × Xα(t0), there
exist a neighborhood W of (t0, x0) in [0, T ]×Xα(t0) and constants L3 > 0,
0 < θ ≤ 1 such that

‖G(s, x)−G(s̄, x̄)‖ ≤ L3[|s− s̄|θ + ‖x− x̄‖θ
α]

for (s, x), (s̄, x̄) ∈ W ;
(H5) There is a constant l > 0, such that for all s, s̄ ∈ [0, T ],

‖r(s)− r(s̄)‖ ≤ l|s− s̄| ;

(H6) x0 ∈ D(A).
We remark that (H1’) is also verified by the example presented in Section 4.

Theorem 3.4. Suppose that (B1)–(B4), (H1), (H2)(ii), (H3), (H1’), (H4)–(H6)
are satisfied. Then the nonlocal Cauchy problem (1.1) has a strict solution on [0, T ]
provided that (3.4) and (3.5) hold.

Proof. By Theorem 3.2, we see that(1.1) has a mild solution x(·) on [0, T ]. We now
consider the differentiability of x(t). Let

f(t) = F (t, x(t)),

o(t) = U(t, 0)[x0 + F (0, x(0))− g(x)] = U(t, 0)[x(0) + F (0, x(0))],

p(t) =
∫ t

0

U(t, s)A(s)F (s, x(s))ds,

q(t) =
∫ t

0

U(t, s)G(s, x(r(s)))ds.

It follows from Lemma 2.1, Lemma 2.2, (2.6) and (2.7) that

‖o(t + h)− o(t)‖α ≤ C(α, 1)‖A((0)[x(0) + F (0, x(0))]‖h1−α,

and

‖p(t + h)− p(t)‖α ≤ C(α)(| log h|+ 1)) max
0≤s≤t+h

‖A(s)F (s, x(s))‖h1−α

≤ C(α)hβ(| log h|+ 1)) max
0≤s≤t+h

‖A(s)F (s, x(s))‖h1−α−β ,

where we have chosen 0 < β < 1 such that 1−α−β > 0. Observing hβ(| log h|+1))
is bounded we see that o(t) and p(t) are both Hölder continuous on [0, T ] with
exponent 1 − α − β, and similarly, this holds for q(t). So by (H1’) it is easy to
deduce that x(·) is Hölder continuous on [0, T ]. On the other hand, it has been
shown in [15] that the Lipschitz continuity of A(t)F (·, ·, ·) (condition (H1)) implies
A(·)F (·, ·, ·) is locally Hölder continuous. Hence conditions (H4), (H5) assure that

s 7→ A(s)F (s, x(s)) and s 7→ G(s, x(r(s)))

are both Hölder continuous in X on [0, T ]. Thus, from the proof of [22, Theorem
5.7.1] it is not difficult to see that p(t) ∈ D(A), q(t) ∈ D(A), and

p′(t) = A(t)F (t, x(t))−A(t)
∫ t

0

U(t, s)A(s)F (s, x(s))ds

q′(t) = G(t, x(r(t)))−A(t)
∫ t

0

U(t, s)G(s, x(r(s)))ds,
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Moreover, p(t), q(t) ∈ C1([ε, T ] : X). On the other hand, f(t) ∈ C1([0, T ]. Conse-
quently, x is differentiable on (0, T ] and satisfies

d

dt
[x(t) + F (t, x(t))]

=
d

dt
U(t, 0)[x0 + F (0, x(0))− g(x)] + p′(t) + q′(t)

= A(t)U(t, 0)[x0 + F (0, x(0))− g(x)]

+ A(t)F (t, x(t))−A(t)p(t) + G(t, x(r(t)))−A(t)q(t)

= −A(t)x(t) + G(t, x(r(t)))

This shows that x(·) is a strict solution of the nonlocal Cauchy problem (1.1). Thus
the proof is complete. �

4. Example

To illustrate the applications of Theorems 3.2 and 3.4, we consider the following
example:

∂

∂t
[z(t, x) +

∫ π

0

∫ t

0

b(s, y, x)(z(s, y) +
∂

∂y
z(s, y))dsdy]

=
∂2

∂x2
z(t, x) + a(t)z(t, x) + h(t, z(t sin t, x),

∂

∂y
z(t sin t, x)),

0 ≤ t ≤ T, 0 ≤ x ≤ π,

z(t, 0) = z(t, π) = 0,

z(0, x) +
p∑

i=1

g1(z(ti, x)) = z0(x), 0 ≤ x ≤ π,

(4.1)

where a(t) < 0 is a continuous function and is Hölder continuous in t with parameter
0 < δ < 1. T ≤ π, p a positive integer, 0 < t0 < t1 < · · · < tp < T . z0(x) ∈ X :=
L2([0, π]).

Let A(t) be defined by
A(t)f = −f ′′ − a(t)f

with domain

D(A) = {f(·) ∈ X : f, f ′absolutely continuous,f ′′ ∈ X, f(0) = f(π) = 0}.

Then it is not difficult to verify that A(t) generates an evolution operator U(t, s)
satisfying assumptions (B1)− (B4) and

U(t, s) = T (t− s) exp
( ∫ t

s

a(τ)dτ
)
,

where T (t) is the compact analytic semigroup generated by the operator −A with
−Af = −f ′′ for f ∈ D(A). It is easy to compute that, A has a discrete spec-
trum, the eigenvalues are n2, n ∈ N, with the corresponding normalized eigenvectors

zn(x) =
√

2
π sin(nx). Thus for f ∈ D(A), there holds

−A(t)f =
∞∑

n=1

(−n2 + a(t))〈f, zn〉zn,
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and clearly the common domain coincides with that of the operator A. Furthermore,
we may define Aα(t0) (t0 ∈ [0, T ]) for self-adjoint operator A(t0) by the classical
spectral theorem and it is easy to deduce that

Aα(t0)f =
∞∑

n=1

(n2 − a(t0))α〈f, zn〉zn

on the domain D[Aα] = {f(·) ∈ X,
∑∞

n=1(n
2−a(t0))α〈f, zn〉zn ∈ X}. Particularly,

A1/2(t0)f =
∞∑

n=1

√
n2 − a(t0)〈f, zn〉zn.

Therefore, for each f ∈ X,

U(t, s)f =
∞∑

n=1

e−n2(t−s)+
R t

s
a(τ)dτ 〈f, zn〉zn,

Aα(t0)A−β(t0)f =
∞∑

n=1

(n2 − a(t0))α−β〈f, zn〉zn,

Aα(t0)U(t, s)f =
∞∑

n=1

(n2 − a(t0))αe−n2(t−s)+
R t

s
a(τ)dτ 〈f, zn〉zn.

Then

‖Aα(t)A−β(s)‖ ≤ (1 + ‖a(·)‖)α, ‖Aβ(t)U(t, s)A−β(s)‖ ≤ (1 + ‖a(·)‖)β , (4.2)

for t, s ∈ [0, T ], 0 < α < β. Also

‖Aβ(t)U(t, s)f‖2

=
∞∑

n=1

(n2 − a(t))2βe−2n2(t−s)+2
R t

s
a(τ)dτ |〈f, zn〉|2

= (t− s)−2β
∞∑

n=1

[(n2 − a(t))(t− s)]2βe−2(n2−a(t))(t−s)−2a(t)(t−s)+2
R t

s
a(τ)dτ |〈f, zn〉|2

= (t− s)−2β
∞∑

n=1

e2β log[(n2−a(t))(t−s)]−2(n2−a(t))(t−s)−2a(t)(t−s)+2
R t

s
a(τ)dτ |〈f, zn〉|2

≤ (t− s)−2β
∞∑

n=1

β2βe−2a(t)(t−s)+2
R t

s
a(τ)dτ |〈f, zn〉|2;

(note that c log x− x ≤ c log c− c), which shows that

‖Aβ(t)U(t, s)‖ ≤ Cβ

(t− s)β
(4.3)

for Cβ = ββ max
{

e−2a(t)(t−s)+2
R t

s
a(τ)dτ : t, s ∈ [0, T ]

}
> 0.

Now define the abstract functions F,G : X1/2(t0) → X by

F (t, Z(t, ·))(x) =
∫ π

0

∫ t

0

b(s, y, x)[Z(s, y) +
∂

∂y
Z(s, y)]dsdy,

G(t, Z(t, x))(x) = h(t, Z(t, x),
∂

∂x
Z(t, x)),



14 X. FU EJDE-2012/110

and g : C([0, T ];X1/2(t0) → X by

g(Z(t, x))(x) =
p∑

i=1

g1(z(ti, x)).

Then system (4.1) is rewritten in the form (1.1).
For System (4.1) we assume that the following conditions hold:
(C1) The function b(·, ·, ·) is a C2 function, and b(y, 0) = b(y, π) = 0;
(C2) For the function h : [0, T ] × R × R → R the following three conditions are

satisfied:
(1) For each t ∈ [0, T ], h(t, ·, ·) is continuous, and h(·, ·, ·) is measurable in

t,
(2) There are positive functions h1, h2 ∈ C([0, T ]) such that for all (t, z) ∈

[0, T ]×X,
|h(t, z)| ≤ h1(t)|z|+ h2(t)

(C3) g1 takes values in D(A) and A(t0)g1 is a continuous map and there is a
positive constants L such that ‖g1(x)‖1/2 ≤ L.

Condition (C1) implies that R(F ) ⊂ D(A). Clearly, A(t)F (·) the Lipschitz
continuous on X. Observe that, for any z1, z2 ∈ X1/2(t0),

‖z2(x)− z1(x)‖2 =
∞∑

n=1

〈z2 − z1, zn〉2

≤
∞∑

n=1

(n2 + a(t0))〈z2 − z1, zn〉2

≤ ‖z2(x)− z1(x)‖1/2
2
,

it follows that the above conditions ensure that F , G and g verify Assumptions
(H1)–(H3) respectively. Consequently, for any z0 ∈ Xβ(t0) ( 1

2 < β ≤ 1), by
Theorem 3.2, system (4.1) has a mild solution on [0, T ] under these assumptions,
provided that (3.4) and (3.5) hold (note that the constants Cβ , C ′β , C(α,β) are given
by (4.2) and (4.3) explicitly).

Furthermore, if we suppose that
(C4) The function h(t, z) is Lipschitz continuous.

Then it is not difficult to verify that the conditions (including condition (H1’)) of
Theorem 3.4 are satisfied and so the mild solution is also a strict solution of (4.1)
for given z0 ∈ D(A).
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