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EXISTENCE AND UNIQUENESS OF SOLUTIONS TO
FUNCTIONAL INTEGRO-DIFFERENTIAL FRACTIONAL

EQUATIONS

MOULAY RCHID SIDI AMMI, EL HASSAN EL KINANI, DELFIM F. M. TORRES

Abstract. Using a fixed point theorem in a Banach algebra, we prove an
existence result for a fractional functional differential equation in the Riemann-
Liouville sense. Dependence of solutions with respect to initial data and an
uniqueness result are also obtained.

1. Introduction

Fractional Calculus is a generalization of ordinary differentiation and integration
to arbitrary (non-integer) order. The subject has its origin in the 1600s. During
three centuries, the theory of fractional calculus developed as a pure theoretical
field, useful only for mathematicians. In the last few decades, however, fractional
differentiation proved very useful in various fields of applied sciences and engineer-
ing: physics (classic and quantum mechanics), chemistry, biology, economics, signal
and image processing, calculus of variations, control theory, electrochemistry, visco-
elasticity, feedback amplifiers, and electrical circuits [4, 6, 8, 9, 15, 18, 20, 22, 23].
The “bible” of fractional calculus is the book of Samko, Kilbas and Marichev [20].

Several definitions of fractional derivatives are available in the literature, in-
cluding the Riemann-Liouville, Grunwald-Letnikov, Caputo, Riesz, Riesz-Caputo,
Weyl, Hadamard, and Chen derivatives [11, 12, 13, 16, 17, 20]. The most com-
mon used fractional derivative is the Riemann-Liouville [10, 17, 20, 21], which we
adopt here. It is worth to mention that functions that have no first order derivative
might have Riemann-Liouville fractional derivatives of all orders less than one [17].
Recently, the physical meaning of the initial conditions to fractional differential
equations with Riemann-Liouville derivatives has been discussed [7, 14, 16].

Using a fixed point theorem, like Schauder’s fixed point theorem, and the Banach
contraction mapping principle, several results of existence have been obtained in
the literature to linear and nonlinear equations, and recently also to fractional
differential equations. The interested reader is referred to [1, 2, 3, 19].

Let I0 = [−δ, 0] and I = [0, T ] be two closed and bounded intervals in R; B(I,R)
be the space of bounded real-valued functions on I; and C = C(I0,R) be the space
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of continuous real valued functions on I0. Given a function φ ∈ C, we consider the
functional integro-differential fractional equation

dα

dtα

[ x(t)
f(t, x(t))

]
= g

(
t, xt,

∫ t

0

k(s, xs)ds
)

a.e., t ∈ I, (1.1)

subject to
x(t) = φ(t), t ∈ I0, (1.2)

where dα/dtα denotes the Riemann-Liouville derivative of order α, 0 < α < 1, and
xt : I0 → C is the continuous function defined by xt(θ) = x(t + θ) for all θ ∈ I0,
under suitable mixed Lipschitz and other conditions on the nonlinearities f and
g. For a motivation to study such type of problems we refer to [1]. Here we just
mention that problems of type (1.1)–(1.2) seem important in the study of dynamics
of biological systems [1].

Our main aim is to prove existence of solutions for (1.1)–(1.2). This is done
in Section 3 (Theorem 3.1). Our main tool is a fixed point theorem that is often
useful in proving existence results for integral equations of mixed type in Banach
algebras [5], and which we recall in Section 2 (Theorem 2.2). We end with Sec-
tion 4, by proving dependence of the solutions with respect to their initial values
(Theorem 4.1) and, consequently, uniqueness to (1.1)–(1.2) (Corollary 4.2).

2. Preliminaries

In this section we give the notations, definitions, hypotheses and preliminary
tools, which will be used in the sequel. We deal with the (left) Riemann-Liouville
fractional derivative, which is defined in the following way.

Definition 2.1 ([20]). The fractional integral of order α ∈ (0, 1) of a function
f ∈ L1[0, T ] is defined by

Iαf(t) =
∫ t

0

(t− s)α−1

Γ(α)
f(s) ds,

t ∈ [0, T ], where Γ is the Euler gamma function. The Riemann-Liouville fractional
derivative operator of order α is then defined by

dα

dtα
:=

d

dt
◦ I1−α.

In this article, X denotes a Banach algebra with norm ‖ · ‖. The space C(I,R)
of all continuous functions endowed with the norm ‖x‖ = supt∈I |x(t)| is a Banach
algebra. To prove the existence result for (1.1)–(1.2), we shall use the following
fixed point theorem.

Theorem 2.2 ([5]). Let Br(0) and Br(0) be, respectively, open and closed balls in
a Banach algebra X centered at origin 0 and of radius r. Let A,B : Br(0) → X be
two operators satisfying:

(a) A is Lipschitz with Lipschitz constant LA,
(b) B is compact and continuous, and
(c) LAM < 1, where M = ‖B(Br(0))‖ := sup{‖Bx‖;x ∈ Br(0)}.

Then, either
(i) the equation λ[AxBx] = x has a solution for λ = 1, or
(ii) there exists x ∈ X such that ‖x‖ = r, λ[AxBx] = x for some 0 < λ < 1.
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Throughout this article, we assume the following hypotheses:
(H1) The function f : I × R → R \ {0} is Lipschitz and there exists a positive

constant L such that for all x, y ∈ R, |f(t, x)−f(t, y)| ≤ L|x−y| a.e., t ∈ I.
(H2) The function k : I × C → R is continuous and there exists a function

β ∈ L1(I,R+) such that |k(s, y)| ≤ β(s)‖y‖ a.e., s ∈ I, y ∈ C.
(H3) There exists a continuous function γ ∈ L∞(I,R+) and a contraction ψ :

R+ → R+ with contraction constant < 1 and ψ(0) = 0 such that for x ∈ C
and y ∈ R, g(t, x, y) ≤ γ(t)ψ(‖x‖+ |y|) a.e., t ∈ I.

(H4) The function k is Lipschitz with respect to the second variable with Lips-
chitz constant Lk: |k(s, x)− k(s, y)| ≤ Lk‖x− y‖ for s ∈ I, x, y ∈ C.

(H5) There exist L1 and L2 such that for x1, x2 ∈ C, y1, y2 ∈ R and s ∈ I,
|g(s, x1, y1)− g(s, x2, y2)| ≤ L1‖x1 − x2‖+ L2|y1 − y2|.

3. Existence of solutions

We prove existence of a solution to (1.1)–(1.2) under hypotheses (H1)–(H5).

Theorem 3.1. Suppose that hypotheses (H1)–(H5) hold. Assume there exists a
real number r > 0 such that

r >

FT α

Γ(α+1) sups∈(0,T ) γ(s)(1 + ‖β‖L1)ψ(r)

1− LT α

Γ(α+1) sups∈(0,T ) γ(s)(1 + ‖β‖L1)ψ(r)
, (3.1)

where

1− LTα

Γ(α+ 1)
sup

s∈(0,T )

γ(s)(1 + ‖β‖L1)ψ(r) > 0, F = sup
t∈[0,T ]

|f(t, 0)|.

Then (1.1)–(1.2) has a solution on I.

Proof. Let X = C(I,R). Define an open ball Br(0) centered at origin and of radius
r > 0, which satisfies (3.1). It is easy to see that x is a solution to (1.1)–(1.2) if
and only if it is a solution of the integral equation

x(t) = f(t, x(t))Iα
(
g
(
t, xt,

∫ t

0

k(s, xs)ds
))
.

In other terms,

x(t) = f(t, x(t))
∫ t

0

(t− s)α−1

Γ(α)
g
(
s, xs,

∫ s

0

k(τ, xτ )dτ
)
ds. (3.2)

The integral equation (3.2) is equivalent to the operator equation Ax(t)Bx(t) =
x(t), t ∈ I, where A,B : Br(0) → X are defined by

Ax(t) = f(t, x(t)), Bx(t) = Iα
(
g
(
t, xt,

∫ t

0

k(s, xs)ds
))
.

We need to prove that the operators A and B verify the hypotheses of Theorem 2.2.
To continue the proof of Theorem 3.1, we use two technical lemmas.

Lemma 3.2. The operator A is Lipschitz on X.

Proof. Let x, y ∈ X and t ∈ I. By (H1) we have

|Ax(t)−Ay(t)| = |f(t, x)− f(t, y)| ≤ L|x(t)− y(t)| ≤ L‖x− y‖.
Then, ‖Ax−Ay‖ ≤ L‖x−y‖ and it follows that A is Lipschitz on X with Lipschitz
constant L. �
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Lemma 3.3. The operator B is completely continuous on X.

Proof. We prove that B(Br(0)) is an uniformly bounded and equicontinuous set in
X. Let x be arbitrary in Br(0). By hypotheses (H2)–(H4) we have

|Bx(t)| ≤ Iα
(∣∣∣g(t, xt,

∫ t

0

k(s, xs)ds
)∣∣∣)

≤ 1
Γ(α)

∫ t

0

(t− s)α−1
∣∣∣g(s, xs,

∫ s

0

k(τ, xτ )dτ
)∣∣∣ds

≤ 1
Γ(α)

∫ t

0

(t− s)α−1γ(s)ψ
(
‖xs‖+

∫ s

0

β(τ)‖xτ‖dτ
)
ds

≤ 1
Γ(α)

∫ t

0

(t− s)α−1γ(s)(1 + ‖β‖L1)ψ(r)ds

≤
sups∈[0,T ] γ(s)

Γ(α)
(1 + ‖β‖L1)ψ(r)

∫ t

0

(t− s)α−1ds

≤
sups∈[0,T ] γ(s)

Γ(α+ 1)
(1 + ‖β‖L1)ψ(r)Tα.

Taking the supremum over t, we get ‖Bx‖ ≤M for all x ∈ Br(0), where

M =
sups∈[0,T ] γ(s)

Γ(α+ 1)
(1 + ‖β‖L1)ψ(r)Tα.

It results that B(Br(0)) is an uniformly bounded set in X. Now, we shall prove
that B(Br(0)) is an equicontinuous set in X. For 0 ≤ t1 ≤ t2 ≤ T we have

|Bx(t2)−Bx(t1)|

≤ 1
Γ(α)

{∣∣∣ ∫ t2

0

(t2 − s)α−1g
(
s, xs,

∫ s

0

k(τ, xτ )dτ
)
ds

−
∫ t1

0

(t1 − s)α−1g

(
s, xs,

∫ s

0

k(τ, xτ )dτ
)
ds

∣∣∣}
≤ 1

Γ(α)

{∣∣∣ ∫ t1

0

(t2 − s)α−1g
(
s, xs,

∫ s

0

k(τ, xτ )dτ
)
ds

+
∫ t2

t1

(t2 − s)α−1g
(
s, xs,

∫ s

0

k(τ, xτ )dτ
)
ds

−
∫ t1

0

(t1 − s)α−1g
(
s, xs,

∫ s

0

k(τ, xτ )dτ
)
ds

∣∣∣}
≤ 1

Γ(α)

∫ t1

0

∣∣∣(t2 − s)α−1 − (t1 − s)α−1
∣∣∣ ∣∣∣g(s, xs,

∫ s

0

k(τ, xτ )dτ
)∣∣∣ds

+
1

Γ(α)

∫ t2

t1

∣∣(t2 − s)α−1
∣∣∣∣∣g(s, xs,

∫ s

0

k(τ, xτ )dτ
)∣∣∣ds.

On the other hand,∣∣∣g(s, xs,

∫ s

0

k(τ, xτ )dτ
)
ds

∣∣∣ ≤ γ(s)ψ
(
‖x‖+

∣∣∣ ∫ s

0

k(τ, xτ )dτ
∣∣∣)

≤ γ(s)ψ
(
‖x‖+

∫ s

0

β(τ)‖x‖dτ
)
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≤ γ(s)‖x‖(1 + ‖β‖L1)ψ(s)

≤ sup
s

(γ(s)ψ(s))‖x‖(1 + ‖β‖L1) ≤ c,

where c is a positive constant. Then

|Bx(t2)−Bx(t1)|

≤ c

Γ(α)

∫ t1

0

∣∣(t2 − s)α−1 − (t1 − s)α−1
∣∣ ds+

c

Γ(α)

∫ t2

t1

∣∣(t2 − s)α−1
∣∣ ds

≤ c

Γ(α+ 1)
|tα2 − tα1 − 2(t2 − t1)α| .

Because the right hand side of the above inequality doesn’t depend on x and tends
to zero when t2 → t1, we conclude that B(Br(0)) is relatively compact. Hence, B
is compact by the Arzela-Ascoli theorem. It remains to prove that B is continuous.
For that, let us consider a sequence xn converging to x. Then,

|Fxn(t)− Fx(t)|

≤
∣∣∣f(t, xn)Iα

(
g
(
t, xn

t ,

∫ t

0

k(s, xn
s )ds

))
− f(t, x)Iα

(
g
(
t, xt,

∫ t

0

k(s, xs)ds
))∣∣∣

≤ |f(t, xn)− f(t, x)|Iα
(∣∣∣g(t, xn

t ,

∫ t

0

k(s, xn
s )ds

)∣∣∣)
+ |f(t, x)|

∣∣∣Iα
(
g
(
t, xn

t ,

∫ t

0

k(s, xn
s )ds

))
− Iα

(
g
(
t, xt,

∫ t

0

k(s, xs)ds
))∣∣∣

≤ L‖xn − x‖+ |f(t, x)|Iα
(∣∣∣g(t, xn

t ,

∫ t

0

k(s, xn
s )ds

)
− g

(
t, xt,

∫ t

0

k(s, xs)ds
)∣∣∣).

On the other hand,

Iα
(∣∣∣g(t, xn

t ,

∫ t

0

k(s, xn
s )ds

)
− g

(
t, xt,

∫ t

0

k(s, xs)ds
)∣∣∣)

≤ Iα
(
L1|xn

t − xt|+ L2

∣∣∣ ∫ t

0

k(s, xn
s )ds−

∫ t

0

k(s, xs)ds
∣∣∣)

≤ Iα
(
L1|xn

t − xt|+ L2

∫ t

0

|k(s, xn
s )− k(s, xs)| ds

)
≤ Iα

(
L1 |xn

t − xt|+ L2Lk

∫ t

0

|xn
s − xs| ds

)
≤ Iα (L1‖xn

t − xt‖+ L2LkT‖xn
s − xs‖)

≤ (L1 + L2LkT ) ‖xn
t − xt‖

∫ t

0

(t− s)α−1

Γ(α)
ds

≤ 1
Γ(α+ 1)

(L1 + L2LkT ) ‖xn
t − xt‖.

Taking the norm, ‖Fxn−Fx‖ ≤ L‖xn−x‖+ 1
Γ(α+1) |f(t, x)| (L1 + L2LkT ) ‖xn

t −xt‖.
Hence, the right hand side of the above inequality tends to zero whenever xn → x.
Therefore, Fxn → Fx. This proves the continuity of F . �

Using Theorem 2.2, we obtain that either the conclusion (i) or (ii) holds. We
show that item (ii) of Theorem 2.2 cannot be realizable. Let x ∈ X be such that
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‖x‖ = r and x(t) = λf(t, x(t))Iα
(
g

(
t, xt,

∫ t

0
k(s, xs)ds

))
for any λ ∈ (0, 1) and

t ∈ I. It follows that

|x(t)| ≤ λ (|f(t, x(t))− f(t, 0)|+ |f(t, 0)|) Iα
(
g
(
t, xt,

∫ t

0

k(s, xs)ds
))

≤ λ (L|x(t)|+ F ) Iα
(
g
(
t, xt,

∫ t

0

k(s, xs)ds
))

≤ λ (L‖x‖+ F ) Iα
(
g
(
t, xt,

∫ t

0

k(s, xs)ds
))

≤ (L‖x‖+ F ) Iα
(
γ(t)ψ

(
‖x‖+

∣∣∣ ∫ t

0

k(s, xs)ds
∣∣∣))

≤ (L‖x‖+ F ) Iα (γ(t)ψ (‖x‖+ ‖β‖L1‖x‖))

≤ L‖x‖+ F

Γ(α)

∫ t

0

γ(s) (1 + ‖β‖L1)ψ (‖x‖) (t− s)α−1ds

≤ L‖x‖+ F

Γ(α)
sup

s∈(0,T )

γ(s) (1 + ‖β‖L1)ψ (‖x‖)
∫ t

0

(t− s)α−1ds

≤ L‖x‖+ F

Γ(α+ 1)
sup

s∈(0,T )

γ(s) (1 + ‖β‖L1)ψ (‖x‖)Tα

≤
( LTα

Γ(α+ 1)
sup

s∈(0,T )

γ(s) (1 + ‖β‖L1)ψ (‖x‖)
)
‖x‖

+
FTα

Γ(α+ 1)
sup

s∈(0,T )

γ(s) (1 + ‖β‖L1)ψ (‖x‖) .

Passing to the supremum in the above inequality, we obtain

‖x‖ ≤
FT α

Γ(α+1) sups∈(0,T ) γ(s) (1 + ‖β‖L1)ψ(‖x‖)
1− LT α

Γ(α+1) sups∈(0,T ) γ(s) (1 + ‖β‖L1)ψ(‖x‖)
. (3.3)

If we replace ‖x‖ = r in (3.3), we have

r ≤
FT α

Γ(α+1) sups∈(0,T ) γ(s)(1 + ‖β‖L1)ψ(r)

1− LT α

Γ(α+1) sups∈(0,T ) γ(s)(1 + ‖β‖L1)ψ(r)
,

which is in contradiction to (3.1). Then the conclusion (ii) of Theorem 2.2 is not
possible. Therefore, the operator equation AxBx = x and, consequently, problem
(1.1)–(1.2), has a solution on I. This ends the proof of Theorem 3.1. �

Let us see an example of application of our Theorem 3.1. Let I0 = [−π, 0] and
I = [0, π]. Consider the integro-differential fractional equation

dα

dtα

( x(t)
1 + sin t

12 |x(t)|

)
= g

(
t, xt

( t
2
)
,

∫ t

0

k(s, xs)ds
)

a.e., t ∈ I, (3.4)

where α = 1/2 and f : I × R → R+ \ {0}, g : I × C × R → R and k : I × C → R
are given by

f(t, x) = 1 +
sin t
12

(|x(t)|) , g(t, x, y) = γ(t)(‖x‖+ |y|) , k(t, x) =
x

4π
,
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with γ(t) = t, β(t) = 1
4π , T = π, L = 1

12 , F = supt f(t, 0) = 1, ‖β‖L1 = 1
4 and

supt∈[0,π] γ(t) = π. It is easy to see that all hypotheses (H1)–(H5) are satisfied
with ψ(r) = r

12 for all r ∈ R+. By Theorem 3.1, r satisfies

12− FB

LB
' 0, 26 ≤ r ≤ 12

LB
' 18, 34,

where B = T α

Γ(α+1) sups∈(0,T ) γ(s)(1+ ‖β‖L1). We conclude that if r = 2, then (3.4)

has a solution in B2(0).

4. Dependence on the data and uniqueness of solution

In this section we derive uniqueness of solution to (1.1)–(1.2).

Theorem 4.1. Let x and y be two solutions to the nonlocal fractional equation
(1.1) subject to (1.2) with φ = φ1 and φ = φ2, respectively. Then, we have

‖x− y‖ ≤
(L‖y‖+ F )(L1 + L2LkT ) T α

Γ(α+1)

1− L
‖φ1 − φ2‖.

Proof. Let x and y be two solutions of (1.1). Then, from (3.2), one has

|x(t)− y(t)|

≤
∣∣∣f(t, x)Iα

(
g
(
t, xt,

∫ t

0

k(s, xs)ds
))

− f(t, y)Iα
(
g
(
t, yt,

∫ t

0

k(s, ys)ds
))∣∣∣

≤ |f(t, x)− f(t, y)|Iα
(∣∣∣g(t, xt,

∫ t

0

k(s, xs)ds
)∣∣∣)

+ |f(t, y)|
∣∣∣Iα

(
g
(
t, xt,

∫ t

0

k(s, xs)ds
))

− Iα
(
g
(
t, yt,

∫ t

0

k(s, ys)ds
))∣∣∣

≤ L‖x− y‖+ |f(t, y)|Iα
(∣∣∣g(t, xt,

∫ t

0

k(s, xs)ds
)
− g

(
t, yt,

∫ t

0

k(s, ys)ds
)∣∣∣)

for t > 0. On the other hand, we have∣∣∣g(t, xt,

∫ t

0

k(s, xs)ds
)
− g

(
t, yt,

∫ t

0

k(s, ys)ds
)∣∣∣

≤ L1|xt − yt|+ L2

∫ t

0

|k(s, xs)− k(s, ys)|ds

≤ L1|φ1(t)− φ2(t)|+ L2LkT‖φ1 − φ2‖
≤ (L1 + L2LkT ) ‖φ1 − φ2‖.

Then

|f(t, y)|Iα
(∣∣∣g(t, xt,

∫ t

0

k(s, xs)ds
)
− g

(
t, yt,

∫ t

0

k(s, ys)ds
)∣∣∣)

≤ |f(t, y)| (L1 + L2LkT ) ‖φ1 − φ2‖
∫ t

0

(t− s)α−1

Γ(α)
ds

≤ |f(t, y)| (L1 + L2LkT ) ‖φ1 − φ2‖
Tα

Γ(α+ 1)
.
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Taking the supremum, we conclude that

‖x− y‖

≤ L‖x− y‖+ |f(t, y)| (L1 + L2LkT ) ‖φ1 − φ2‖
Tα

Γ(α)

≤ L‖x− y‖+ (|f(t, y)− f(t, 0)|+ |f(t, 0)|) (L1 + L2LkT ) ‖φ1 − φ2‖
Tα

Γ(α+ 1)

≤ L‖x− y‖+
(
L‖y‖+ sup

t
|f(t, 0)|

)
(L1 + L2LkT )

Tα

Γ(α+ 1)
‖φ1 − φ2‖

≤ L‖x− y‖+ (L‖y‖+ F ) (L1 + L2LkT )
Tα

Γ(α+ 1)
‖φ1 − φ2‖.

Therefore,

‖x− y‖ ≤
(L‖y‖+ F )(L1 + L2LkT ) T α

Γ(α+1)

1− L
‖φ1 − φ2‖.

�

Corollary 4.2. The solution obtained in Theorem 3.1 is unique.
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