Benedicte Alziary, Jacqueline Fleckinger,
Marie-Helene Lecureux, Na Wei
Abstract:
We consider the sign of the solutions of a
system defined
on the whole space
,
and a weight function
with a positive part decreasing fast enough,
where F is a vector of functions, M is a
matrix with constant
coefficients, not necessarily cooperative, and the weight function
is allowed to change sign. We prove that the solutions of the
system exist and then we prove the local fundamental positivity and local
fundamental negativity of the solutions when
is small enough, where
is the largest eigenvalue of the constant
matrix M and
is the "principal" eigenvalue of
Submitted February 29, 2012. Published June 15, 2012.
Math Subject Classifications: 35B50, 35J05, 35J47.
Key Words: Elliptic PDE; maximum principle; fundamental positivity;
fundamental negativity; indefinite weight, weighted systems.
Show me the PDF file (302 KB), TEX file, and other files for this article.
Bénédicte Alziary Institut de Mathématique -UMR CNRS 5219- et Ceremath-UT1 Université de Toulouse 31042 Toulouse Cedex, France email: alziary@univ-tlse1.fr | |
Jacqueline Fleckinger Institut de Mathématique -UMR CNRS 5219- et Ceremath-UT1 Université de Toulouse 31042 Toulouse Cedex, France email: jfleckinger@gmail.com | |
Marie-Hélène Lecureux Institut de Mathématique -UMR CNRS 5219- et Ceremath-UT1 Université de Toulouse 31042 Toulouse Cedex, France email: mhlecureux@gmail.com | |
Na Wei Dept. Appl. Math., Northwestern Polytechnical Univ. 710072 Xi'an, China School of Stat. & Math., Zhongnan Univ. Eco. & Law 430073, Wuhan, China email: nawei8382@gmail.com |
Return to the EJDE web page